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Summary. Suppose that K is a CW-
omplex, X is an inverse sequen
e of strati�ablespa
es, and X = limX. Using the 
on
ept of semi-sequen
e, we provide a ne
essary andsu�
ient 
ondition for X to be an absolute 
o-extensor for K in terms of the inversesequen
e X and without re
ourse to any spe
i�
 properties of its limit. To say that X isan absolute 
o-extensor for K is the same as saying that K is an absolute extensor for X,i.e., that ea
h map f : A → K from a 
losed subset A of X extends to a map F : X → K.In 
ase K is a polyhedron |K|CW (the set |K| with the weak topology CW), we determinea similar 
hara
terization that takes into a

ount the simpli
ial stru
ture of K.1. Introdu
tion. The following limit theorem of K. Nagami [13℄ hasbeen used frequently sin
e its �rst appearan
e in 1959 (see [14℄ for proofdetails).Theorem 1.1. Let X = (Xi, p

i+1
i ) be an inverse sequen
e of metrizablespa
es, X = limX, and suppose that for ea
h i ∈ N, dim Xi ≤ n. Then

dimX ≤ n.This theorem, however, 
an be seen as a result in extension theory (seee.g. [5℄) for the following reasons. If K is a CW-
omplex and X is a spa
e,then one says that K is an absolute extensor for X, K ∈ AE(X), or that Xis an absolute 
o-extensor for K, XτK, if for ea
h 
losed subset A of X andmap (i.e., 
ontinuous fun
tion) f : A → K, there exists a map F : X → Ksu
h that F is an extension of f . Sin
e it is well-known that for a metrizable2000 Mathemati
s Subje
t Classi�
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(or even strati�able) spa
e X, dimX ≤ n if and only if X is an absolute
o-extensor for Sn, Theorem 1.1 
an be stated in the following way.Theorem 1.2. Let X = (Xi, p

i+1
i ) be an inverse sequen
e of metrizablespa
es, X = limX, and suppose that for ea
h i ∈ N, Xi is an absolute
o-extensor for Sn. Then X is an absolute 
o-extensor for Sn.A dire
t generalization of Theorem 1.2 was given by L. Rubin and P.S
hapiro in [17℄:Theorem 1.3. Let K be a CW-
omplex , X = (Xi, p

i+1
i ) an inversesequen
e of metrizable spa
es su
h that for ea
h i ∈ N, Xi is an absolute 
o-extensor for K, and X = limX. Then X is an absolute 
o-extensor for K.Several generalizations between Theorem 1.2 and Theorem 1.3 are listedin [17℄. Theorem 1.3 has already been applied in [4℄ and [9℄.Another step was taken in [16℄. Instead of requiring that Xi is an absolute
o-extensor for K for ea
h i ∈ N, a 
ondition was pla
ed on the bonding maps

pi+1
i . The requirement was that for ea
h i ∈ N, 
losed subset A of Xi, andmap f : A → K, there are to exist j ≥ i and a map F : Xj → K havingthe property that F (x) = f(pj

i (x)) for ea
h x ∈ (pj
i )

−1(A). S. Marde²i¢ [10℄extended the work in [16℄ to the 
lass of strati�able spa
es. More re
entlythe notion of semi-sequen
e was introdu
ed in [7℄ and a limit theorem inextension theory was proved there for a semi-limit within the inverse limit ofan inverse sequen
e of strati�able spa
es and for arbitrary CW-
omplexes.All the previous theorems 
ontain only su�
ient 
onditions for XτKwhen X = limX. In this paper, we go further and 
hara
terize the existen
eof the absolute 
o-extensor property in the limit with respe
t to a given CW-
omplex K (Theorem 3.1), or polyhedron |K|CW (Theorem 3.2), in termsonly of the sequen
e itself.If K denotes a simpli
ial 
omplex whose polyhedron is |K|CW, thenthe 
hara
terization Theorem 3.2 takes into a

ount the simpli
ial stru
-ture of K. We note here that by |K|CW we mean the polyhedron with theweak topology CW indu
ed by the triangulation K. Su
h a polyhedron willalso be treated as a CW-
omplex, its CW-stru
ture 
oming from the trian-gulation K in a 
anoni
al way. All this is done within the 
lass of strati�ablespa
es ([1℄, [3℄) that 
ontains the 
lass of metrizable spa
es. This 
lass hasmany properties 
onvenient for extension theory, like the homotopy extensionproperty with respe
t to CW 
omplexes, being hereditarily para
ompa
t, andothers (1).
(1) In [8℄ this 
hara
terization is used to prove a limit theorem under a lo
al σ-type
ondition on X; one 
an also �nd there a list of properties of strati�able spa
es that weuse herein.
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Our main results, Theorems 3.1 and 3.2, appear in Se
tion 3, and arestated in terms of semi-sequen
es and semi-limits. As mentioned above, these
on
epts were introdu
ed in [7℄, but we shall shortly provide all that is neededto understand the theorems. We shall de�ne, for example, the notion of amap of a semi-sequen
e to a spa
e, K-modi�
ation and 
ontiguity of su
hmaps, and homotopy of su
h maps.Theorems 3.1 and 3.2 lead to 
hara
terizations (Theorems 3.3 and 3.4)of the absolute 
o-extensor property for spa
es. They are given in terms ofpairs of open sets and a map of one of them to the given CW-
omplex K orpolyhedron |K|CW.Some information about semi-sequen
es is presented in Se
tion 2, whileSe
tion 4 
ontains our Main Lemma. The proofs of Theorems 3.1 and 3.2are given in Se
tion 5.2. Semi-sequen
es. In this se
tion we are going to provide a portionof the theory of semi-sequen
es. For the remainder of this se
tion X =

(Xi, p
i+1
i ) will denote an inverse sequen
e of spa
es and X = limX. Letus repeat De�nition 1.3 of [7℄.Definition 2.1. Let N

∗ be an in�nite subset of N, and for ea
h i ∈ N
∗,

Mi a subset of Xi. We shall refer to M = (Mi, N
∗) as a semi-sequen
e of Xand de�ne slimM to be those x ∈ X having the property that there exists

i ∈ N
∗ su
h that xj ∈ Mj for all j ∈ N

∗ and j ≥ i. We 
all M = slimM thesemi-limit of M.In this paper, however, we shall always use N
∗ = N, so let us just write

