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Summary. Suppose that K is a CW-complex, X is an inverse sequence of stratifiable
spaces, and X = lim X. Using the concept of semi-sequence, we provide a necessary and
sufficient condition for X to be an absolute co-extensor for K in terms of the inverse
sequence X and without recourse to any specific properties of its limit. To say that X is
an absolute co-extensor for K is the same as saying that K is an absolute extensor for X,
i.e., that each map f: A — K from a closed subset A of X extends to amap F': X — K.
In case K is a polyhedron |K|cw (the set |K| with the weak topology CW), we determine
a similar characterization that takes into account the simplicial structure of K.

1. Introduction. The following limit theorem of K. Nagami [13] has
been used frequently since its first appearance in 1959 (see [14] for proof
details).

THEOREM 1.1. Let X = (Xi,pf'l) be an inverse sequence of metrizable
spaces, X = limX, and suppose that for each i € N, dim X; < n. Then
dimX <n.n=

This theorem, however, can be seen as a result in extension theory (see
e.g. |5]) for the following reasons. If K is a CW-complex and X is a space,
then one says that K is an absolute extensor for X, K € AE(X), or that X
is an absolute co-extensor for K, X 7K, if for each closed subset A of X and
map (i.e., continuous function) f : A — K, there exists a map F : X — K
such that F'is an extension of f. Since it is well-known that for a metrizable
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(or even stratifiable) space X, dim X < n if and only if X is an absolute
co-extensor for S™, Theorem 1.1 can be stated in the following way.

THEOREM 1.2. Let X = (Xi,p§+1) be an inverse sequence of metrizable

spaces, X = lim X, and suppose that for each i € N, X; ts an absolute
co-extensor for S™. Then X s an absolute co-extensor for S™. m

A direct generalization of Theorem 1.2 was given by L. Rubin and P.
Schapiro in [17]:

THEOREM 1.3. Let K be a CW-complex, X = (Xl-,pﬁﬂ) an inverse
sequence of metrizable spaces such that for each i € N, X; is an absolute co-
extensor for K, and X = lim X. Then X s an absolute co-extensor for K. m

Several generalizations between Theorem 1.2 and Theorem 1.3 are listed
in [17]. Theorem 1.3 has already been applied in [4] and [9].

Another step was taken in [16]. Instead of requiring that X; is an absolute
co-extensor for K for each ¢ € N, a condition was placed on the bonding maps
p::"'l. The requirement was that for each ¢ € N, closed subset A of X;, and
map f : A — K, there are to exist j > ¢ and a map F : X; — K having
the property that F(z) = f(p!(z)) for each z € (p])}(A). S. Mardesi¢ [10]
extended the work in [16] to the class of stratifiable spaces. More recently
the notion of semi-sequence was introduced in [7] and a limit theorem in
extension theory was proved there for a semi-limit within the inverse limit of
an inverse sequence of stratifiable spaces and for arbitrary CW-complexes.

All the previous theorems contain only sufficient conditions for X7K
when X = lim X. In this paper, we go further and characterize the existence
of the absolute co-extensor property in the limit with respect to a given CW-
complex K (Theorem 3.1), or polyhedron |K|cw (Theorem 3.2), in terms
only of the sequence itself.

If K denotes a simplicial complex whose polyhedron is |K|cw, then
the characterization Theorem 3.2 takes into account the simplicial struc-
ture of K. We note here that by |K|cw we mean the polyhedron with the
weak topology CW induced by the triangulation K. Such a polyhedron will
also be treated as a CW-complex, its CW-structure coming from the trian-
gulation K in a canonical way. All this is done within the class of stratifiable
spaces (|1], [3]) that contains the class of metrizable spaces. This class has
many properties convenient for extension theory, like the homotopy extension
property with respect to CW complexes, being hereditarily paracompact, and
others (1).

(*) In [8] this characterization is used to prove a limit theorem under a local o-type
condition on X; one can also find there a list of properties of stratifiable spaces that we
use herein.
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Our main results, Theorems 3.1 and 3.2, appear in Section 3, and are
stated in terms of semi-sequences and semi-limits. As mentioned above, these
concepts were introduced in [7], but we shall shortly provide all that is needed
to understand the theorems. We shall define, for example, the notion of a
map of a semi-sequence to a space, K-modification and contiguity of such
maps, and homotopy of such maps.

Theorems 3.1 and 3.2 lead to characterizations (Theorems 3.3 and 3.4)
of the absolute co-extensor property for spaces. They are given in terms of
pairs of open sets and a map of one of them to the given CW-complex K or
polyhedron |K|cw.

Some information about semi-sequences is presented in Section 2, while
Section 4 contains our Main Lemma. The proofs of Theorems 3.1 and 3.2
are given in Section 5.

2. Semi-sequences. In this section we are going to provide a portion
of the theory of semi-sequences. For the remainder of this section X =
(Xi,pzﬂ) will denote an inverse sequence of spaces and X = lim X. Let
us repeat Definition 1.3 of |7].

