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Summary. We investigate the subadditivity property (also known as the tensorization
property) of p-entropy functionals and their iterations. In particular we show that the
only iterated ¢-entropies with the tensorization property are iterated variances. This is
a complement to the result due to Latala and Oleszkiewicz on characterization of the
standard @-entropies with the tensorization property.

1. Introduction. An important feature of some functional inequalities
for probability measures is the tensorization property (sometimes called the
product property): if the inequality holds for each measure pi1, po, ... then it
also holds for the product measure (1 @uo®- - - . In this paper we focus on the
tensorization property of entropy-energy inequalities, well-known examples
of which are the logarithmic Sobolev inequality and Poincaré inequality.

By the @-entropy functional we mean the functional Fo(Z) — p(EZ).
For ¢(z) = xlogx we get the classical entropy functional, for o(z) = 2% we
get the variance, and for p(z) = 2P, p € (1, 2], the so-called p-variance. The
family of entropy-energy inequalities corresponding to the p-variance, which
interpolate between the logarithmic Sobolev and Poincaré inequalities, was
introduced by Beckner [1] in the context of Gaussian measure on R" and
Haar measure on the sphere S”~!. A more abstract treatment of this family
of inequalities (in the context of arbitrary probability measures) was given
by Latala and Oleszkiewicz [3]. One of the results in that paper states that if
¢: (0,00) — R belongs to the class @, that is, ¢ is either affine or convex with
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1/¢" concave, then the g-entropy functional has the tensorization property,
i.e. for any random variable Z defined on any product space {21 x {2,

Ep(Z) —p(EZ) < E[(E1p(Z) — o(E1Z)) + (E2¢(Z) — p(E22))],
or, equivalently,
Uy (Z2) = BEp(Z) — Exp(EaZ) — Exp(ErZ) + o(EZ) > 0.

(The solution of a similar characterization problem, concerning hypercon-
tractivity with some more general functionals instead of L, norms, was given
by Oleszkiewicz [6]). In fact, the paper [3]| contains a rigorous proof only of
the statement that if ¢ € @ then the p-entropy functional

U (Z)=FEp(Z) — p(EZ) is convex.

Later on, in [2] it was suggested that the convexity of ¥; might not imply
the non-negativity of Wy straightforwardly. Therefore in order to obtain the
latter, a variational formula for ¥ was used (established by Bobkov for some
particular functions ¢; see [4, Section 4]|). However, this formula strongly
relies on the analytic conditions that ¢ satisfies (namely, that ¢ € @).

In order to make the picture clear, we shall provide a direct argument that
the convexity of ¥ is equivalent to the non-negativity of ¥y (Proposition 1).
We also give the proof of the converse part of the characterization result
(Theorem 1): if the p-entropy has the tensorization property (in other words,
¢ belongs to the class Co) then ¢ € @. Finally, Theorem 2 addresses the
question posed at the end of [3], concerning a characterization of the higher
“tensorization classes” C,, for n > 2.

2. Notation and definitions. Throughout the paper, d and n stand for
positive integers, U denotes an open, convex subset of R and p: U — Ris a
continuous function. By (2, F, P), ({2, F, Px), etc. we shall denote proba-
bility spaces. In the case of the product space (2, F, P) = Qy_1 (2%, Fk, Px),
for K C {1,...,n}, Ex stands for the expectation with respect to the prod-
uct measure &), 5 Pi- For k € {1,...,n} we shall write Ey instead of Ey,.

For V C R% when writing Z: (£2,F,P) — V, we mean that Z is a
random variable taking values in R? and P(Z € V) = 1.

For fixed U C RY, ¢: U — R and fixed (£2,F, P) = Qp_, (2, Fr, Pr)
we shall consider the functional ¥,, acting on random variables Z defined on
(2, F, P) with P(Z € V) = 1 for some compact, convex set V C U, and
defined by

(1) Un(Z)= Y ()" Excp(ExZ).
KC{1,....n}

The definition of the main object we investigate in this paper originates
in [3]:
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DEFINITION 1. We say that ¢ € C,(U) iff the functional ¥, is non-
negative for any (2, F, P) = Qj_, (2, Fi, Py), i.e. for every compact, con-
vex set V C U and every Z: (2, F,P) —V,

VU, (Z) > 0.
REMARK 1. It is obvious that C,(U) is a convex cone.