M = (Mi) instead of (Mi, N). We may always treat X as (Xi), i.e., we maythink of X as a semi-sequen
e of X. As usual, pi : X = slimX → Xi willdenote the ith 
oordinate proje
tion.Whenever x ∈ slimM then there exists a �rst i ∈ N su
h that xj ∈ Mjfor all j ≥ i. We shall denote this by i = φM(x) and 
all it the M-birth indexof x.Definition 2.2. Let M = (Mi), H = (Hi) be semi-sequen
es of X.(1) We shall 
all M a subsemi-sequen
e of H if for ea
h i ∈ N, Mi ⊂ Hi.(2) De�ne the union of M and H, M ∪ H, to be the semi-sequen
e
(Mi ∪ Hi) of X. The interse
tion M ∩ H is de�ned as (Mi ∩ Hi).(3) Let us say that M is open (resp., 
losed) in X if for ea
h i ∈ N, Miis open (resp., 
losed) in Xi.(4) Call M an expanding semi-sequen
e of X if (pi+1

i )−1(Mi) ⊂ Mi+1 forea
h i ∈ N.
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(5) Assume that K is a spa
e, and for ea
h i ∈ N, gi : Hi → K is a map.We shall then say that g = (gi) is a map of H to K and denote thisby g : H → K if the 
onsisten
y equation, gi+1(x) = gi ◦ pi+1

i (x), issatis�ed whenever x ∈ (pi+1
i )−1(Hi) ∩ Hi+1 and i ∈ N.(6) Let g = (gi) : H → K, h = (hi) : M → K be maps, M a subsemi-sequen
e of H, and hi = gi|Mi : Mi → K for ea
h i ∈ N. Then wesay that h is the restri
tion of g to M, written h = g|M, and g isan extension of h to H.We shall use I to denote the 
losed unit interval [0, 1]. The followingexample should help the reader gain an understanding of semi-sequen
esand their semi-limits.Example 2.3. Let I = (Ii, p
i+1
i ) where for ea
h i, Ii = I and pi+1

i is theidentity map. Put Mi equal to the union of the 2i−1 
losed intervals that oneuses in the standard 
onstru
tion of the Cantor set and Hi = Ii \ Mi. Let
M = (Mi) and H = (Hi). Then of 
ourse both M and H are semi-sequen
esof I, and one may even treat the former as an inverse subsequen
e of Iwhose bonding maps are the restri
tions of the identity maps, whi
h are justin
lusions. Clearly slimM equals the Cantor set if we identify lim I with I.But also H is an expanding open semi-sequen
e of I, and slimH equals the
omplement of the Cantor set under this identi�
ation.Let us point out the following. Let M be a semi-sequen
e of X, K a spa
e,and g = (gi) : M → K a map. Then there is a fun
tion g : slimM → Kgiven by g(x) = gi ◦pi(x) for ea
h x ∈ slimM and i ≥ φM(x). If in addition,
α : K → K0 is a map, then h = (α ◦ gi) is a map of M to K0. We shall referto g : slimM → K as the semi-limit of g and denote it by slimg. The map hwill be denoted α ◦ g. Many other fa
ts about semi-sequen
es follow readilyfrom the previous de�nitions and we shall point them out when needed. Hereis a fa
t of su
h type.Lemma 2.4. Let M = (Mi) be an expanding open semi-sequen
e of X.For ea
h i ∈ N, let Ui = p−1

i (Mi), and put U =
⋃
{Ui | i ∈ N}. Then U =

slimM, and U is open in X. If K is a spa
e and g = (gi) a map of M to K,then g = slimg : U → K is a map having the property that g|Ui = gi ◦ pi|Uifor ea
h i ∈ N.
In [17℄ we introdu
ed the notion of �response.� Let us review it here.Definition 2.5. Let f : X → Y be a map and W be an open sub-set of X. Then resp(W, f) is the maximal open subset U of Y su
h that

f−1(U) ⊂ W .
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Note that if W ⊂ W ′ are open subsets of a spa
e X, f : X → Y ,

g : Y → Z are maps, and h = g ◦ f : X → Z, then
g−1(resp(W, h)) ⊂ resp(W, f) ⊂ resp(W ′, f).Lemma 2.6. Let X = (Xi, p

i+1
i ) be an inverse sequen
e of spa
es, X =

limX, W = {Wv | v ∈ Γ} an open 
olle
tion in X, and W =
⋃
{Wv | v ∈ Γ}.For i ∈ N, set Wi,v = resp(Wv, pi), v ∈ Γ ;Wi = {Wi,v | v ∈ Γ}; and

Wi =
⋃
Wi. Then W = (Wi) is an expanding open semi-sequen
e of X with

W = slimW.Proof. Clearly W is open and expanding. Let x ∈ W . Then for some
v ∈ Γ , x ∈ Wv. There exists i ∈ N and a neighborhood V of xi in Xisu
h that pi

−1(V ) ⊂ Wv. Thus V ⊂ Wi,v and we see that xj ∈ Wj,v for all
j ≥ i. Therefore W ⊂ slimW. On the other hand, suppose that x ∈ slimW.Let i = ΦW(x), the birth index of x. Then xi ∈ Wi, so x ∈ p−1

i (Wi) =⋃
{p−1

i (Wi,v) | v ∈ Γ} ⊂ W , due to the de�nition of response.In su
h 
ases we shall refer to W as the expanding open semi-sequen
eof X indu
ed by W .Let Y = (Yi, q
i+1
i ) be an inverse sequen
e of spa
es su
h that for ea
h

i ∈ N, Xi ⊂ Yi and pi+1
i = qi+1

i |Xi. Then we shall say that X is an inversesubsequen
e of Y. In 
ase M is a semi-sequen
e of X, we may also treat itas a semi-sequen
e of Y. In this 
ase, we shall distinguish the semi-limits bywriting slimX M and slimY M, even though one might treat them as beingequal.Lemma 2.7. Let X = (Xi, p
i+1
i ) be an inverse subsequen
e of an inversesequen
e Y = (Yi, q

i+1
i ), X = limX, and Y = limY. Suppose that E is asemi-sequen
e of Y. Then:(1) slimY(E ∩X) ⊂ X and slimY(E ∩X) = slimX(E ∩ X),(2) (slimY E) ∩ X = slimX(E ∩ X),(3) if E is expanding in Y, then E ∩X is expanding in X,(4) if E is open (resp. 
losed) in Y, then E ∩ X is open (resp. 
losed)in X.In the proof of Proposition 1.7 of [16℄ the author performed a 
onstru
tionfrom whi
h the following fa
t follows.Lemma 2.8. Let X = (Xi, p

i+1
i ) be an inverse sequen
e of spa
es and

X = limX. Then there exists an inverse sequen
e X̃ = (X̃i, p̃
i+1
i ) of spa
esand surje
tive bonding maps with X̃ = lim X̃ su
h that for ea
h i ∈ N, X̃i =