DEFINITION 2.1. Let N* be an infinite subset of N, and for each i € N*,
M; a subset of X;. We shall refer to M = (M;,N*) as a semi-sequence of X
and define slim M to be those z € X having the property that there exists
i € N* such that z; € M; for all j € N* and j > i. We call M = slimM the
sema-limit of M.

In this paper, however, we shall always use N* = N, so let us just write
M = (M;) instead of (M;,N). We may always treat X as (X;), i.e., we may
think of X as a semi-sequence of X. As usual, p; : X = slim X — X; will
denote the ¢th coordinate projection.

Whenever z € slimM then there exists a first 7 € N such that z; € M;
for all j > 4. We shall denote this by i = ¢np(x) and call it the M-birth index
of z.

DEFINITION 2.2. Let M = (M;), H = (H;) be semi-sequences of X.
(1) We shall call M a subsemi-sequence of H if for each i € N, M; C H,.

(2) Define the union of M and H, M U H, to be the semi-sequence
(M; U H;) of X. The intersection M N H is defined as (M; N H;).

(3) Let us say that M is open (resp., closed) in X if for each i € N, M;
is open (resp., closed) in Xj.

(4) Call M an ezpanding semi-sequence of X if (pit1)~1(M;) € M4 for
each i € N.
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(5) Assume that K is a space, and for each i € N, g; : H; — K is a map.
We shall then say that g = (g;) is a map of H to K and denote this
by g: H — K if the consistency equation, g;+1(x) = g; Op§+1($), is
satisfied whenever = € (p!*1)~!(H;) N H;41 and i € N.

(6) Let g = (9i) : H— K, h = (h;) : M — K be maps, M a subsemi-
sequence of H, and h; = ¢;|M; : M; — K for each ¢ € N. Then we
say that h is the restriction of g to M, written h = g|M, and g is

an extension of h to H.

We shall use I to denote the closed unit interval [0,1]. The following
example should help the reader gain an understanding of semi-sequences
and their semi-limits.

ExAMPLE 2.3. Let I = (Ii,pz:“) where for each i, I; = I and pﬁ“ is the
identity map. Put M; equal to the union of the 27! closed intervals that one
uses in the standard construction of the Cantor set and H; = I; \ M;. Let
M = (M;) and H = (H;). Then of course both M and H are semi-sequences
of I, and one may even treat the former as an inverse subsequence of I
whose bonding maps are the restrictions of the identity maps, which are just
inclusions. Clearly slim M equals the Cantor set if we identify lim I with I.
But also H is an expanding open semi-sequence of I, and slim H equals the
complement of the Cantor set under this identification.

Let us point out the following. Let M be a semi-sequence of X, K a space,
and g = (g;) : M — K a map. Then there is a function g : simM — K
given by g(z) = g;op;(z) for each z € simM and ¢ > ¢np(2). If in addition,
a: K — Kjis a map, then h = (o g;) is a map of M to K. We shall refer
to g :slimM — K as the semi-limit of g and denote it by slim g. The map h
will be denoted « o g. Many other facts about semi-sequences follow readily
from the previous definitions and we shall point them out when needed. Here
is a fact of such type.

LEMMA 2.4. Let M = (M;) be an expanding open semi-sequence of X.
For each i € N, let U; = p; '(M;), and put U = |J{U; |i € N}. Then U =
sim M, and U is open in X. If K is a space and g = (g;) a map of M to K,
then g =slimg : U — K is a map having the property that g|U; = g; o p;|U;
for each i € N. m

In [17] we introduced the notion of “response.” Let us review it here.

DEFINITION 2.5. Let f : X — Y be a map and W be an open sub-
set of X. Then resp(W, f) is the maximal open subset U of Y such that
YU cw.
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Note that if W C W' are open subsets of a space X, f : X — Y,
g:Y — Zaremaps,and h=go f: X — Z, then

g™ (resp(W, h)) C resp(W, f) C resp(W', f).

LEMMA 2.6. Let X = (Xz,pzﬂ) be an inverse sequence of spaces, X =
lmX, W = {W, |v € I'} an open collection in X, and W = |J{W, |v € I'}.
For i € N, set Wi, = resp(Wy,pi),v € I'W; = {W;, | v € I'}; and
Wi =UWi;. Then W = (W;) is an expanding open semi-sequence of X with
W =slim W.

Proof. Clearly W is open and expanding. Let z € W. Then for some
v € I', x € W,. There exists ¢ € N and a neighborhood V of z; in X
such that p;~1(V) C W,. Thus V. C W, and we see that z; € W;, for all
j > i. Therefore W C slim W. On the other hand, suppose that x € slim W.
Let i = ®w(x), the birth index of x. Then x; € W;, so x € p; *(W;) =
U{p; {(Wiu) |v € I'} € W, due to the definition of response. m

In such cases we shall refer to W as the expanding open semi-sequence
of X induced by W.

Let Y = (Yi,qfﬂ) be an inverse sequence of spaces such that for each
t1eN, X; CY and pZH = qf+1|Xi. Then we shall say that X is an inverse
subsequence of Y. In case M is a semi-sequence of X, we may also treat it
as a semi-sequence of Y. In this case, we shall distinguish the semi-limits by
writing slimx M and slimy M, even though one might treat them as being
equal.

