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PROBABILITY THEORY AND STOCHASTIC PROCESSES

Some Remarks on Fun
tionals withthe Tensorization PropertybyPaweª WOLFFPresented by Stanisªaw KWAPIE�
Summary. We investigate the subadditivity property (also known as the tensorizationproperty) of ϕ-entropy fun
tionals and their iterations. In parti
ular we show that theonly iterated ϕ-entropies with the tensorization property are iterated varian
es. This isa 
omplement to the result due to Lataªa and Oleszkiewi
z on 
hara
terization of thestandard ϕ-entropies with the tensorization property.1. Introdu
tion. An important feature of some fun
tional inequalitiesfor probability measures is the tensorization property (sometimes 
alled theprodu
t property): if the inequality holds for ea
h measure µ1, µ2, . . . then italso holds for the produ
t measure µ1⊗µ2⊗· · · . In this paper we fo
us on thetensorization property of entropy-energy inequalities, well-known examplesof whi
h are the logarithmi
 Sobolev inequality and Poin
aré inequality.By the ϕ-entropy fun
tional we mean the fun
tional Eϕ(Z) − ϕ(EZ).For ϕ(x) = x log x we get the 
lassi
al entropy fun
tional, for ϕ(x) = x2 weget the varian
e, and for ϕ(x) = xp, p ∈ (1, 2], the so-
alled p-varian
e. Thefamily of entropy-energy inequalities 
orresponding to the p-varian
e, whi
hinterpolate between the logarithmi
 Sobolev and Poin
aré inequalities, wasintrodu
ed by Be
kner [1℄ in the 
ontext of Gaussian measure on R

n andHaar measure on the sphere Sn−1. A more abstra
t treatment of this familyof inequalities (in the 
ontext of arbitrary probability measures) was givenby Lataªa and Oleszkiewi
z [3℄. One of the results in that paper states that if
ϕ : (0,∞) → R belongs to the 
lass Φ, that is, ϕ is either a�ne or 
onvex with2000 Mathemati
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1/ϕ′′ 
on
ave, then the ϕ-entropy fun
tional has the tensorization property,i.e. for any random variable Z de�ned on any produ
t spa
e Ω1 × Ω2,

Eϕ(Z) − ϕ(EZ) ≤ E[(E1ϕ(Z) − ϕ(E1Z)) + (E2ϕ(Z) − ϕ(E2Z))],or, equivalently,
Ψ2(Z) = Eϕ(Z) − E1ϕ(E2Z) − E2ϕ(E1Z) + ϕ(EZ) ≥ 0.(The solution of a similar 
hara
terization problem, 
on
erning hyper
on-tra
tivity with some more general fun
tionals instead of Lp norms, was givenby Oleszkiewi
z [6℄). In fa
t, the paper [3℄ 
ontains a rigorous proof only ofthe statement that if ϕ ∈ Φ then the ϕ-entropy fun
tional

Ψ1(Z) = Eϕ(Z) − ϕ(EZ) is 
onvex.Later on, in [2℄ it was suggested that the 
onvexity of Ψ1 might not implythe non-negativity of Ψ2 straightforwardly. Therefore in order to obtain thelatter, a variational formula for Ψ2 was used (established by Bobkov for someparti
ular fun
tions ϕ; see [4, Se
tion 4℄). However, this formula stronglyrelies on the analyti
 
onditions that ϕ satis�es (namely, that ϕ ∈ Φ).In order to make the pi
ture 
lear, we shall provide a dire
t argument thatthe 
onvexity of Ψ1 is equivalent to the non-negativity of Ψ2 (Proposition 1).We also give the proof of the 
onverse part of the 
hara
terization result(Theorem 1): if the ϕ-entropy has the tensorization property (in other words,
ϕ belongs to the 
lass C2) then ϕ ∈ Φ. Finally, Theorem 2 addresses thequestion posed at the end of [3℄, 
on
erning a 
hara
terization of the higher�tensorization 
lasses� Cn for n > 2.2. Notation and de�nitions. Throughout the paper, d and n stand forpositive integers, U denotes an open, 
onvex subset of R