Xi + Di where Di is a dis
rete subspa
e of X̃i, D1 = ∅, p̃i+1
i |Xi+1 = pi+1

i ,and for ea
h x ∈ Di+1, (p̃i+1
i )−1{p̃i+1

i (x)} = {x}. In this 
ase:(1) X = (Xi) is an open semi-sequen
e of X̃,
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(2) D = (Di) is an expanding open semi-sequen
e of X̃,(3) slimD = X̃ \ X,(4) for ea
h i ∈ N and x ∈ p̃i+1

i (Di+1), there is a unique xi+1 ∈ Di+1with p̃i+1
i (xi+1) = x,(5) X̃ \ X is a dis
rete open subspa
e of X̃,(6) X = slimX X and X is a 
losed subspa
e of X̃.Let us refer to X̃ as a surje
tive extension of X. If Xi is strati�able forea
h i ∈ N, then X̃ is strati�able. Furthermore, X̃τK if and only if XτK.We shall denote by X × I the inverse sequen
e (Xi × I, pi+1

i × id). Weof 
ourse identify lim(X × I) with X × I. If M = (Mi) is a semi-sequen
eof X, then we shall use M × I to denote the semi-sequen
e (Mi × I) of
X × I. If we put M = slimM, then again slim(M × I) may be thought ofas M × I ⊂ X × I.Definition 2.9. Let F = (Fi) : M × I → Y be a map. For ea
h i ∈ N,let gi : Mi → Y be given by gi(x) = Fi(x, 0) and hi : Mi → Y be given by
hi(x) = Fi(x, 1). Then g = (gi) and h = (hi) are maps of M to Y . We shallsay that F is a homotopy from g to h. Under su
h 
onditions, we will write
g ≃ h and say that g is homotopi
 to h.It is 
lear that ≃ is an equivalen
e relation on the set of maps g :
M → Y . Furthermore, under some additional 
onditions homotopi
 mapsindu
e homotopi
 maps of the semi-limit.Lemma 2.10. If M is expanding open and F is a homotopy from g to h,then F = slimF : M×I → Y , g = slimg : M → Y , and h = slimh : M → Yare maps, and F is a homotopy from g to h.Let us re
all the notions of K-modi�
ation and 
ontiguity. Let K be asimpli
ial 
omplex and g, h : C → |K|CW be maps. Then we say that g is a
K-modi�
ation of h if for ea
h x ∈ C, whenever σ ∈ K and h(x) ∈ σ, then
g(x) ∈ σ. On the other hand, one says that g is 
ontiguous to h if for ea
h
x ∈ C, there exists σ ∈ K su
h that g(x), h(x) ∈ σ (2).Note that g is a K-modi�
ation of h if and only if for ea
h x ∈ C and
σ ∈ K su
h that h(x) ∈ intσ, we have g(x) ∈ σ. Re
all that if g is a
K-modi�
ation of h, then g is 
ontiguous to h, and that 
ontiguous mapsare homotopi
.Next are our de�nitions of K-modi�
ation and 
ontiguity for maps ofsemi-sequen
es.

(2) When g is 
ontiguous to h, it need not be true that either one of them is a
K-modi�
ation of the other. Also 
ontiguity is not an equivalen
e relation although it isre�exive and symmetri
.
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Definition 2.11. Let g = (gi) and h = (hi) be maps of M to a polyhe-dron |K|T . De�ne g to be a K-modi�
ation of h if gi is a K-modi�
ation of

hi for ea
h i ∈ N. We shall say that g is 
ontiguous to h if gi is 
ontiguousto hi for ea
h i ∈ N.From our de�nitions it easily follows that if g is a K-modi�
ation of h,then g is 
ontiguous to h.Let us now quote Lemma 2.3 of [12℄, noting that this is a generalizationof Theorem 10, page 302 of [11℄.Lemma 2.12. Let K be a simpli
ial 
omplex and T a para
ompa
t topol-ogy for |K| su
h that :(1) T ⊂ CW,(2) for ea
h σ ∈ K, σT = σCW,(3) for ea
h v ∈ K(0), st(v, K) is open in |K|T .Let i1 : |K| → |K| be the identity fun
tion and i2 : |K|CW → |K|T bethe identity map. Then there is a map j : |K|T → |K|CW whi
h is a K-modi�
ation of i1 and su
h that j is a homotopy equivalen
e with homotopyinverse i2. In fa
t , there is a fun
tion H : |K| × I → |K| su
h that for ea
h
t ∈ I, Ht : |K| → |K| is simplex preserving and :(a) H : |K|CW×I → |K|CW is a homotopy between j◦i2 and the identityon |K|CW,(b) H : |K|T × I → |K|T is a homotopy between i2 ◦ j and the identityon |K|T .Lemma 2.13. Let g = (gi) and h = (hi) be maps of M to a polyhedron
|K|CW. If g is 
ontiguous to (or is a K-modi�
ation of ) h, then g ≃ h.Proof. Let T designate the metri
 topology on |K| indu
ed by the trian-gulation K (as in Appendix I of [11℄). Sin
e open vertex stars belong to T ,one sees that T meets the requirements of Lemma 2.12, so let i1, i2, j, and
H be as in that lemma.Fix i ∈ N. The map i2 ◦ gi is 
ontiguous to i2 ◦ hi from Mi to |K|T .The so-
alled �straight line� homotopy Gi of these maps is given as follows.If x ∈ Mi, v ∈ K(0), a is the v-bary
entri
 
oordinate of i2 ◦ gi(x), b is the
v-bary
entri
 
oordinate of i2 ◦ hi(x), and t ∈ I, then (1 − t)a + tb is the
v-bary
entri
 
oordinate of Gi(x, t). This fun
tion Gi : Mi × I → |K|T is
ontinuous sin
e all its bary
entri
 