LEMMA 2.7. Let X = (X,,pz"'l) be an inverse subsequence of an inverse
sequence Y = (}Q,qf"'l), X =1limX, and Y = limY. Suppose that E is a
semi-sequence of Y. Then:

(1) slimy(ENX) C X and slimy(ENX) = slimx (E N X),

(2) (slimy E) N X = slimx(ENX),

(3) if E is exzpanding in Y, then EN X is expanding in X,
(4) if E is open (resp. closed) in Y, then ENX is open (resp. closed)

mX. n

In the proof of Proposition 1.7 of [16] the author performed a construction
from which the following fact follows.

LEMMA 2.8. Let X = (X,,pz"'l) be an inverse - sequence of spaces and
X =1lim X. Then there exists an inverse sequence X = (XZ, NL'H) of spaces

and surjective bonding maps with X =limX such that for each i € N, X =
X; + D; where D; is a discrete subspace of XZ, Dy =0, f);Jr | Xit1 = pZ'H,
and for each x € Diy1, (P Y (2)} = {x}. In this case:

(1) X = (X;) is an open semi-sequence of X,
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(2) D = (Dy) is an expanding open semi-sequence of X,

(3) slimD = X \ X,

(4) for each i € N and z € pitH(Djs1), there is a unique 1 € Dy
with ~L+l( H—l) z,

(5) X\ X is a discrete open subspace of X,

(6) X =slimx X and X is a closed subspace of X . m

Let us refer to_ X as a surjective extension of X. If X; is stratifiable for
each ¢ € N, then X is stratifiable. Furthermore, X7K if and only if X7K.

We shall denote by X x I the inverse sequence (X; x I plJrl x id). We
of course identify lim(X x I) with X x I. If M = (M;) is a semi-sequence
of X, then we shall use M x I to denote the semi-sequence (M; x I) of
X x I. If we put M = slim M, then again slim(M x I) may be thought of
as M xITCX xI.

DEFINITION 2.9. Let F = (F;) : M x [ — Y be a map. For each i € N,
let g; : M; — Y be given by g¢;(x) = Fi(x,0) and h; : M; — Y be given by
hi(z) = Fi(z,1). Then g = (¢;) and h = (h;) are maps of M to Y. We shall
say that F is a homotopy from g to h. Under such conditions, we will write
g ~ h and say that g is homotopic to h.

It is clear that ~ is an equivalence relation on the set of maps g :
M — Y. Furthermore, under some additional conditions homotopic maps
induce homotopic maps of the semi-limit.

LEMMA 2.10. If M is expanding open and ¥ is a homotopy from g to h,
then F' =slimF : MxI - Y, g=slimg: M —Y,andh =slimh: M —-Y
are maps, and F' is a homotopy from g to h. =

Let us recall the notions of K-modification and contiguity. Let K be a
simplicial complex and g, h : C — |K|cw be maps. Then we say that g is a
K-modification of h if for each x € C, whenever 0 € K and h(x) € o, then
g(x) € 0. On the other hand, one says that g is contiguous to h if for each
x € C, there exists 0 € K such that g(z), h(z) € o (?).

Note that g is a K-modification of h if and only if for each x € C' and
o € K such that h(z) € into, we have g(z) € o. Recall that if g is a
K-modification of h, then g is contiguous to h, and that contiguous maps
are homotopic.

Next are our definitions of K-modification and contiguity for maps of
semi-sequences.

(?) When g is contiguous to h, it need not be true that either one of them is a
K-modification of the other. Also contiguity is not an equivalence relation although it is
reflexive and symmetric.
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DEFINITION 2.11. Let g = (g;) and h = (h;) be maps of M to a polyhe-
dron |K|7. Define g to be a K-modification of h if g; is a K-modification of
h; for each ¢ € N. We shall say that g is contiguous to h if g; is contiguous
to h; for each 7 € N.

From our definitions it easily follows that if g is a K-modification of h,
then g is contiguous to h.

Let us now quote Lemma 2.3 of [12], noting that this is a generalization
of Theorem 10, page 302 of [11].

LEMMA 2.12. Let K be a simplictal complex and T a paracompact topol-
ogy for |K| such that:

(1) T c CW,
(2) for each o € K, o7 = ocw,
(3) for each v e KO st(v,K) is open in |K|7T.

Let iy : |K| — |K]| be the identity function and iz : |K|cw — |K|r be
the identity map. Then there is a map j : |K|r — |K|cw which is a K-
modification of i1 and such that j is a homotopy equivalence with homotopy
inverse ia. In fact, there is a function H : |K| x I — |K| such that for each
tel, H, : |K|— |K| is simplex preserving and:

(a) H:|K|cw xI — |K|cw is a homotopy between jois and the identity
on | K|cw,

(b) H : |K|7 x I — |K|7 is a homotopy between iz o j and the identity
on |K|r. =

LEMMA 2.13. Let g = (g;) and h = (h;) be maps of M to a polyhedron
|K|cw. If g is contiguous to (or is a K-modification of) h, then g ~ h.