d and ϕ : U → R is a
ontinuous fun
tion. By (Ω,F, P), (Ωk,Fk, Pk), et
. we shall denote proba-bility spa
es. In the 
ase of the produ
t spa
e (Ω,F, P) =
⊗n

k=1(Ωk,Fk, Pk),for K ⊂ {1, . . . , n}, EK stands for the expe
tation with respe
t to the prod-u
t measure ⊗
k∈K Pk. For k ∈ {1, . . . , n} we shall write Ek instead of E{k}.For V ⊆ R
d, when writing Z : (Ω,F, P) → V , we mean that Z is arandom variable taking values in R

d and P (Z ∈ V ) = 1.For �xed U ⊆ R
d, ϕ : U → R and �xed (Ω,F, P) =

⊗n
k=1(Ωk,Fk, Pk)we shall 
onsider the fun
tional Ψn a
ting on random variables Z de�ned on

(Ω,F, P) with P (Z ∈ V ) = 1 for some 
ompa
t, 
onvex set V ⊂ U , andde�ned by(1) Ψn(Z) =
∑

K⊆{1,...,n}

(−1)|K|EKcϕ(EKZ).The de�nition of the main obje
t we investigate in this paper originatesin [3℄:
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Definition 1. We say that ϕ ∈ Cn(U) i� the fun
tional Ψn is non-negative for any (Ω,F, P) =

⊗n
k=1(Ωk,Fk, Pk), i.e. for every 
ompa
t, 
on-vex set V ⊂ U and every Z : (Ω,F, P) → V ,
Ψn(Z) ≥ 0.Remark 1. It is obvious that Cn(U) is a 
onvex 
one.Remark 2. By slight abuse of notation, we 
an also de�ne the fun
tional

Ψn indu
tively, as iterations of the ϕ-entropy fun
tional Eϕ(Z) − ϕ(EZ),namely(2) Ψn(Z) = EnΨn−1(Z) − Ψn−1(EnZ).(By Ψn−1(Z) we mean the appli
ation of Ψn−1 
onditionally with the nthprodu
t 
oordinate �xed, whereas in Ψn−1(EnZ) we 
onsider EnZ as a ran-dom variable de�ned on the produ
t of all probability spa
es ex
ept the
nth). Now, it 
an be seen that the non-negativity of Ψn is tightly 
onne
tedwith the 
onvexity of Ψn−1. A pre
ise statement appears in Proposition 1(equivalen
e of (i) and (ii′)).Remark 3. The fun
tional Ψn 
an be extended to a fun
tional Ψ̃n a
tingon a larger 
lass of random variables whose values are not restri
ted almostsurely to some 
ompa
t subset of U . However, some integrability assumptionsshould be added to ensure that the right hand side of (1) is well-de�ned. Itwould be natural to assume that ϕ is 
onvex, E|Z| < ∞ (| · | stands forEu
lidean norm in R

d) and E|ϕ(Z)| < ∞. Then Jensen's inequality impliesthat for ea
h K ⊆ {1, . . . , n},
aEKZ + b ≤ ϕ(EKZ) ≤ EKϕ(Z) a.s.for some a, b ∈ R. Sin
e the lower and upper bounds are integrable withrespe
t to EKc , ea
h term in the sum (1) is well-de�ned and �nite. As weshall see, in the 
ontext of the 
lasses Cn(U), the assumption that ϕ is
onvex is not restri
tive at all. Moreover, an easy trun
ation argument willshow that the non-negativity of Ψ̃n is a 
onsequen
e of the non-negativity of