REMARK 2. By slight abuse of notation, we can also define the functional
¥, inductively, as iterations of the y-entropy functional Ep(Z) — p(EZ),
namely

2) U(Z) = By _1(Z) — U1 (EnZ).

(By ¥,,—1(Z) we mean the application of ¥,_; conditionally with the nth
product coordinate fixed, whereas in ¥,,_1(FE, Z) we consider E,,Z as a ran-
dom variable defined on the product of all probability spaces except the
nth). Now, it can be seen that the non-negativity of ¥, is tightly connected
with the convexity of ¥,,_1. A precise statement appears in Proposition 1
(equivalence of (i) and (ii’)).

REMARK 3. The functional ¥, can be extended to a functional ¥, acting
on a larger class of random variables whose values are not restricted almost
surely to some compact subset of U. However, some integrability assumptions
should be added to ensure that the right hand side of (1) is well-defined. It
would be natural to assume that ¢ is convex, E|Z| < oo (| - | stands for
Euclidean norm in R%) and E|p(Z)| < co. Then Jensen’s inequality implies
that for each K C {1,...,n},

aExZ +b< p(ExZ) < Exeo(Z) as.

for some a,b € R. Since the lower and upper bounds are integrable with
respect to FExe, each term in the sum (1) is well-defined and finite. As we
shall see, in the context of the classes C,(U), the assumption that ¢ is
convex is not restrictive at all. Moreover, an easy truncation argument will
show that the non-negativity of ¥, is a consequence of the non-negativity of
v, (see Proposition 1, equivalence of (i) and (iii)).

EXAMPLE 1. Jensen’s inequality implies that C(U) contains exactly the
convex functions on U.

EXAMPLE 2. The class C3((0, 00)) is exactly the class of functions ¢ for
which the subadditive ¢-entropies are widely considered. The most impor-
tant examples are p(z) = 2P for p € (1,2] and p(z) = zlog(z). In the
introduction we mentioned that ¢ C C5((0,00)). In fact, we shall show that
these two classes are equal (see Theorem 1).
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3. Properties of the classes C),. We start with a proposition giving
some equivalent variants of the definition of the class C),. The discrete cubes
{—=1,1}% considered below are the n-fold products of the two-point probabil-
ity space {—1, 1} endowed with the measure Ad; + (1 — A\)d_q; if A is omitted
then it means that we take A = 1/2.

PROPOSITION 1. The following assertions are equivalent:

(i) ¢ € Cu(U),
(i) for every random wariable Z: {—1,1}" — U we have ¥,,(Z) > 0,
(ii") for every pair of random variables Z1, Zo: {—1,1}""t — U,

1 1 1+ Z
5@11(21)-1-5@11(22)2@11( 12 2)7

(iii) ¢ is convex and for every (£2,F,P) = Qp_, (2, Fi, Pr) and ev-
ery random variable Z: (2, F,P) — U such that E|Z| < oo and
Elo(Z)| < oo we have ¥, (Z) > 0.

In the proof we shall use the following lemmas:

LEMMA 1. Let V be a compact, convex subset of R? and (£2,F,P)
= (21, F1, P1) ® (£22, Fa, P2) be a product probability space. For every Z:
(2, F,P) — V and every € > 0 there exists Z: (2,F, P) — V such that

M N
Z = ZzaileixBja

i=1 j=1

where a;; € V and (Ai)i]\i17(Bj)§y:1 are measurable, finite partitions of
(921, F1, Py) and (29, Fa, Py) (respectively), and P(|Z — Z| > ¢) <.