oordinates are 
ontinuous (Appendix Iof [11℄). One then sees that j ◦ Gi : Mi × I → |K|CW is a homotopy from
j ◦ i2 ◦ gi to j ◦ i2 ◦ hi.Now 
onsider the homotopy H from (a) in Lemma 2.12, and let F beits reverse, i.e., F (x, t) = H(x, 1 − t). Using F we get a homotopy from
idCW ◦ gi = gi to j ◦ i2 ◦ gi. Next apply the homotopy Gi to go from j ◦ i2 ◦ gi
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to j ◦ i2 ◦hi. Finally, apply again the homotopy H in (a) to go from j ◦ i2 ◦hito idCW ◦hi = hi.Sin
e the homotopy Gi is based on the �straight line� homotopy and F , Hare �xed throughout, it is not di�
ult to see that the 
onsisten
y relationshold. This 
ompletes our proof.3. Chara
terization theorems. We now present our 
hara
terizationtheorems, the main results of this paper. There is a CW-version when thetarget is a CW-
omplex and an SC-version when the target is a polyhedron.Theorem 3.1 (CW-version). Let X = (Xi, p

i+1
i ) be an inverse sequen
eof strati�able spa
es, X = limX, and K be a CW-
omplex. Then X isan absolute 
o-extensor for K if and only if for any expanding open semi-sequen
es M and H of X and map g : M → K, there exist expanding opensubsemi-sequen
es, M∗ of M and H∗ of H, and a map g∗ : M∗ ∪ H∗ → Ksu
h that :(1) slimM∗ ∪ slimH∗ = slimM ∪ slimH,(2) g∗|M∗ ≃ g|M∗.Theorem 3.2 (SC-version). Let X = (Xi, p
i+1
i ) be an inverse sequen
eof strati�able spa
es, X = limX, and K be a simpli
ial 
omplex. Then X isan absolute 
o-extensor for |K|CW if and only if for any expanding open semi-sequen
es M and H of X and map g : M → |K|CW, there exist expandingopen subsemi-sequen
es, M∗ of M and H∗ of H, and a map g∗ : M∗∪H∗ →

|K|CW su
h that :(1) slimM∗ ∪ slimH∗ = slimM ∪ slimH,(2) g∗|M∗ is a K-modi�
ation of g|M∗.These theorems lead to 
hara
terizations of the absolute 
o-extensorproperty on the level of strati�able spa
es in terms of pairs of open sets and amap on one of them. We state both versions and prove only the CW-version.Theorem 3.3. Let X be a strati�able spa
e and K a CW-
omplex. Then
X is an absolute 
o-extensor for K if and only if for ea
h pair M , H of opensubsets of X and map g : M → K, there exist open subsets M∗, H∗ of X,
M∗ ⊂ M , H∗ ⊂ H, and a map g∗ : M∗ ∪ H∗ → K su
h that :(1) M∗ ∪ H∗ = M ∪ H,(2) g∗|M∗ is homotopi
 to g|M∗.Proof. (⇒). Note that M ∪H is a normal spa
e. By the shrinking theo-rem, 
hoose an open subset M∗ of M ∪ H su
h that M∗ ⊂ clM∪H M∗ ⊂ Mand M∗ ∪ H = M ∪ H. Put H∗ = H. Then (1) is true. Also M ∪ H is anabsolute 
o-extensor for K [6℄; hen
e g|clM∪H M∗ : clM∪H M∗ → K extends
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to a map g∗ : M ∪H → K. Sin
e M∗ ⊂ clM∪H M∗, we have g∗|M∗ = g|M∗,showing that (2) is true.

(⇐). Let A be a 
losed subset of X and g : A → K a map. Sin
e
K ∈ ANE(X) ([2℄), there exists a neighborhood M of A and a map of Mto K extending g. We shall use g : M → K to denote su
h a map. Put
H = X \ A. Then H is open and X = M ∪ H.For ea
h i ∈ N, let Xi = X, pi+1

i = id, Mi = M , Hi = H, and gi = g :
Mi → K. Thus X = (Xi, p

i+1
i ) is an inverse sequen
e of strati�able spa
eswhose limit is X. Put M = (Mi), H = (Hi), and g = (gi). Then M, Hare expanding open semi-sequen
es of X and g : M → K is a map. Wemay apply Theorem 3.1 to (M,H,g) to obtain M∗, H∗, and g∗ meetingthe 
onditions stated there. Let M∗ = slimM∗ and H∗ = slimH∗. Then

M∗ ⊂ M , H∗ ⊂ H, and Lemma 2.4 shows that M∗, H∗ are open in X, andthat slimg∗ = g∗ : M∗ ∪ H∗ = M ∪ H → K is a map. From H ∩ A = ∅ and
M∗ ∪ H = X, it follows that A ⊂ M∗. Sin
e g∗|M∗ ≃ g|M∗, Lemma 2.10gives g∗|M∗ ≃ g|M∗.Theorem 3.4. Let X be a strati�able spa
e and K a simpli
ial 
omplex.Then X is an absolute 
o-extensor for |K|CW if and only if for ea
h pair
M , H of open subsets of X and map g : M → K, there exist open subsets
M∗, H∗ of X, M∗⊂M , H∗⊂H, and a map g∗ : M∗∪H∗→|K|CW su
h that :(1) M∗ ∪ H∗ = M ∪ H,(2) g∗|M∗ is a K-modi�
ation of g|M∗.4. Lemmas. In order to prove Theorem 3.2 we need some lemmas. Let
U = {Uv | v ∈ Γ} be an open 
over of a spa
e X, N(U) its nerve, and
f : X → |N(U)|CW be a map. Then we say that f is a lo
ally �nite U -
anoni
almap if f is U -
anoni
al and {f−1(st(Uv, N(U))) | v ∈ Γ} is a lo
ally�nite open 
over of X. Noti
e that if X is a para
ompa
t spa
e, then thereis a lo
ally �nite U -
anoni
al map f : X → |N(U)|CW. In the proof of theMain Lemma (Lemma 4.3) we shall need an enhan
ed version of Lemma 3.8of [7℄:Lemma 4.1. Let X be a spa
e, Z a 
losed subset of X, and Z ⊂ U ⊂ X.Suppose we are given a strati�able spa
e C, a map p : C → X, Z0 ⊂
{t ∈ Z | p