Ψn (see Proposition 1, equivalen
e of (i) and (iii)).Example 1. Jensen's inequality implies that C1(U) 
ontains exa
tly the
onvex fun
tions on U .Example 2. The 
lass C2((0,∞)) is exa
tly the 
lass of fun
tions ϕ forwhi
h the subadditive ϕ-entropies are widely 
onsidered. The most impor-tant examples are ϕ(x) = xp for p ∈ (1, 2] and ϕ(x) = x log(x). In theintrodu
tion we mentioned that Φ ⊆ C2((0,∞)). In fa
t, we shall show thatthese two 
lasses are equal (see Theorem 1).
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3. Properties of the 
lasses Cn. We start with a proposition givingsome equivalent variants of the de�nition of the 
lass Cn. The dis
rete 
ubes

{−1, 1}n
λ 
onsidered below are the n-fold produ
ts of the two-point probabil-ity spa
e {−1, 1} endowed with the measure λδ1 +(1−λ)δ−1; if λ is omittedthen it means that we take λ = 1/2.Proposition 1. The following assertions are equivalent :(i) ϕ ∈ Cn(U),(ii) for every random variable Z : {−1, 1}n → U we have Ψn(Z) ≥ 0,(ii′) for every pair of random variables Z1, Z2 : {−1, 1}n−1 → U ,

1

2
Ψn−1(Z1) +

1

2
Ψn−1(Z2) ≥ Ψn−1

(
Z1 + Z2

2

)
,(iii) ϕ is 
onvex and for every (Ω,F, P) =

⊗n
k=1(Ωk,Fk, Pk) and ev-ery random variable Z : (Ω,F, P) → U su
h that E|Z| < ∞ and

E|ϕ(Z)| < ∞ we have Ψ̃n(Z) ≥ 0.In the proof we shall use the following lemmas:Lemma 1. Let V be a 
ompa
t , 
onvex subset of R
d and (Ω,F, P)

= (Ω1,F1, P1) ⊗ (Ω2,F2, P2) be a produ
t probability spa
e. For every Z :

(Ω,F, P) → V and every ε > 0 there exists Z̃ : (Ω,F, P) → V su
h that
Z̃ =

M∑

i=1

N∑

j=1

aij1Ai×Bj
,

where aij ∈ V and (Ai)
M
i=1, (Bj)

N
j=1 are measurable, �nite partitions of

(Ω1,F1, P1) and (Ω2,F2, P2) (respe
tively), and P (|Z̃ − Z| ≥ ε) < ε.Proof. We take any ε > 0 and any �nite 
overing of V by (open) balls
Ui = B(ai, ε) (i = 1, . . . , L) su
h that ai ∈ V . Then we take disjoint andmeasurable (with respe
t to F1 ⊗ F2) sets Ci = Z−1(Ui \

⋃
j<i Uj). Nowwe shall represent ea
h Ci as a union of �nitely many measurable produ
tsets A × B in su
h a way that the measure of the symmetri
 di�eren
e ofthis union and Ci is small. Sin
e P1 ⊗ P2 is the produ
t measure, we 
an�nd 
ountably many sets Ai,j ∈ F1 and Bi,j ∈ F2 (j = 1, 2, . . .) su
h that

Ci ⊆
⋃∞

j=1(Ai,j × Bi,j) and
P (Ci) + ε/L2 >

∞∑

j=1

P1(Ai,j)P2(Bi,j).If we take mi su
h that the tail of the above series for j > mi is less than
ε/L2 and put C̃i =

⋃mi

j=1(Ai,j × Bi,j), then
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P (Ci \ C̃i) ≤ P

( ⋃

j>mi

(Ai,j × Bi,j)
)

< ε/L2,(3)

P (C̃i \ Ci) ≤ P
( ∞⋃

j=1

(Ai,j × Bi,j)
)
− P (Ci) < ε/L2.(4)