Proof. We take any € > 0 and any finite covering of V' by (open) balls
U; = B(a,e) (i = 1,...,L) such that a; € V. Then we take disjoint and
measurable (with respect to F; @ Fo) sets C; = Z1(U; \ U;j<; Uj)- Now
we shall represent each C; as a union of finitely many measurable product
sets A X B in such a way that the measure of the symmetric difference of
this union and Cj is small. Since P; ® P, is the product measure, we can
find countably many sets A;; € Fi and B;; € F» (j = 1,2,...) such that
CZ' C U?il(A’i,j X Bi,j) and

P(CZ) + €/L2 > ipl(Ai,j)P2(Bi,j)'
j=1

If we take m; such that the tail of the above series for j > m; is less than
e/L? and put C; = Uj21(Aij x Bij), then
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(3) P(Ci\Ci) < P | (A x Biy)) < /L2,
(4) P(C;\ C) (U Aij x Big)) = P(Ci) < e/ T*,
We set

Dzzéz\Uéz’ forizl,...,L.
il i
Obviously, the D; are pairwise disjoint and each of them is a finite union of
measurable product sets. Putting Dy = 2\ EiLzl D; (which is also a finite
union of product sets) and choosing an arbitrary ag € V', we see that 7 =
ZiL:o a;1p, has the desired form (to see this, take a joint subdivision of 2,
and (29 generated by all (finitely many) product sets from Dy, Dy,...,Dy).
To finish the proof we show that P(|Z — Z| > €) < . For each i we have

{|Z—Z| Zﬁ}ﬂCi - CZ\DZ = (CZ\GZ)U U(széz’)
i1
C(Ci\Cyu | J(Co\ Cy),
i
since C; N Cy = (C~'Z/ \Cir)NC; C Cy \ Cy. Therefore for each i = 1,..., L,
(3) and (4) yield

P({|Z—-2|>e}nC;) < P(Ci\Ci)+ > P(Cy\Cy)<e/L.m
il i
LEMMA 2. Let V be a compact, convex subset of R and ¢: V — R be
a continuous function. If the sequence Zy: (£1,F1, P1) @ ({29, Fo, Py) — V
converges in probability to Z then Eyp(FE2Zy) — Eip(E2Z).

Proof. Let R > 0 satisfy V' C B(0, R). We take any € > 0 and k such
that P(|Zy — Z| > €) < e. Consider the measurable sets A = {|Z; — Z| > ¢}
C 2 xfpand Ay, = {wa: (w1,wa) € A} C 25 for each wy € £2;. By Fubini’s
theorem we get

e>Ely = | Py(Ay,) Pi(dwr) > Ve Pi(B),
i
where B = {w;: P2(Ay,) > /e} is a measurable subset of (21, which yields
Pi(B) < /. Now we write

|Evp(B2Zy) — Erp(Ea Z)| < | [@(BaZi(wi, ) — @(EB2Z(w1, )| Pi(dw:)

B

+ S |S0(E22k(w17')_SO(EQZ(WIWMPl(dwl)?
21\B
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and the first term on the right hand side can be estimated by 2Py (B) supy, |¢|
< 2y/esupy |¢|. For wy ¢ B,

|EaZi (w1, -) — EaZ (w1, )| < Ea([| Zkllc + | Z]|00) 1., +EE210m0\A,,
< 2Rv\/e + ¢,

and the uniform continuity of f yields

|Evp(E2Zi) — Evp(E2Z)| < 2\/esup || + 6(2RVe +e) =0 ase — 0,
14

where () is the modulus of continuity of . m

Proof of Proposition 1. The implications (i)=-(ii), (iii)=(i), (iii)=-(ii)
and (ii)<(ii’) are obvious. The proof of the implication (i)=-(iii) is postponed
until after the proof of Proposition 2. Now we prove (ii)=-(i). It suffices to
show that for any fixed compact, convex V C U and any fixed (2, F, Px)
(fork=1,...,n—1),

n—1
(5)  ¥,(Z) > 0 for every Z: ® (2% Fie, P) @ {-1,1} -V
k=1
= ¥, (Z) > 0 for every (2, Fn,,P,) and Z: ® (2, Fi, Pr) — V,

k=1

which means that the convexity of ¥,,_; (even just 1/2-convexity) implies
the non-negativity of ¥,. Applying this argument n times we get (i).