Proof. Let T designate the metric topology on |K| induced by the trian-
gulation K (as in Appendix I of [11]). Since open vertex stars belong to 7,
one sees that 7 meets the requirements of Lemma 2.12, so let i1, i, j, and
H be as in that lemma.

Fix ¢ € N. The map iy o g; is contiguous to iz o h; from M; to |K|r.
The so-called “straight line” homotopy G; of these maps is given as follows.
If z € M;, v e KO qis the v-barycentric coordinate of iy o g;(x), b is the
v-barycentric coordinate of i o hi(x), and ¢ € I, then (1 — t)a + tb is the
v-barycentric coordinate of G;(x,t). This function G; : M; x I — |K|7 is
continuous since all its barycentric coordinates are continuous (Appendix I
of [11]). One then sees that j o G; : M; x I — |K|cw is a homotopy from
joigog; to joigoh,.

Now consider the homotopy H from (a) in Lemma 2.12, and let F' be
its reverse, i.e., F(z,t) = H(x,1 —t). Using ' we get a homotopy from
idew © g5 = g; to joigog;. Next apply the homotopy G; to go from jois 0 g;
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to joigoh;. Finally, apply again the homotopy H in (a) to go from joigoh;
to idgw o h; = h;.

Since the homotopy Gj; is based on the “straight line” homotopy and F, H
are fixed throughout, it is not difficult to see that the consistency relations
hold. This completes our proof. =

3. Characterization theorems. We now present our characterization
theorems, the main results of this paper. There is a CW-version when the
target is a CW-complex and an SC-version when the target is a polyhedron.

THEOREM 3.1 (CW-version). Let X = (X;,pi™) be an inverse sequence
of stratifiable spaces, X = limX, and K be a CW-compler. Then X is
an absolute co-extensor for K if and only if for any expanding open semi-
sequences M and H of X and map g : M — K, there exist expanding open
subsemi-sequences, M* of M and H* of H, and a map g*: M* UH* — K
such that:

(1) slimM* Uslim H* = slimM U slim H,
(2) g"|M" =~ g|M".

THEOREM 3.2 (SC-version). Let X = (X;,p™') be an inverse sequence
of stratifiable spaces, X =1lim X, and K be a simplicial complex. Then X is
an absolute co-extensor for |K|cw if and only if for any expanding open semi-
sequences M and H of X and map g : M — |K|cw, there exist expanding
open subsemi-sequences, M* of M and H* of H, and a map g* : M*UH* —
|K|cw such that:

(1) slimM* Uslim H* = slimM U slim H,
(2) g*|M* is a K-modification of g|M*.

These theorems lead to characterizations of the absolute co-extensor
property on the level of stratifiable spaces in terms of pairs of open sets and a
map on one of them. We state both versions and prove only the CW-version.

THEOREM 3.3. Let X be a stratifiable space and K a CW -complex. Then
X is an absolute co-extensor for K if and only if for each pair M, H of open
subsets of X and map g : M — K, there exist open subsets M*, H* of X,
M*C M, H* C H, and a map g*: M* U H* — K such that:

(1) M*UH*=MUBH,
(2) g*|M* is homotopic to g|M*.
Proof. (=). Note that M U H is a normal space. By the shrinking theo-

rem, choose an open subset M* of M U H such that M* C clyjyg M* C M

and M*UH = M UH. Put H* = H. Then (1) is true. Also M U H is an
absolute co-extensor for K [6]; hence g|clyyug M* : clyug M* — K extends
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toamap ¢g*: MUH — K. Since M* C clyug M*, we have g*|M* = g|M*,
showing that (2) is true.

(«=). Let A be a closed subset of X and g : A — K a map. Since
K € ANE(X) (]2]), there exists a neighborhood M of A and a map of M
to K extending g. We shall use g : M — K to denote such a map. Put
H =X\ A. Then H is open and X = M U H.

For each i € N, let X; = X, pi™! =id, M; = M, H; = H, and g; = g :
M; — K. Thus X = (Xi,pf'l) is an inverse sequence of stratifiable spaces
whose limit is X. Put M = (M;), H = (H;), and g = (g;). Then M, H
are expanding open semi-sequences of X and g : M — K is a map. We
may apply Theorem 3.1 to (M, H, g) to obtain M*, H*, and g* meeting
the conditions stated there. Let M* = slim M* and H* = slim H*. Then
M* C M, H* C H, and Lemma 2.4 shows that M*, H* are open in X, and
that slimg* = ¢*: M*UH* = M UH — K is a map. From HN A = () and
M*UH = X, it follows that A C M*. Since g*|M* ~ g|M*, Lemma 2.10
gives g*|M* ~ g|M*. =

THEOREM 3.4. Let X be a stratifiable space and K a simplicial complez.
Then X is an absolute co-extensor for |K|cw if and only if for each pair
M, H of open subsets of X and map g : M — K, there exist open subsets
M* H* of X, M*C M, H*CH, and a map g* : M*UH* — |K|cw such that:

(1) M*UH*=MUH,

(2) g*|M* is a K-modification of g|M*.