We set
Di = C̃i \

⋃

i′ 6=i

C̃i′ for i = 1, . . . , L.Obviously, the Di are pairwise disjoint and ea
h of them is a �nite union ofmeasurable produ
t sets. Putting D0 = Ω \ ∑L
i=1 Di (whi
h is also a �niteunion of produ
t sets) and 
hoosing an arbitrary a0 ∈ V , we see that Z̃ =∑L

i=0 ai1Di
has the desired form (to see this, take a joint subdivision of Ω1and Ω2 generated by all (�nitely many) produ
t sets from D0, D1, . . . , DL).To �nish the proof we show that P (|Z̃ −Z| ≥ ε) < ε. For ea
h i we have

{|Z̃ − Z| ≥ ε} ∩ Ci ⊆ Ci \ Di = (Ci \ C̃i) ∪
⋃

i′ 6=i

(Ci ∩ C̃i′)

⊆ (Ci \ C̃i) ∪
⋃

i′ 6=i

(C̃i′ \ Ci′),

sin
e Ci ∩ C̃i′ = (C̃i′ \ Ci′) ∩ Ci ⊆ C̃i′ \ Ci′ . Therefore for ea
h i = 1, . . . , L,(3) and (4) yield
P ({|Z̃ − Z| ≥ ε} ∩ Ci) ≤ P (Ci \ C̃i) +

∑

i′ 6=i

P (C̃i′ \ Ci′) < ε/L.

Lemma 2. Let V be a 
ompa
t , 
onvex subset of R
d and ϕ : V → R bea 
ontinuous fun
tion. If the sequen
e Zk : (Ω1,F1, P1) ⊗ (Ω2,F2, P2) → V
onverges in probability to Z then E1ϕ(E2Zk) → E1ϕ(E2Z).Proof. Let R > 0 satisfy V ⊆ B(0, R). We take any ε > 0 and k su
hthat P (|Zk −Z| ≥ ε) < ε. Consider the measurable sets A = {|Zk −Z| ≥ ε}

⊆ Ω1×Ω2 and Aω1
= {ω2 : (ω1, ω2) ∈ A} ⊆ Ω2 for ea
h ω1 ∈ Ω1. By Fubini'stheorem we get

ε > E1A =
\

Ω1

P2(Aω1
) P1(dω1) ≥

√
εP1(B),where B = {ω1 : P2(Aω1

) ≥ √
ε} is a measurable subset of Ω1, whi
h yields

P1(B) <
√

ε. Now we write
|E1ϕ(E2Zk)−E1ϕ(E2Z)| ≤

\
B

|ϕ(E2Zk(ω1, ·) − ϕ(E2Z(ω1, ·)|P1(dω1)

+
\

Ω1\B

|ϕ(E2Zk(ω1, ·)−ϕ(E2Z(ω1, ·)|P1(dω1),
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and the �rst term on the right hand side 
an be estimated by 2P1(B) supV |ϕ|
< 2

√
ε supV |ϕ|. For ω1 /∈ B,

|E2Zk(ω1, ·) − E2Z(ω1, ·)| ≤ E2(‖Zk‖∞ + ‖Z‖∞)1Aω1
+ εE21Ω2\Aω1

< 2R
√

ε + ε,and the uniform 
ontinuity of f yields
|E1ϕ(E2Zk) − E1ϕ(E2Z)| < 2

√
ε sup

V
|ϕ| + δ(2R

√
ε + ε) → 0 as ε → 0,where δ(ε) is the modulus of 
ontinuity of ϕ.Proof of Proposition 1. The impli
ations (i)⇒(ii), (iii)⇒(i), (iii)⇒(ii)and (ii)⇔(ii′) are obvious. The proof of the impli
ation (i)⇒(iii) is postponeduntil after the proof of Proposition 2. Now we prove (ii)⇒(i). It su�
es toshow that for any �xed 
ompa
t, 
onvex V ⊂ U and any �xed (Ωk,Fk, Pk)(for k = 1, . . . , n − 1),