First note that the implication (5) holds for (§2,,, F,,, P,) = {—1, 1} with
A € (0,1). Indeed, the hypothesis of (5) states that for any pair of random
variables Z1, Zo: Q1_{ (2%, Fr, Pr) — V,

(6) )\Wn—l(Zl) -+ (1 — )\)Wn_1<Z2) > Wn_1<)\Z1 + (1 — )\)ZQ)

for A = 1/2, hence also for any A\ = 5;27¢ (0 < j; < 2%). Letting \; — \ we
get (6) for any A € [0, 1], because X; := \iZ1+(1—Xi)Z2 — AZ1+(1—N)Z,
=: X as., so EgX; — ExgX a.s. (the sequence (X;) is bounded a.s.) and
also Exep(ExX;) — Exep(ExX) (¢ is continuous and bounded on V).
Now we show that ({2, F,, P,,) can be an arbitrary probability space.
Fix any Z: @Qp_; (2%, Fk, P) — V. Lemma 1 implies that for any € > 0 we
may take Z: Ry (2, Fi, Pr) — V such that P(|Z - Z|>¢) <e and

w , Wn) ZZ 1B (wn),

where Z;: @Z1 (2, Fr, Br) — V, ' € [[7Z1 2, (Bj)évzl is a finite, mea-
surable partition of (£2,,F,, P,), and w, € (2,. Then applying (6) N — 1
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times we get

N N
Bulu1(Z) = Y Pu(B)Wur(Z)) 2 Vs (Y Pu( By (Z))
j=1 Jj=1
- n—l(EnZ)7

hence, due to (2), ¥,(Z) > 0. Lemma 2 implies that |Egep(ExZ) —
Exep(ExZ)| is small for each K C {1,...,n}, hence letting ¢ — 0 we
obtain ¥,(Z) > 0. =

PROPOSITION 2. Chy1(U) C C,(U).

Proof. Let ¢ € Cy41(U). By Proposition 1 it is sufficient to show that
U, (Z) > 0 for any Z defined on 2 = {—1,1}" taking values in U. Define Z
on the (n + 1)-fold product {—1,1}" x 2 by

Z(Elv s 7‘5”7?) = Z(Elgl) s 7€ngn))
where e € {—1,1} and € = (€1,...,8,) € §2. Since p € Cp1(U), we have
Uni1(Z) = En1¥,(Z) — ¥, (Epni1Z) > 0. But LT/n(Z(~,El) does not depend
on the choice of € and is equal to ¥,,(Z). Similarly F,,+1Z(e1,...,&p, ) does

not depend on ¢ and is equal to EZ, so we obtain ¥,,11(Z) = ¥,(Z). =

Now we can finish the proof of Proposition 1:

Proof of Proposition 1, (i)=(iii). Fix any ¢ € C,(U), (2,F,P) =
Qi1 (2%, Fi, Py) and Z: (2,F,P) — U such that E|Z] < oo and
E|o(Z)] < oo. Proposition 2 implies that ¢ € Ci(U), i.e. ¢ is convex.
Take any increasing sequence of compact, convex subsets V; C U such that
U; Vi = U, and fix vg € Vi. Then we define

Zi = Zlzev, +volzgv,,
which converges to Z a.s. We shall prove that
(7) EKCQO(EKZi) — EKCQO(EKZ),

which obviously implies that ¥, (Z;) — ¥,(Z). Since |Z;| < |Z| + |vo| and
Ek|Z] < o a.s., Lebesgue’s dominated convergence theorem implies that
ExZ; — ExZ as. and by continuity of ¢ also ¢(ExZ;) — ¢(FExZ) a.s.
The convexity of ¢ yields

aBxZ; +b < p(ExZ;) < Exp(Z;)
for some a,b € R. Since Exp(Z;) < Exlp(Z)| + ¢(vo) and |aExZ; + b|
< la|(Ex|Z]| + |vo|) + |b] and both upper bounds are integrable with re-

spect to Exe, Lebesgue’s theorem applied once again gives Fxcp(Ex Z;) —
Exep(ExZ). m