−1

(t) 6= ∅}, Γ ∗ ⊂ Γ , and the following data:(1) a 
over U = {Uv | v ∈ Γ ∗} of U by sets open in U ,(2) an open 
over V = {Vv | v ∈ Γ} of C su
h that p−1(Uv) ⊂ Vv forea
h v ∈ Γ ∗,(3) a lo
ally �nite U-
anoni
al map g : U → |N(U)|CW.Let N0 be the minimal sub
omplex of N(U) su
h that g(Z0) ⊂ |N0|. Thenthere exist a lo
ally �nite U-
anoni
al map h : U → |N(U)|CW su
h that
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h−1(|N0|) is a 
losed neighborhood of g−1(|N0|) in U and h|g−1(|N0|) =
g|g−1(|N0|), a lo
ally �nite V-
anoni
al map g0 : C → |N(V)|, and a sim-pli
ial inje
tion α : N0 → N(V), α(Uv) = Vv for all Uv ∈ N

(0)
0 , so that

α ◦ h ◦ p(z) = g0(z) for ea
h z ∈ P = p−1(h−1(|N0|)).Suppose in addition that Z∗ ⊂ C, p(Z∗) = Z0, Γ0 ⊂ Γ ∗ and {Uv | v ∈ Γ0}is the set of verti
es of a simplex of N0. Then ⋂
{Vv | v ∈ Γ0} ∩ Z∗ 6= ∅.Proof. There is no loss of generality in assuming that U is a lo
ally �nite
over of U . Using a 
losed, regular neighborhood R of |N0| in |N(U)|CW,
hoose a map r : |N(U)|CW → |N(U)|CW su
h that r retra
ts R to |N0|, andwhenever x lies in a simplex σ of N(U), then r(x) ∈ σ, i.e., r is an N(U)-modi�
ation of the identity on |N(U)|CW. We ask the reader to 
he
k that

h = r◦g : U → |N(U)|CW is a lo
ally �nite U -
anoni
al map. Clearly g−1(R)is a 
losed neighborhood of g−1(|N0|) in U , and g−1(R) ⊂ h−1(|N0|) =
g−1(r−1(|N0|)). Also, h(t) = g(t) for all t ∈ g−1(|N0|).Let E = {Ev = Vv ∩ P | v ∈ Γ} and θ : N(E) → N(V) be the simpli
ialinje
tion determined by the vertex map Ev 7→ Vv. Suppose that Γ0 ⊂ Γ ∗ is�nite and {Uv | v ∈ Γ0} is the vertex set of a simplex of N0. Applying Lemma3.7 of [7℄, let t ∈

⋂
{Uv | v ∈ Γ0} ∩ Z0 ⊂ Z0 ⊂ h−1(|N0|). Now p−1(t) 6= ∅,

p−1(t) ⊂ P , and p−1(Uv) ⊂ Vv for ea
h v ∈ Γ0. Hen
e ∅ 6= p−1(t) ⊂
⋂
{Ev =

Vv ∩ P | v ∈ Γ0}, showing that {Ev | v ∈ Γ0} is the vertex set of a simplex of
N(E). Therefore the vertex map β(Uv) = Ev indu
es a simpli
ial inje
tion
β : N0 → N(E).Let f : P → |N(E)| be given by the rule f(x) = β ◦ h ◦ p(x). We wantto show that f is a lo
ally �nite E-
anoni
al map. If a vertex Ev of N(E)does not lie in the image of β, then β−1(st(Ev, N(E))) = ∅, so we needonly 
on
ern ourselves with a vertex Ev of N(E) su
h that β(Uv) = Ev.Surely β−1(st(Ev, N(E))) ⊂ st(Uv, N(U)). Sin
e h is U -
anoni
al, we have
h−1(st(Uv, N(U))) ⊂ Uv. Now (2) shows that p−1(Uv) ⊂ Vv, so p−1(Uv)∩P ⊂
Vv ∩ P = Ev as needed to show that f is E-
anoni
al.For the lo
ally �nite part, let y ∈ P and x = p(y). Be
ause of (3), thereexists a �nite subset Γ0 of Γ ∗ and a neighborhood Q of x in X su
h that
Q ∩ h−1(st(Uv, N(U))) 6= ∅ only if v ∈ Γ0. So p−1(Q) ∩ P is a neighborhoodof y in P that interse
ts (h ◦ p)−1(st(Uv, N(U))) ∩ P only if v ∈ Γ0. Fromthe argument pre
eding this, one sees that (β ◦ h ◦ p)−1(st(Ev, N(E))) ⊂
(h ◦ p)−1(st(Uv, N(U))) for ea
h v ∈ Γ . So the neighborhood p−1(Q) ∩ P of
y in P interse
ts f−1(st(Ev, N(E))) only if v ∈ Γ0. This 
ompletes the laststep in showing that f is a lo
ally �nite E-
anoni
al map.Observe that P is a 
losed subspa
e of the strati�able spa
e C. ApplyLemma 3.6 of [7℄ to get a lo
ally �nite V-
anoni
al map g0 : C → |N(V)| sothat for z ∈ P , θ(f(z)) = g0(z). Now θ ◦f(z) = θ ◦β ◦h◦p(z), and α = θ ◦βis a simpli
ial inje
tion.
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To obtain the �nal statement of our lemma, one should re
all that weearlier showed that there exists t ∈

⋂
{Uv | v ∈ Γ0}∩Z0. Choose c ∈ Z∗ with

p(c) = t. Then c ∈ p−1(Uv) ⊂ Vv for all v ∈ Γ0. This 
ompletes our proof.Before getting to our Main Lemma, let us restate in terms of semi-sequen
es a fa
t whi
h appears as Lemma 3 of [10℄. We re
all here thatstrati�able spa
es are perfe
tly normal, i.e., every open subset is an Fσ-set.Lemma 4.2. Let X = (Xi, p
i+1
i ) be an inverse sequen
e of strati�ablespa
es and W = (Wi) an expanding open semi-sequen
e of X. Then thereexists an expanding open subsemi-sequen
e S = (Si) of W su
h that :(1) clXi

(Si) ⊂ Wi and (pi+1
i )−1(clXi

(Si)) ⊂ Si+1 for ea
h i ∈ N,(2) slimS = slimW.Next we present our Main Lemma. It is worth mentioning that the proofof this lemma requires a target spa
e that is a polyhedron. We shall needLemma 4.3 in the proof of Theorem 3.2.Lemma 4.3. Let X = (Xi, p
i+1
i ) be an inverse sequen
e of strati�ablespa
es, K a simpli
ial 
omplex , W an open subset of X = limX, and f :