(5) Ψn(Z) ≥ 0 for every Z :

n−1⊗

k=1

(Ωk,Fk, Pk) ⊗ {−1, 1} → V

⇒ Ψn(Z) ≥ 0 for every (Ωn,Fn, Pn) and Z :

n⊗

k=1

(Ωk,Fk, Pk) → V,

whi
h means that the 
onvexity of Ψn−1 (even just 1/2-
onvexity) impliesthe non-negativity of Ψn. Applying this argument n times we get (i).First note that the impli
ation (5) holds for (Ωn,Fn, Pn) = {−1, 1}λ with
λ ∈ (0, 1). Indeed, the hypothesis of (5) states that for any pair of randomvariables Z1, Z2 :

⊗n−1
k=1(Ωk,Fk, Pk) → V ,(6) λΨn−1(Z1) + (1 − λ)Ψn−1(Z2) ≥ Ψn−1(λZ1 + (1 − λ)Z2)for λ = 1/2, hen
e also for any λ = ji2

−i (0 < ji < 2i). Letting λi → λ weget (6) for any λ ∈ [0, 1], be
ause Xi := λiZ1 +(1−λi)Z2 → λZ1 +(1−λ)Z2

=: X a.s., so EKXi → EKX a.s. (the sequen
e (Xi) is bounded a.s.) andalso EKcϕ(EKXi) → EKcϕ(EKX) (ϕ is 
ontinuous and bounded on V ).Now we show that (Ωn,Fn, Pn) 
an be an arbitrary probability spa
e.Fix any Z :
⊗n

k=1(Ωk,Fk, Pk) → V . Lemma 1 implies that for any ε > 0 wemay take Z̃ :
⊗n

k=1(Ωk,Fk, Pk) → V su
h that P (|Z̃ − Z| ≥ ε) < ε and
Z̃(ω′, ωn) =

N∑

j=1

Z̃j(ω
′)1Bj

(ωn),

where Z̃j :
⊗n−1

k=1(Ωk,Fk, Pk) → V , ω′ ∈ ∏n−1
k=1 Ωk, (Bj)

N
j=1 is a �nite, mea-surable partition of (Ωn,Fn, Pn), and ωn ∈ Ωn. Then applying (6) N − 1
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times we get

EnΨn−1(Z̃) =

N∑

j=1

Pn(Bj)Ψn−1(Z̃j) ≥ Ψn−1

( N∑

j=1

Pn(Bj)Ψn−1(Z̃j)
)

= Ψn−1(EnZ̃),hen
e, due to (2), Ψn(Z̃) ≥ 0. Lemma 2 implies that |EKcϕ(EKZ̃) −
EKcϕ(EKZ)| is small for ea
h K ⊆ {1, . . . , n}, hen
e letting ε → 0 weobtain Ψn(Z) ≥ 0.Proposition 2. Cn+1(U) ⊆ Cn(U).Proof. Let ϕ ∈ Cn+1(U). By Proposition 1 it is su�
ient to show that
Ψn(Z) ≥ 0 for any Z de�ned on Ω = {−1, 1}n taking values in U . De�ne Zon the (n + 1)-fold produ
t {−1, 1}n × Ω by

Z(ε1, . . . , εn, ε) = Z(ε1ε1, . . . , εnεn),where εk ∈ {−1, 1} and ε = (ε1, . . . , εn) ∈ Ω. Sin
e ϕ ∈ Cn+1(U), we have
Ψn+1(Z) = En+1Ψn(Z) − Ψn(En+1Z) ≥ 0. But Ψn(Z(·, ε)) does not dependon the 
hoi
e of ε and is equal to Ψn(Z). Similarly En+1Z(ε1, . . . , εn, ·) doesnot depend on εk and is equal to EZ, so we obtain Ψn+1(Z) = Ψn(Z).Now we 
an �nish the proof of Proposition 1:Proof of Proposition 1, (i)⇒(iii). Fix any ϕ ∈ Cn(U), (Ω,F, P) =⊗n