From now on, we shall write ¥,,, even if we really mean the extension ¥,,.
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We should mention that e.g. in the case of the class C((0,00)) one may
have W5(Z) > 0 not only for Z > 0 a.s., but also for Z having an atom
at 0, as long as ¢ can be extended continuously to [0, 00) (cf. Example 2).
Generally, we can state the following

REMARK 4. If ¢: U — R extends continuously to @: U — R, then
¢ € Cp(U) implies that ¥, (Z) > 0 for every random variable Z defined on
an n-fold product space and taking values in U and satisfying E|Z| < oo
and E|p(Z)| < oo. (More precisely, ¥, here is a natural extension of the
functional (1).) Indeed, since ¢ € C1(U), @ is also convex. Fixing vg € U
and defining Z. = Zlyz¢ory + ((1 — €)Z + evo)1l{zeouy for € € (0,1) we
obtain random variables Z. with values in U converging to Z a.s. The proof
that ¥,,(Z.) — ¥, (Z) as € — 0 is the same as in the case of (7).

THEOREM 1. Let U = (a,b) C R be an open interval (possibly with
a = —00 orb = 00) and let p: U — R be a continuous function. Then
w € C2(U) iff ¢ is an affine function or ¢ is twice differentiable with ¢" > 0
and 1/¢" is concave.

Proof. The “if” part appears in [3| (in fact, for a = 0 and b = oo, but
it also works for any a < b). More precisely, it was proved there that ¥; is
convex. But this means that assertion (ii’) from Proposition 1 is satisfied,
and so also is (i).

We now show the converse implication. First assume that ¢ € C2(U)NC2.
In this case we follow the idea of |3, Lemma 3|. Consider F: U x U — R

defined by
pla)+ely) (z+y
2 A2 )

If a random variable Z: {—1,1} — U attains two values x and y then
U, (Z) = F(x,y). Therefore Proposition 1 ((i)=-(ii’)) implies that F' is con-
vex. Since F' is C2, D?F is non-negative definite. Thus

O*F 1 1 T+
W(ﬂf,y) =-¢"(z) - Z@"( y> > 0.

F($7y) =

2 2

Since ¢ € Co(U) C C1(U), we have ¢” > 0 and the above easily im-
plies that if ¢"(z9) = 0 for some zp € U, then also ¢"(z) = 0 for = €
((a+ x0)/2, (b+ z0)/2). Applying this argument inductively we get ¢” = 0,
i.e. ¢ is affine. So further we assume ¢” > 0. The non-negativity of D?F
implies that

O°F 9°F _ 9°F

>

0x? 0y? — 0x0y
and one easily checks that this is equivalent to the concavity of 1/¢" con-
sidered at the points x, y and (z + y)/2.
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Now we show that the assumption ¢ € Co(U) implies that » € C2. For
e >01let U° = (a+¢,b—¢) and define ¢.: U° — R as the convolution
Ye = @ * e, where 7: > 0 is a smooth approximation of dy with supp(n:) C
(—¢,¢€). Since C2(U) is a convex cone, ¢, € Ca(U*).

Since e is smooth, the first part of the proof implies that ¢, is either
affine, or has a strictly positive second derivative with 1/ concave. Then it
is easy to see that ¢’ is a convex function. Indeed, the affine case is obvious,
and if ¢” > 0 then the concavity of 1/¢” considered at the points z,y and
(x +y)/2 gives

,,<m + y> 207 (2)¢l(y) o pE(x) + ¢l (y)
) Sy S 2
Therefore ¢ > 0 and for some zg € R, ¢/ is non-increasing on (—oo, xo) U
and non-decreasing on [z, 00)NU, so L is a non-decreasing, concave-convex
function.