W → |K|CW a map. Then there exist :(1) an expanding open semi-sequen
e M = (Mi) of X with slimM = W ,(2) a map g of M to |K|CW su
h that the map g = slimg : W → |K|CWis a K-modi�
ation of f .Proof. Let Γ = K(0), for ea
h v ∈ Γ , Wv = f−1(st(v, K)), W =
{Wv | v ∈ Γ}, and W = (Wi) be the expanding open semi-sequen
e of Xindu
ed by W (see after Lemma 2.6). Then W = slimW.(F1) The vertex map Wv 7→ v, v ∈ Γ , determines a simpli
ial inje
tion

κ : N(W) → K.Apply Lemma 4.2 to obtain S = (Si), an expanding open subsemi-sequen
eof W su
h that slimS = slimW = W , and for ea
h i ∈ N, both clXi
(Si) ⊂

Wi and (pi+1
i )−1(clXi

(Si)) ⊂ Si+1. For ea
h i ∈ N, put:(F2) Zi = pi(W ) ∩ clXi
(Si).We want to establish the following fa
t:(F3) Let i ∈ N, s : Wi → |N(Wi)| be a Wi-
anoni
al map, and N0 theminimal sub
omplex of N(Wi) su
h that s(Zi) ⊂ |N0|. Suppose that

Γ0 ⊂ Γ is �nite and {Wi,v | v ∈ Γ0} is the set of verti
es of a simplexof N0. Then {Wv | v ∈ Γ0} is the set of verti
es of a simplex of N(W).Indeed, by Lemma 3.7 of [7℄, there exists t ∈
⋂
{Ui,v | v ∈ Γ0} ∩ Zi. Sothere is w ∈ W with pi(w) = t. Sin
e Wi,v = resp(pi, Wv), it follows that

w ∈ p−1
i (Wi,v) ⊂ Wv for all v ∈ Γ0.Let us note that
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(F4) for ea
h i < j in N, Zi ⊂ p

j
i (Zj).To see this, let z ∈ Zi. Then for some w ∈ W , z = pi(w) ∈ clXi

(Si).Now z = p
j
i ◦ pj(w), so pj(w) ∈ (pj

i )
−1(z) ⊂ (pj

i )
−1(clXi

(Si)) ⊂ Sj . Hen
e
pj(w) ∈ Zj = pj(W ) ∩ clXj

(Sj).Sele
t a lo
ally �nite W1-
anoni
al map s1 : W1 → |N(W1)|CW. De�ne
N1 to be the minimum sub
omplex of N(W1) su
h that s1(Z1) ⊂ |N1|.Suppose that i ∈ N and for ea
h 1 ≤ k ≤ i we have determined:(I1) a lo
ally �niteWk-
anoni
al map sk : Wk→|N(Wk)|CW and have des-ignated by Nk the minimal sub
omplex of N(Wk) with sk(Zk)⊂|Nk|,(I2) if k < i, a lo
ally �nite Wk-
anoni
al map hk : Wk → |N(Wk)|CWsu
h that h−1

k (|Nk|) is a 
losed neighborhood of s−1
k (|Nk|) and

hk|s
−1
k (|Nk|) = sk|s

−1
k (|Nk|),(I3) if k < i, a simpli
ial inje
tion αk : Nk → Nk+1, αk(Wk,v) = Wk+1,vfor ea
h Wk,v ∈ (Nk)

(0), su
h that αk ◦ hk ◦ pk+1
k (z) = sk+1(z) forea
h z ∈ (pk+1

k )−1(h−1
k (|Nk|)).Now we apply Lemma 4.1 with (X, Z, U, C, p, Z0, Γ

∗, Γ,U ,V, g, N0) re-pla
ed by
(Xi, clXi

(Si), Wi, Si+1, p
i+1
i |Si+1, Zi, Γ, Γ,Wi,Wi+1, si, Ni).We ask the reader to make the routine 
he
k that all the hypotheses ofLemma 4.1 are satis�ed with this input.This yields a lo
ally �nite Wi-
anoni
al map hi : Wi → |N(Wi)|CW, alo
ally �nite Wi+1-
anoni
al map si+1 : Wi+1 → |N(Wi+1)|CW along withthe minimal sub
omplex Ni+1 of N(Wi+1) su
h that si+1(Zi+1) ⊂ |Ni+1|,and a simpli
ial inje
tion αi : Ni → N(Wi+1), αi(Wi,v) = Wi+1,v, subje
t to
ertain properties. Indeed, it is 
lear that all of (I1)�(I3) are satis�ed ex
eptperhaps that we need to 
he
k αi(Ni) ⊂ Ni+1. But we have established from(F4) that Zi ⊂ pi+1

i (Zi+1). This, the ultimate statement of Lemma 4.1, andan appli
ation of Lemma 3.7 of [7℄ show that if {Wi,v | v ∈ Γ0} is the set ofverti
es of a simplex of Ni, then {αi(Wi,v) | v ∈ Γ0} = {Wi+1,v | v ∈ Γ0} is theset of verti
es of a simplex of Ni+1. Our indu
tive 
onstru
tion is 
omplete.For ea
h i ∈ N, de�ne Mi = intXi
h−1

i (|Ni|) and set M = (Mi). Then M isan open semi-sequen
e ofX; to see that M is expanding, let i ∈ N and t ∈ Mi.By (I3), if z ∈ (pi+1
i )−1(t), then si+1(z) ∈ |Ni+1|. Thus z ∈ s−1

i+1(|Ni+1|);from (I2) it follows that z ∈ intXi+1
h−1

i+1(|Ni+1|) = Mi+1.Clearly Mi ⊂ Wi for ea
h i ∈ N, so slimM ⊂ slimW = W . To showthe opposite in
lusion, suppose that x ∈ W = slimS. Put k = ΦS(x), the
S-birth index of x. Hen
e pi(x) ∈ pi(W ) ∩ Si ⊂ Zi for all i ≥ k. Using(I1) and (I2), one sees that pi(x) ∈ Mi for all i ≥ k, whi
h implies that
x ∈ slimM.
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We now see that (1) of our lemma has been veri�ed, so we pro
eedwith (2). By dint of (F3), for ea
h i ∈ N, there is a simpli
ial inje
tion