k=1(Ωk,Fk, Pk) and Z : (Ω,F, P) → U su
h that E|Z| < ∞ and
E|ϕ(Z)| < ∞. Proposition 2 implies that ϕ ∈ C1(U), i.e. ϕ is 
onvex.Take any in
reasing sequen
e of 
ompa
t, 
onvex subsets Vi ⊂ U su
h that⋃

i Vi = U , and �x v0 ∈ V1. Then we de�ne
Zi = Z1Z∈Vi

+ v01Z /∈Vi
,whi
h 
onverges to Z a.s. We shall prove that(7) EKcϕ(EKZi) → EKcϕ(EKZ),whi
h obviously implies that Ψn(Zi) → Ψ̃n(Z). Sin
e |Zi| ≤ |Z| + |v0| and

EK |Z| < ∞ a.s., Lebesgue's dominated 
onvergen
e theorem implies that
EKZi → EKZ a.s. and by 
ontinuity of ϕ also ϕ(EKZi) → ϕ(EKZ) a.s.The 
onvexity of ϕ yields

aEKZi + b ≤ ϕ(EKZi) ≤ EKϕ(Zi)for some a, b ∈ R. Sin
e EKϕ(Zi) ≤ EK |ϕ(Z)| + ϕ(v0) and |aEKZi + b|
≤ |a|(EK |Z| + |v0|) + |b| and both upper bounds are integrable with re-spe
t to EKc , Lebesgue's theorem applied on
e again gives EKcϕ(EKZi) →
EKcϕ(EKZ).From now on, we shall write Ψn, even if we really mean the extension Ψ̃n.
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We should mention that e.g. in the 
ase of the 
lass C2((0,∞)) one mayhave Ψ2(Z) ≥ 0 not only for Z > 0 a.s., but also for Z having an atomat 0, as long as ϕ 
an be extended 
ontinuously to [0,∞) (
f. Example 2).Generally, we 
an state the followingRemark 4. If ϕ : U → R extends 
ontinuously to ϕ : U → R, then

ϕ ∈ Cn(U) implies that Ψn(Z) ≥ 0 for every random variable Z de�ned onan n-fold produ
t spa
e and taking values in U and satisfying E|Z| < ∞and E|ϕ(Z)| < ∞. (More pre
isely, Ψn here is a natural extension of thefun
tional (1).) Indeed, sin
e ϕ ∈ C1(U), ϕ is also 
onvex. Fixing v0 ∈ Uand de�ning Zε = Z1{Z /∈∂U} + ((1 − ε)Z + εv0)1{Z∈∂U} for ε ∈ (0, 1) weobtain random variables Zε with values in U 
onverging to Z a.s. The proofthat Ψn(Zε) → Ψn(Z) as ε → 0 is the same as in the 
ase of (7).Theorem 1. Let U = (a, b) ⊆ R be an open interval (possibly with
a = −∞ or b = ∞) and let ϕ : U → R be a 
ontinuous fun
tion. Then
ϕ ∈ C2(U) i� ϕ is an a�ne fun
tion or ϕ is twi
e di�erentiable with ϕ′′ > 0and 1/ϕ′′ is 
on
ave.Proof. The �if� part appears in [3℄ (in fa
t, for a = 0 and b = ∞, butit also works for any a < b). More pre
isely, it was proved there that Ψ1 is
onvex. But this means that assertion (ii′) from Proposition 1 is satis�ed,and so also is (i).We now show the 
onverse impli
ation. First assume that ϕ ∈ C2(U)∩C2.In this 
ase we follow the idea of [3, Lemma 3℄. Consider F : U × U → Rde�ned by

F (x, y) =
ϕ(x) + ϕ(y)