4. Lemmas. In order to prove Theorem 3.2 we need some lemmas. Let
U = {U,|v € I'} be an open cover of a space X, N(U) its nerve, and
f:X — |[NU)|cw be a map. Then we say that f is a locally finite U-
canonical map if f is U-canonical and {f~1(st(U,, N(U))) |v € I'} is alocally
finite open cover of X. Notice that if X is a paracompact space, then there
is a locally finite U-canonical map f : X — |[N(U)|cw. In the proof of the
Main Lemma (Lemma 4.3) we shall need an enhanced version of Lemma 3.8
of [7]:

LEMMA 4.1. Let X be a space, Z a closed subset of X, and Z C U C X.
Suppose we are given a stratifiable space C, a map p : C — X, Zy C
{t e Z\p_l(t) # 0}, I'* C I', and the following data:

(1) a coverd ={U, |v € I'*} of U by sets open in U,

(2) an open cover V = {V,|v € I'} of C such that p~1(U,) C V,, for

each v € I'*,
(3) a locally finite U-canonical map g : U — |N(U)|cw-

Let Ny be the minimal subcomplex of N(U) such that g(Zy) C |No|. Then
there exist a locally finite U-canonical map h : U — |N(U)|cw such that
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h=Y(|No|) is a closed neighborhood of g~ '(|No|) in U and hlg= (| No|) =
glg™ (| No|), a locally finite V-canonical map go : C — |N(V)|, and a sim-
plicial injection o : Ng — N(V), a(U,) = V,, for all U, € NO(O)7 so that
aohop(z) = go(z) for each z € P =p~(h~Y(|Nol)).

Suppose in addition that Z* C C, p(Z*) = Zo, Iy C I'* and {U, |v € I}
is the set of vertices of a simplex of Ny. Then (\{Vy|v € I} NZ* # 0.

Proof. There is no loss of generality in assuming that U/ is a locally finite
cover of U. Using a closed, regular neighborhood R of |Np| in |N(U)|cw,
choose a map r : |[N(U)|cw — |N(U)|cw such that r retracts R to |Ng|, and
whenever z lies in a simplex o of N(U), then r(z) € o, i.e., r is an N(U)-
modification of the identity on |N(U)|cw. We ask the reader to check that
h=rog:U — |N(U)|cw is a locally finite U-canonical map. Clearly g~ *(R)
is a closed neighborhood of g=!(|Ng|) in U, and ¢~ '(R) C A=} (|Ng|) =
g1 (1 (| Nol))- Also, h(t) = g(¢) for all £ € g1(|No|).

Let E={E, =V, NP|lvel}andf: NE)— N(V) be the simplicial
injection determined by the vertex map FE, — V,. Suppose that Iy C I is
finite and {U, |v € Iy} is the vertex set of a simplex of Ny. Applying Lemma
3.7 of [7], let t € m{Uv |7) S Fo} NZy C Zy C h_1(|N0’). Now p_l(t) =+ @,
p~L(t) C P,and p~1(U,) C V, for each v € I. Hence § # p~1(t) C ({E, =
VoNP|v e Iy}, showing that {E, |v € Iy} is the vertex set of a simplex of
N(&). Therefore the vertex map ((U,) = E, induces a simplicial injection
B:No— N(E).

Let f: P — |[N(E)| be given by the rule f(x) = S o hop(x). We want
to show that f is a locally finite £-canonical map. If a vertex E, of N(&)
does not lie in the image of 3, then B~ !(st(E,, N(£))) = 0, so we need
only concern ourselves with a vertex E, of N(&) such that g(U,) = E,.
Surely 3~ 1(st(Ey, N(€))) C st(Uy, N(U)). Since h is U-canonical, we have
h=Y(st(Uy, N(U))) C U,. Now (2) shows that p~1(U,) C Vi, so p~1(U,)NP C
V, NP = E, as needed to show that f is £-canonical.

For the locally finite part, let y € P and 2 = p(y). Because of (3), there
exists a finite subset I of I'™* and a neighborhood @ of x in X such that
QN h=Y(st(Uy, N(UU))) # 0 only if v € Iy. So p~1(Q) N P is a neighborhood
of y in P that intersects (h o p)~*(st(U,, N(U))) N P only if v € Iy. From
the argument preceding this, one sees that (3 o h o p)~1(st(E,, N(£))) C
(h o p)~L(st(Uy,, N(UU))) for each v € I'. So the neighborhood p~(Q) N P of
y in P intersects f~!(st(E,, N(£))) only if v € I. This completes the last
step in showing that f is a locally finite £-canonical map.

Observe that P is a closed subspace of the stratifiable space C. Apply
Lemma 3.6 of [7] to get a locally finite V-canonical map go : C' — [N (V)] so
that for z € P, 6(f(2)) = go(z). Now o f(z) =0ofSohop(z),and « = o 3

is a simplicial injection.
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To obtain the final statement of our lemma, one should recall that we
earlier showed that there exists t € (\{U, |v € I} N Zy. Choose ¢ € Z* with
p(c) =t. Then c € p~Y(U,) C V, for all v € I. This completes our proof. m

Before getting to our Main Lemma, let us restate in terms of semi-
sequences a fact which appears as Lemma 3 of [10]. We recall here that
stratifiable spaces are perfectly normal, i.e., every open subset is an F-set.