First we show that ¢ € CL. Since p € C2(U) C C1(U), ¢ is convex, so it
is well-known that ¢ has a first derivative on a set D, with N'D, = U \ D,
countable (so N'D, is of zero Lebesgue measure and D, is dense in U).
Moreover, ¢’ is continuous at all points of D, and ¢ is locally Lipschitz.
Therefore Lebesgue’s dominated convergence theorem yields

(8) Pl(a) = lim | 2E= ¥ TR oz —u)

Y 1e(y) dy
= (¢ *n)(xz) for x € U®

(¢' is defined a.e.). Taking e — 0, by continuity of ¢’ in D,
(9) ;1_{1% ol(z) = ¢'(x) for x € D,.

Now fix any decreasing sequence ¢ — 0 (kK = 0,1,...) and think of ¢y as
small. Below we consider the ., defined on one domain U®°. The func-
tions @ék are non-decreasing and concave-convex and they pointwise con-
verge on the dense set U N D,. This implies that they are also uniformly
equicontinuous on any compact interval [ag,by] C U®°. Indeed, taking any
a;,b; € U ND, (i = 1,2) such that a; < az < ap and by < by < by, we see
that for sufficiently large k the Lipschitz constant of cp'sk is less than

i ¢'(ag) — ¢'(a1) + 1’ ©'(ba) — ' (by) + 1 _
a2 — aq b2 - bl

Therefore the Arzela—Ascoli theorem implies that there exists a subsequence
€k, such that (p'gkl converges uniformly on [ag, by] to some continuous function,
which has to be the derivative of ¢. Letting ¢g — 0 and ag — a, by — b we
get ¢ € CL. Moreover, ¢’ is also a non-decreasing, concave-convex function.

The proof that ¢ € C? is similar. The equality (8) gives ¢ = (¢'*n.)" and
(9) applied for ¢’ instead of ¢ (this is justified since ¢’ is a concave-convex
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function and all the facts concerning the derivative of ¢' and the set Dy
hold true as in the case of a convex function) yields

pl(x) = (¢"*ne) (x) = ¢"(z)  for x € Dy
Now using the fact that ¢! is convex, a similar argument shows that the

convex functions Qng are uniformly equicontinuous on compact intervals. As
a consequence, some subsequence ¢ is uniformly convergent on compact
1

intervals to some continuous function, which has to be the derivative of ’. m
THEOREM 2. Let U C R be an open, convex set. Then for all n >3,
Cn(U) ={¢: U =R | ¢(z) = Qz) +v*(z) + ¢},

where Q is a non-negative definite quadratic form on R?, v is a linear func-
tional on R and ¢ € R.

Proof. The inclusion D is easy. Since the expectation commutes with v*,
we can assume @(z) = Q(z). Moreover, we can take U = R? because if

¢ € Cp(U) and U' C U then o € Cp(U').

We show that if ¢(z) = Q(x) is a quadratic form then
(10) !pn(Z) = Epn(Z - EnZ)'
Indeed, denote by Q(z,y) the bilinear form associated with Q(z); then (2)
yields
U, (Z - E.Z)=EW, 1(Z - E,Z)—¥,_1(0)
=E, Y  (-)MExQ(Ex(Z - E,2))

KC{1,..,n—1}

= Y ()W EE,(Q(Ex2)-2Q(Ex Z, Exuin} 2)+Q(Exu(ny Z))
KC{1,...,n—1}

= Y ()N Ex(E.QEKZ) - 2Q(EnEx Z, Exugny Z)
KEtlmn=l} +Q(Exuim2))

= > (DB QEKZ) — Q(Exum Z)) = n(Z).
KC{l,...,n—1}

Now, by induction on n, we prove that ¥, > 0, i.e. Q € C,(R?). Obviously,
W1 > 0. Then the formulas (10) and (2) imply that

U (Z) = Wn(Z — EnZ) = EgWn_1(Z — EnZ) — W_1(0) > 0,

since by the induction hypothesis ¥,,_1(Z — E,Z) > 0 a.s.