2
− ϕ

(
x + y

2

)
.If a random variable Z : {−1, 1} → U attains two values x and y then

Ψ1(Z) = F (x, y). Therefore Proposition 1 ((i)⇒(ii′)) implies that F is 
on-vex. Sin
e F is C2, D2F is non-negative de�nite. Thus
∂2F

∂x2
(x, y) =

1

2
ϕ′′(x) − 1

4
ϕ′′

(
x + y

2

)
≥ 0.Sin
e ϕ ∈ C2(U) ⊆ C1(U), we have ϕ′′ ≥ 0 and the above easily im-plies that if ϕ′′(x0) = 0 for some x0 ∈ U , then also ϕ′′(x) = 0 for x ∈

((a + x0)/2, (b + x0)/2). Applying this argument indu
tively we get ϕ′′ ≡ 0,i.e. ϕ is a�ne. So further we assume ϕ′′ > 0. The non-negativity of D2Fimplies that
∂2F

∂x2

∂2F

∂y2
≥ ∂2F

∂x∂yand one easily 
he
ks that this is equivalent to the 
on
avity of 1/ϕ′′ 
on-sidered at the points x, y and (x + y)/2.



Fun
tionals with the Tensorization Property 287
Now we show that the assumption ϕ ∈ C2(U) implies that ϕ ∈ C2. For

ε > 0 let U ε = (a + ε, b − ε) and de�ne ϕε : U ε → R as the 
onvolution
ϕε = ϕ ∗ ηε, where ηε ≥ 0 is a smooth approximation of δ0 with supp(ηε) ⊆
(−ε, ε). Sin
e C2(U) is a 
onvex 
one, ϕε ∈ C2(U

ε).Sin
e ϕε is smooth, the �rst part of the proof implies that ϕε is eithera�ne, or has a stri
tly positive se
ond derivative with 1/ϕ′′
ε 
on
ave. Then itis easy to see that ϕ′′

ε is a 
onvex fun
tion. Indeed, the a�ne 
ase is obvious,and if ϕ′′
ε > 0 then the 
on
avity of 1/ϕ′′

ε 
onsidered at the points x, y and
(x + y)/2 gives

ϕ′′
ε

(
x + y

2

)
≤ 2ϕ′′

ε(x)ϕ′′
ε(y)

ϕ′′
ε(x) + ϕ′′

ε(y)
≤ ϕ′′

ε(x) + ϕ′′
ε(y)

2
.Therefore ϕ′′

ε ≥ 0 and for some x0 ∈ R, ϕ′′
ε is non-in
reasing on (−∞, x0]∩Uand non-de
reasing on [x0,∞)∩U , so ϕ′

ε is a non-de
reasing, 
on
ave-
onvexfun
tion.First we show that ϕ ∈ C1. Sin
e ϕ ∈ C2(U) ⊆ C1(U), ϕ is 
onvex, so itis well-known that ϕ has a �rst derivative on a set Dϕ with NDϕ = U \ Dϕ
ountable (so NDϕ is of zero Lebesgue measure and Dϕ is dense in U).Moreover, ϕ′ is 
ontinuous at all points of Dϕ and ϕ is lo
ally Lips
hitz.Therefore Lebesgue's dominated 
onvergen
e theorem yields
ϕ′

ε(x) = lim
h→0

\ϕ(x − y + h) − ϕ(x − y)

h
ηε(y) dy(8)

= (ϕ′ ∗ ηε)(x) for x ∈ U ε(ϕ′ is de�ned a.e.). Taking ε → 0, by 
ontinuity of ϕ′ in Dϕ,(9) lim
ε→0