LEMMA 4.2. Let X = (X,-,pf"'l) be an inverse sequence of stratifiable
spaces and W = (W;) an expanding open semi-sequence of X. Then there
exists an expanding open subsemi-sequence S = (S;) of W such that:

(1) ClXi(Si) Cc W; and (p§+1)_1(C1Xi(SZ')) C Siy1 for each i € N,

(2) slimS =slimW. =

Next we present our Main Lemma. It is worth mentioning that the proof
of this lemma requires a target space that is a polyhedron. We shall need
Lemma 4.3 in the proof of Theorem 3.2.

LEMMA 4.3. Let X = (X,-,pz:"'l) be an inverse sequence of stratifiable
spaces, K a simplicial complex, W an open subset of X = lim X, and f :
W — |K|cw a map. Then there exist:

(1) an expanding open semi-sequence M = (M;) of X with sim M = W,

(2) amap g of M to |K|cw such that the map g =slimg : W — |K|cw

18 a K-modification of f.

Proof. Let I' = KO for each v € I', W, = f'(st(v,K)), W =
{Wy|v € I'}, and W = () be the expanding open semi-sequence of X
induced by W (see after Lemma 2.6). Then W = slim W.

(F1)  The vertex map W, — v, v € I', determines a simplicial injection
k: NW)— K.

Apply Lemma 4.2 to obtain S = (S;), an expanding open subsemi-sequence

of W such that slimS = slim W = W, and for each i € N, both clx, (S;) C

W; and (pi™)~1(clx,(S;)) C Siy1. For each i € N, put:

(FQ) Z; = pZ(W) N CIX,(SZ)

We want to establish the following fact:

(F3) LetieN,s:W; — [NOW;)| be a Wj-canonical map, and Ny the
minimal subcomplex of N (W;) such that s(Z;) C |Np|. Suppose that

Iy C I is finite and {W;, |v € I} is the set of vertices of a simplex
of No. Then {W, |v € I} is the set of vertices of a simplex of N(W).

Indeed, by Lemma 3.7 of [7], there exists t € ([{Uin|v € Lo} N Z;. So
there is w € W with p;(w) = t. Since W, = resp(p;, W), it follows that
w € p; ' (Wiy) C W, for all v € I.

Let us note that
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(F4) foreachi<jinN, Z; C pg(Z)
To see this, let z € Z;. Then for some w € W, z = p;(w) € clx,(S:).
Now = = pl 0 py(w), 0 pj(w) € (5) ()  (8) " (elx,(S1)) C ;. Hence
pj(w) € Zj = p;(W) Nclx; (S5)).

Select a locally finite Wi-canonical map s; : W1 — |[N(W))|cw. Define

N; to be the minimum subcomplex of N(W;) such that s;(Z;) C [Ny
Suppose that ¢ € N and for each 1 < k < ¢ we have determined:

(I1)  alocally finite Wy-canonical map sy, : Wi, — | N (Wy)|cw and have des-
ignated by Ny the minimal subcomplex of N (W) with si(Zy) C|Ng|,

(I2) if k < 4, a locally finite Wy-canonical map hy : Wy — ]N(Wk)|cw
such that h;l(]NkD is a closed neighborhood of s;'(|Nx|) and
hiolsi ' (INk]) = sklsy " (INK]),

(I3) if k < 4, a simplicial injection oy : Ni, — Nip1, a(Wh ) = Wit
for each Wy, € (Nk)(o), such that ay o hy, op’,i“(z) = sp41(z) for
each = € (pE1) (b LIV ).

Now we apply Lemma 4.1 with (X,Z,U,C,p, Zo,I*,I''U,V, g, Ny) re-
placed by

(Xi, cly, (Si), Wi, Si1, 0 |Siv1, Ziy Ty Ty Wi, Wi, si, ;).

We ask the reader to make the routine check that all the hypotheses of
Lemma 4.1 are satisfied with this input.

This yields a locally finite W;-canonical map h; : W; — [N(W;)|cw, a
locally finite W;1-canonical map s;+1 @ Wip1 — ]N( Wit1)|cw along with
the minimal subcomplex N1 of N(W;y1) such that s;41(Zi+1) C |Nit1],
and a simplicial injection o; : N; = NW;11), ai(Wi ) = Wiyg1,, subject to
certain properties. Indeed, it is clear that all of (I1)—(I3) are satisfied except
perhaps that we need to check «;(N;) C N;41. But we have established from
(F4) that Z; C pi™(Ziy1). This, the ultimate statement of Lemma 4.1, and
an application of Lemma 3.7 of [7] show that if {W;, |v € Iy} is the set of
vertices of a simplex of N;, then {a;(W; ) |v € Io} = {Wiy1|v € Ip}is the
set of vertices of a simplex of N;;1. Our inductive construction is complete.

For each i € N, define M; = intx, h; '(|N;]) and set M = (M;). Then M is
an open semi-sequence of X; to see that M is expanding, let i € Nand t € M;.
By (I3), if = € (5*1)"1(t), then si41(2) € [Nisa|. Thus = € s, (| Nesal):
from (I2) it follows that z € intx, , z+1(’Nz+1‘) M.