The inclusion C is more tricky. First, Proposition 2 allows us to consider
the case n = 3 only. The argument presented below is due to K. Oleszkiewicz
and is reproduced here with his kind permission. (The author’s argument
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was a bit more complicated and was not so general—it worked e.g. for U =
(0,00) € R but not for finite intervals).

First, assume that ¢ € C3(U) is (C*°) smooth. We define X: {—1,1}3
— R by
3 if |e1 +e2 + €3] =3,

—1 otherwise.

X(e1,€2,€3) = {

Fix a € U and v € RY. For € € R, we define Z. = a+veX. If |¢] is sufficiently
small, Z. has values in U. The hypothesis implies that ¥3(Z.) > 0. On the

other hand, if we put f(z) = ¢(a + vz) for x from some open interval
containing 0, we obtain
(11) Us(Ze)= Y (~D)FEgef(eEkX)

KC{1,2,3}

= 1 F3) — 3 £(0) +27(0) — 5 f(~2).

Notice that the right hand side vanishes if we take 1, z or 2% as f(z), and
is equal to 6 for f(x) = x3. Since f is smooth, applying Taylor’s expansion
f(@) = f(0)+ f(0)x + 5 f"(0)z® + £ f(0)2® + o(2?) to (11) we obtain

. lpZS(Za) "

lim = 70,
Since W3(Z.)/e® > 0 for ¢ > 0 and W3(Z.)/e3 < 0 for e < 0, we obtain
J"(0) = 0, hence D}, p(a) = 0 for any v € R and a € U, so D3p = 0.
An elementary reasoning shows that ¢ is of the desired form—we leave the
details to the reader. (A similar result dealing with functions on an infinite-
dimensional vector space was given e.g. in [5]. That result says that if a func-

tion restricted to any line is a one-variable polynomial of degree at most k,
then the whole function is a polynomial of degree at most k.)

The general case (without assuming ¢ to be smooth) follows easily from
the above. For € > 0, we define

Us={xcU: B(z,e) CU}.

Clearly, U® is an open, convex subset of U. Define p.: U* — R as the
convolution ¢, = ¢ * 1, where 1. > 0 is a smooth approximation of jy with
supp(n:) C B(0,¢). Since C3(U) is a convex cone, ¢, € C3(U¢) and so ¢ is
a “quadratic function”. Passing to the limit we conclude that so also is ¢. =

The following proposition states what the “tensorization property” for
the classes C,,(U) means.

PROPOSITION 3. Let ¢ € Cpy1(U) (n > 1). Let ud and pj for k =
1,...,n be probability measures. Then for any Z: Qjp_1 (12 @ pui) — U such
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that E|Z| < 0o and E|p(Z)| < oo we have

Un(Z)<E ), ¥(2),
AC{1,...,n}

where WA (Z) means the functional W, applied to Z considered as a random

variable defined on the product @y, uéA(k) with all coordinates w,ifIA(k)

fized.

Proof. We shall prove that for Z: (u®@ul)®@us®- - -@pu, — U (satistying
appropriate integrability conditions) one has

Vo (Z) < B(I(Z) +¥,(2)),

where W0(Z) means ¥, applied to Z considered as a random variable defined
on the product u{ ® po ® - -+ ® p, with wi fixed (and similarly for ¥} (Z2)).
Labelling the product coordinates w[l), w%, wa, ... ,wpas 19,112, nrespec-
tively we have

U (Z) = Z (—1)K Egep(ExZ),
Kc{1°,11,2,...,n}
|KN{10,11 }|£1

EO)Z)= > (-DMEuyukee(ExZ),
Kc{192,...n}

By Z)= > (DN Eqoukeo(Ex2),
Kc{11,2,...n}

and we easily check that EW0(Z) + EW(Z) — W, (Z) = Ui 1(2).

Now observe that it suffices to apply the above argument recursively. m
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