βi : Ni → N(W) obtained from the vertex map Wi,v 7→ Wv. Hen
e we get amap gi : Mi → |K|CW de�ned by gi(x) = κ ◦ βi ◦ hi(x) for all x ∈ Mi.If x ∈ Mi+1 and pi+1
i (x) ∈ Mi, then hi ◦ pi+1

i (x) ∈ hi(Mi) ⊂ |Ni|. From(I3), si+1(x) = αi ◦ hi ◦ pi+1
i (x) ∈ |Ni+1|. Using (I2), we �nd that hi+1(x) =

αi ◦ hi ◦ pi+1
i (x), whi
h implies that βi+1 ◦ hi+1(x) = βi+1 ◦ αi ◦ hi ◦ pi+1

i (x).But βi+1 ◦ αi = βi as one 
an easily 
he
k. Therefore κ ◦ βi+1 ◦ hi+1(x) =
κ ◦ βi ◦ hi ◦ pi+1

i (x), i.e., gi+1(x) = gi ◦ pi+1
i (x). This proves that g is a mapof M to |K|CW. Let g = slimg : W → |K|CW.To obtain the K-modi�
ation part, let x ∈ W , i = ΦM(x), and z = pi(x).Then g(x) = gi ◦ pi(x) = gi(z) = κ ◦ βi ◦ hi(z), and hi(z) ∈ |Ni|; supposethat Wi,v is a vertex of the simplex of Ni that 
ontains hi(z) in its interior.Now x ∈ p−1

i (Wi,v) ⊂ Wv = f−1(st(v, K)). This shows that v is in σ where
σ is the simplex of K su
h that f(x) ∈ intσ. We know that κ◦βi(Wi,v) = v,so g(x) ∈ σ. Our proof is 
omplete.Lemma 4.4. Let X = (Xi, p

i+1
i ) be an inverse sequen
e of strati�ablespa
es, K a CW-
omplex , W an open subset of X = limX, and f : W → Ka map. Then there exist :(1) an expanding open semi-sequen
e M = (Mi) of X with slimM = W ,(2) a map g of M to K su
h that the map g = slimg : W → K ishomotopi
 to f .Proof. Sele
t a simpli
ial 
omplex L having the property that |L|CW ishomotopy equivalent to K, and let α : K → |L|CW and β : |L|CW → K be ahomotopy equivalen
e and a homotopy inverse, respe
tively. Let f0 = α ◦ f :

W → |L|CW.Apply Lemma 4.3 to f0 and obtain M and a map g0 of M to |L|CW asin (1) and (2) of that lemma. Of 
ourse M meets the requirements of (1) ofthe 
urrent lemma, so we have to get (2).Put g = β ◦ g0; then g is a map of M to K. We know that g0 = slimg0is an L-modi�
ation of f0. Consequently, g0 ≃ f0, so β ◦ g0 ≃ β ◦ f0 =
β ◦ α ◦ f ≃f , and g = slimg = β ◦ slimg0 = β ◦ g0 ≃ f , as required by (2).5. Proofs of 
hara
terization theorems(i) Proof of (⇐) of Theorems 3.1 and 3.2. Let A be 
losed in X and
f : A → |K|CW (or K) be a map. We may assume that f is de�ned on anopen neighborhood W of A. Apply Lemma 4.3 to the map f : W → |K|CWto obtain an expanding open semi-sequen
e M of X, W = slimM, a map
g : M → |K|CW, and g = slimg : W → |K|CW. The map g is a K-modi�
ation of f ; 
onsequently, g is 
ontiguous to f and g|A ≃ f |A. (In the
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CW 
ase, apply Lemma 4.4 instead of Lemma 4.3; the above homotopy isstill true.)Put H = X \ A and let H be the semi-sequen
e of X indu
ed by {H}.Then H = slimH and H is open and expanding in X. Let us also note that
X = W ∪ H.All the 
onditions of the su�
ien
y of Theorem 3.2 (or 3.1) have beensatis�ed by the pre
eding data. Therefore we may now assume the existen
eof expanding open subsemi-sequen
es M∗ of M, H∗ of H, and a map g∗ :
M∗∪H∗ → |K|CW (or K) su
h that slimM∗∪ slimH∗ = slimM∪ slimH =
W ∪ H = X and g∗

0 = g∗|M∗ is a K-modi�
ation of (homotopi
 to) g0 =
g|M∗, and in either version g∗

0 ≃ g0.Note that M∗, H∗ are expanding open; therefore slim(M∗ ∪ H∗) =
slimM∗ ∪ slimH∗ = X.By Lemma 2.4, g∗ = slimg∗ : X → |K|CW (or K) is a map.Let D = slimM∗, g∗0 = slimg∗

0 : D → |K|CW (or to K) and g0 = slimg0 :
D → |K|CW (or to K). The homotopy g∗

0 ≃ g0 and Lemma 2.10 show that
g∗0 and g0 are maps, and g∗0 ≃ g0. Note that g∗0 = g∗|D and g0|D = g|D.Hen
e, g∗|D ≃ g|D.Sin
e A∩H = ∅, we have A ⊂ D = slimM∗. From this and the pre
eding,it follows that g∗|A ≃ g|A. We have already established that g|A ≃ f |A.Sin
e g∗ : X → |K|CW (or K), our proof of (⇐) is 
ompleted by applyingthe homotopy extension theorem.Let us point out that (⇒) of Theorem 3.2 is used in the proof of (⇒) ofTheorem 3.1, so we separate the two proofs.(ii) Proof of (⇒) of Theorem 3.2. Suppose that M = (Mi), H = (Hi)are expanding open semi-sequen
es of X, and g = (gi) is a map of M to
|K|CW. Let M = slimM and H = slimH. Lemma 2.4 shows that M and Hare open in X and that g = slimg : M → |K|CW is a map.Consider a surje
tive extension X̃ of X as in Lemma 2.8. We shall deter-mine a parti
ular expanding open semi-sequen
e M̃ = (M̃i) of X̃ whi
h is anextension of M. Let M̃1 = M1. Suppose that k ∈ N and we have determined
M̃i for 1 ≤ i ≤ k in su
h a manner that always:(M1) M̃i ∩ Xi = Mi.We require, moreover, that if 1 ≤ i < k then:(M2) (p̃i+1

i )−1(M̃i) ⊂ M̃i+1,(M3) if x ∈ M̃i, then for some y ∈ M̃i+1, p̃i+1
i (y) = x,(M4) if x ∈ M̃i+1 \ Mi+1, then p̃i+1

i (x) ∈ M̃i.One sele
ts M̃k+1 by adjoining to Mk+1 the minimum set of points in
Dk+1 ne
essary to make (M3) true in 
ase i is repla
ed by k. This way the
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expanding open semi-sequen
e M ⊂ X �extends� to an expanding opensemi-sequen
e M̃ ⊂ X̃, and by Lemma 2.7, slim