Clearly M; Cc W; for each ¢ € N, so slimM C slimW = W. To show
the opposite inclusion, suppose that x € W = slim S. Put k& = &$g(x), the
S-birth index of z. Hence p;(x) € p;(W) N S; C Z; for all i > k. Using
(I1) and (I2), one sees that p;(x) € M; for all ¢ > k, which implies that
x € slim M.
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We now see that (1) of our lemma has been verified, so we proceed
with (2). By dint of (F3), for each i € N, there is a simplicial injection
Bi : Ny — N (W) obtained from the vertex map W;, — W,. Hence we get a
map g; : M; — |K|cw defined by g;(x) = ko 5; o hi(z) for all z € M.

If 2 € M;q and pit!(x) € M;, then h; o pitt(x) € hi(M;) C |N;|. From
(13), sit1(x) = ;o hj o pi™(2) € | Nit1|. Using (12), we find that h;iq(z) =
o; o h; opﬁ“(aj), which implies that ;11 0 hiy1(z) = Biy10a;0h; 0 pﬁ"‘l(aj).
But ;41 0 a; = (; as one can easily check. Therefore x o ;41 0 hit1(x) =
ko (3; o h; opﬁ“(w), e, git1(xz) = g op?rl(:z:). This proves that g is a map
of M to |K|cw. Let g =slimg: W — |K|cw.

To obtain the K-modification part, let z € W, i = $pp(x), and z = p;(z).
Then g(z) = g; o pi(x) = gi(2) = ko B o hi(z), and h;(z) € |N;|; suppose
that W;, is a vertex of the simplex of N; that contains h;(z) in its interior.
Now z € p; *(W;) € W, = f~(st(v, K)). This shows that v is in o where
o is the simplex of K such that f(x) € int 0. We know that ko 3;(W;,) = v,
so g(x) € o. Our proof is complete. =

LEMMA 4.4. Let X = (Xi,pi"'l) be an inverse sequence of stratifiable
spaces, K a CW-complex, W an open subset of X =1limX, and f - W — K
a map. Then there exist:

(1) an expanding open semi-sequence M = (M;) of X with sim M = W,
(2) a map g of M to K such that the map g = slimg : W — K is
homotopic to f.

Proof. Select a simplicial complex L having the property that |L|cw is
homotopy equivalent to K, and let o : K — |L|cw and 3 : |L|cw — K be a
homotopy equivalence and a homotopy inverse, respectively. Let fo = ao f :
W — |L’CW

Apply Lemma 4.3 to fy and obtain M and a map gy of M to |L|cw as
in (1) and (2) of that lemma. Of course M meets the requirements of (1) of
the current lemma, so we have to get (2).

Put g = B o gp; then g is a map of M to K. We know that gy = slim gy
is an L-modification of fy. Consequently, go ~ fo, so Bogy >~ Bo fo =
Boao f~f and g =slimg = foslimgy = fogy ~ f, as required by (2). m

5. Proofs of characterization theorems

(1) Proof of (<) of Theorems 3.1 and 3.2. Let A be closed in X and
f:A— |K|cw (or K) be a map. We may assume that f is defined on an
open neighborhood W of A. Apply Lemma 4.3 to the map f: W — |K|cw
to obtain an expanding open semi-sequence M of X, W = slim M, a map
g : M — |K|cw, and ¢ = slimg : W — |K|cw. The map g is a K-
modification of f; consequently, g is contiguous to f and g|A ~ f|A. (In the
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CW case, apply Lemma 4.4 instead of Lemma 4.3; the above homotopy is
still true.)

Put H = X \ A and let H be the semi-sequence of X induced by {H}.
Then H = slimH and H is open and expanding in X. Let us also note that
X=WUH.

All the conditions of the sufficiency of Theorem 3.2 (or 3.1) have been
satisfied by the preceding data. Therefore we may now assume the existence
of expanding open subsemi-sequences M* of M, H* of H, and a map g* :
M*UH* — |K|cw (or K) such that slim M*Uslim H* = slimMUslimH =
WUH = X and gj = g*|M"* is a K-modification of (homotopic to) gy =
g|/M*, and in either version gg ~ gp.

Note that M*, H* are expanding open; therefore slim(M* U H*) =
slim M* U slim H* = X.

By Lemma 2.4, g* =slimg* : X — |K|cw (or K) is a map.

Let D = slimM*, g§ = slimgj : D — |K|cw (or to K) and gy = slim gy :
D — |K|cw (or to K). The homotopy g ~ g¢ and Lemma 2.10 show that
g6 and gop are maps, and g ~ go. Note that g} = ¢*|D and go|D = g|D.
Hence, ¢*|D ~ g|D.

Since ANH = (), we have A C D = slim M*. From this and the preceding,
it follows that g*|A ~ g|A. We have already established that g|A ~ f|A.
Since g* : X — |K|cw (or K), our proof of (<) is completed by applying
the homotopy extension theorem. =

Let us point out that (=) of Theorem 3.2 is used in the proof of (=) of
Theorem 3.1, so we separate the two proofs.