X̃
M̃ ∩ X = slimX(M̃ ∩ X)

= M . Let H̃ be an analogous �extension� of H. De�ne M̃ = slim
X̃

M̃ and
H̃ = slim

X̃
H̃. Then M̃ ∩ X = M, H̃ ∩ X = H.Extend g to g̃ : M̃ → |K|CW indu
tively, by de�ning g̃1 = g1, g̃i+1|Mi+1

= gi+1, and, using (M4), g̃i+1(x) = g̃i ◦ p̃i+1
i (x) whenever x ∈ M̃i+1 \ Mi+1.Note that M̃ ∪ H̃ is a normal spa
e. An appli
ation of the shrinkingtheorem shows that there is an open subset Q̃ of M̃ ∪ H̃ whose 
losure Q0with respe
t to M̃ ∪ H̃ is a subset of M̃ and su
h that Q̃ ∪ H̃ = M̃ ∪ H̃.Observe that (Q̃∪ H̃)∩X = M ∪H. Sin
e M̃ ∪ H̃ is an absolute 
o-extensorfor |K|CW (Theorem 3.6 of [6℄), 
hoose a map f̃ : M̃ ∪ H̃ → |K|CW havingthe property that f̃ |Q0 = g̃|Q0 : Q0 → |K|CW.Let us apply Lemma 4.3 to the map f̃ and the open subset M̃ ∪ H̃ of X̃.We obtain an expanding open semi-sequen
e Ñ = (Ñi) of X̃ and a map

h̃ = (h̃i) of Ñ to |K|CW. One sees that slim Ñ = M̃ ∪ H̃; hen
e the map
h̃ = slim h̃ : M̃ ∪ H̃ → |K|CW is a K-modi�
ation of f̃ .Find an expanding open semi-sequen
e Q̃ = (Q̃i) of X̃ su
h that slim Q̃

= Q̃. De�ne M̃∗ = M̃ ∩ Ñ ∩ Q̃. Then M̃∗ is a subsemi-sequen
e of M̃;similarly H̃∗ = H̃ ∩ Ñ is a subsemi-sequen
e of H̃. Note that M̃∗, H̃∗ areexpanding open semi-sequen
es of X̃.Observe that Q̃ = slim Q̃ ⊂ M̃ = slimM̃ ⊂ M̃∪H̃ = slim Ñ. Sin
e M̃, Ñare expanding, M̃ ∩ Ñ is expanding and slim(M̃ ∩ Ñ) = slimM̃ ∩ slim Ñ =

M̃ ∩ (M̃ ∪ H̃) = M̃ = slimM̃. Sin
e Q̃ is expanding, we may apply thepre
eding reasoning again to see that slimM̃∗ = slim(M̃∩ Ñ∩ Q̃) = slim Q̃

= Q̃. In a similar manner, one sees that slim H̃∗ = slim H̃ ∩ slim Ñ = H̃ ∩
(M̃∪H̃) = H̃. Hen
e slimM̃∗∪slim H̃∗ = Q̃∪H̃ = M̃∪H̃ = slimM̃∪slim H̃.Now, take M∗ = M̃∗ ∩ X and H∗ = H̃∗ ∩ X whi
h are expanding opensemi-sequen
es of X. Also M∗ ⊂ M, H∗ ⊂ H and slimM∗ ∪ slimH∗=
slim(M̃∗ ∩X) ∪ slim(H̃∗ ∩ X) = M ∪ H. This gives us (1) of Theorem 3.2.As M̃∗∪H̃∗ is a subsemi-sequen
e of Ñ, we may de�ne g̃∗ = h̃|M̃∗∪H̃∗ :

M̃∗ ∪ H̃∗ → |K|CW. Write g̃∗ = (g̃∗i ). Let us prove that g̃∗|M̃∗ is a K-modi�
ation of g̃|M̃∗.Fix i ∈ N and suppose that z ∈ M̃i ∩ Ñi ∩ Q̃i ⊂ Q̃i. The fa
t that Q̃is expanding implies that p̃−1
i (Q̃i) ⊂ Q̃. Sin
e the bonding maps in X̃ aresurje
tive and Q̃ is expanding, there exists x ∈ p̃−1

i (Q̃i) ⊂ Q̃ ⊂ Q0 ⊂ M̃ =

slimM̃ with p̃i(x) = z. A

ording to Lemma 2.4, g̃(x) = g̃i ◦ p̃i(x) = g̃i(z).Let σ be the simplex of K su
h that f̃(x) = g̃(x) = g̃i(z) ∈ intσ. We knowthat h̃ is a K-modi�
ation of f̃ , so h̃(x) ∈ σ. Noti
e that h̃(x) = h̃i ◦ p̃i(x) =
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g̃∗i ◦ p̃i(x) = g̃∗i (z). Hen
e g̃∗i (z) ∈ σ. Therefore g̃∗i is a K-modi�
ation of g̃i.This shows that g̃∗|M̃∗ is a K-modi�
ation of g̃|M̃∗.Finally, put g∗ = g̃∗|(M∗∪H∗). Sin
e the restri
tion of a K-modi�
ationis a K-modi�
ation we 
on
lude that g∗|M∗ is a K-modi�
ation of g̃|M∗ =
g|M∗.(iii) Proof of (⇒) of Theorem 3.1. Suppose that M, H are expandingopen semi-sequen
es of X and g is a map of M to K. Find a simpli
ial 
om-plex L along with a homotopy equivalen
e α : K → |L|CW and a homotopyinverse β : |L|CW → K of α.Now X is an absolute 
o-extensor for |L|CW, so we apply (ii) to the map
α ◦g from M to |L|CW. In this 
ase, the map g∗|M∗ is an L-modi�
ation of
(α ◦ g)|M∗; by Lemma 2.13 these maps are homotopi
. Then β ◦ g∗|M∗ ≃
β ◦ (α ◦ g|M∗) and the fa
t that α and β are homotopy inverses imply that
β ◦ g∗|M∗ ≃ g|M∗.
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