(ii) Proof of (=) of Theorem 3.2. Suppose that M = (M;), H = (H;)
are expanding open semi-sequences of X, and g = (g;) is a map of M to
|K|cw. Let M =slimM and H = slim H. Lemma 2.4 shows that M and H
are open in X and that g =slimg: M — |K|cw is a map.

Consider a surjective extension X of X as in Lemma 2.8. We shall deter-
mine a particular expanding open semi-sequence M = (M;) of X which is an
extension of M. Let Ml = M. Suppose that £ € N and we have determined
M; for 1 <4 < k in such a manner that always:

(M1)  M; N X; = M.

We require, moreover, that if 1 <14 < k then:

(M2) (ﬁiﬂ)i(Mi) C M, -

(M3)  if 2 € M;, then for some y € M1, i (y) = 2,

(M4)  if 2 € Myy1 \ My 1, then pitt(x) € M.

One selects M;H_l by adjoining to Mj,1 the minimum set of points in
D1 necessary to make (M3) true in case i is replaced by k. This way the



Inverse Sequences and Absolute Co-FExtensors 257

expanding open_semi-sequence M C X “extends” to an expanding open
semi-sequence M C X, and by Lemma 2.7, slimg MNX = sth(M N X)

= M. Let H be an analogous ‘extension” of H. Define M = slimg M and

H—shm HThenMﬂX MHﬁX H.

Extend g to g : M — | K|cw inductively, by defining g1 = 91, Git1| M1
= gi11, and, using (M4), g;+1(x) = g; o p." ! (z) whenever z € My \ Miqq.

Note that M U H is a normal space. An application of the shrinking
theorem shows that there is an open subset Q of M U H whose closure Qo

with respect to M U H is a subset of M and such that Q UH = MUH.
Observe that (Q UH) NX = MUBH. Since M U H is an absolute co-extensor

for |K|cw (Theorem 3.6 of [6]), choose a map f:MUH — |K|cw having
the property that f|Qo = §/Qo : Qo — | Klow-

Let us apply Lemma 4.3 to the map f and the open subset MUH of X.
We obtain an expanding open semi-sequence N = (N,) of X and a map

h = (hl) of N to ’K|CW One sees that slimN = M U H; hence the map

h=slimh: MUH — |K|cw is a K-modification of f.

Find an expandlng open semi- sequence ( Q (Ql) of X such that slim Q
= Q Define M* M NN N Q Then M* is a ,_ subsemi-sequence of M
similarly H*=HNNis a subsemi-sequence of H. Note that M*, H* are
expanding open seml—sequences of X.

Observe that Q = sth C M =slimM C MUH = sth Since M N
are expanding, M N N is expanding and shm(M NN) = slimM NslimN =
MnN (M U H) M = slimM. Since Q is expandlng, we may apply the
precedmg reasoning again to see that slim M* = shm(M NNN Q) = slim Q
= Q In a similar manner, one sees that slim H* = ShmH N Sth H n
(MUH) = H. Hence slim M*Uslim H* = QUH = MUH = slim MUslim H.

Now, take M* = M* N X and H* = H* N X which are expanding open
semi-sequences of X. Also M* C M, H* C H and slim M* U slim H*=
slim(M* N X) Uslim(H* N X) = M U H. This gives us (1) of Theorem 3.2.

As M*UH" is a subsemi-sequence of N, we may define g* = I~1|M* UH* :
M* UH* — |K|cw. Write g* = (gF). Let us prove that ’g*\ﬁ* is a K-
modification of §|M*

Fix ¢ € N and suppose that z € M N N; N Ql C QZ The fact that Q
is expanding 1mphes that pfl(Ql) C Q Since the bonding _maps in X are
surJectlve and Q is expanding, there exists z € D; (Q ) C QCQC M =
slim M with pi(x) = z. According to Lemma 2.4, g(x) = g; o pi(x) = gi(2).

Let o be the simplex of K such that f( )=g(z) =gi(z ) € int 0. We know
that h is a K-modification of f, so h(x) € 0. Notice that h(x) = h;o pi(z) =
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g opi(x) = g (z). Hence g/ (z) € o. Therefore g; is a K-modification of g;.
This shows that §*|M* is a K-modification of §|M*

Finally, put g* = g*|(M*UH?*). Since the restriction of a K-modification
is a K-modification we conclude that g*|M* is a K-modification of g|IM* =
g|M*. L]

(iii) Proof of (=) of Theorem 3.1. Suppose that M, H are expanding
open semi-sequences of X and g is a map of M to K. Find a simplicial com-
plex L along with a homotopy equivalence a : K — |L|cw and a homotopy
inverse (3 : |Llcw — K of a.

Now X is an absolute co-extensor for |L|cw, so we apply (ii) to the map
aog from M to |L|cw. In this case, the map g*|M* is an L-modification of
(a0 g)|M*; by Lemma 2.13 these maps are homotopic. Then [ o g*|M* ~
B o (aog|M*) and the fact that o and 3 are homotopy inverses imply that
fog | M* ~ g|M*. u
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