ϕ′
ε(x) = ϕ′(x) for x ∈ Dϕ.Now �x any de
reasing sequen
e εk → 0 (k = 0, 1, . . .) and think of ε0 assmall. Below we 
onsider the ϕεk

de�ned on one domain U ε0 . The fun
-tions ϕ′
εk

are non-de
reasing and 
on
ave-
onvex and they pointwise 
on-verge on the dense set U ε0 ∩ Dϕ. This implies that they are also uniformlyequi
ontinuous on any 
ompa
t interval [a0, b0] ⊂ U ε0 . Indeed, taking any
ai, bi ∈ U ε0 ∩ Dϕ (i = 1, 2) su
h that a1 < a2 ≤ a0 and b0 ≤ b1 < b2, we seethat for su�
iently large k the Lips
hitz 
onstant of ϕ′

εk
is less than

max

(
ϕ′(a2) − ϕ′(a1) + 1

a2 − a1
,
ϕ′(b2) − ϕ′(b1) + 1

b2 − b1

)
.Therefore the Arzelà�As
oli theorem implies that there exists a subsequen
e

εkl
su
h that ϕ′

εkl

onverges uniformly on [a0, b0] to some 
ontinuous fun
tion,whi
h has to be the derivative of ϕ. Letting ε0 → 0 and a0 → a, b0 → b weget ϕ ∈ C1. Moreover, ϕ′ is also a non-de
reasing, 
on
ave-
onvex fun
tion.The proof that ϕ ∈ C2 is similar. The equality (8) gives ϕ′′

ε = (ϕ′∗ηε)
′ and(9) applied for ϕ′ instead of ϕ (this is justi�ed sin
e ϕ′ is a 
on
ave-
onvex
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fun
tion and all the fa
ts 
on
erning the derivative of ϕ′ and the set Dϕ′hold true as in the 
ase of a 
onvex fun
tion) yields

ϕ′′
ε(x) = (ϕ′ ∗ ηε)

′(x) → ϕ′′(x) for x ∈ Dϕ′ .Now using the fa
t that ϕ′′
ε is 
onvex, a similar argument shows that the
onvex fun
tions ϕ′′

εk
are uniformly equi
ontinuous on 
ompa
t intervals. Asa 
onsequen
e, some subsequen
e ϕ′′

εkl
is uniformly 
onvergent on 
ompa
tintervals to some 
ontinuous fun
tion, whi
h has to be the derivative of ϕ′.Theorem 2. Let U ⊆ R

d be an open, 
onvex set. Then for all n ≥ 3,
Cn(U) = {ϕ : U → R | ϕ(x) = Q(x) + v∗(x) + c},where Q is a non-negative de�nite quadrati
 form on R

d, v is a linear fun
-tional on R
d and c ∈ R.Proof. The in
lusion ⊇ is easy. Sin
e the expe
tation 
ommutes with v∗,we 
an assume ϕ(x) = Q(x). Moreover, we 
an take U = R

d, be
ause if
ϕ ∈ Cn(U) and U ′ ⊆ U then ϕ|U ′ ∈ Cn(U ′).We show that if ϕ(x) = Q(x) is a quadrati
 form then(10) Ψn(Z) = Ψn(Z − EnZ).Indeed, denote by Q(x, y) the bilinear form asso
iated with Q(x); then (2)yields
Ψn(Z − EnZ) = EnΨn−1(Z − EnZ) − Ψn−1(0)

= En

∑

K⊆{1,...,n−1}

(−1)|K|EKcQ(EK(Z − EnZ))

=
∑

K⊆{1,...,n−1}

(−1)|K|EKcEn(Q(EKZ)−2Q(EKZ, EK∪{n}Z)+Q(EK∪{n}Z))

=
∑

K⊆{1,...,n−1}

(−1)|K|EKc(EnQ(EKZ) − 2Q(EnEKZ, EK∪{n}Z)

+ Q(EK∪{n}Z))

=
∑

K⊆{1,...,n−1}

(−1)|K|(EKc∪{n}Q(EKZ) − Q(EK∪{n}Z)) = Ψn(Z).

Now, by indu
tion on n, we prove that Ψn ≥ 0, i.e. Q ∈ Cn(Rd). Obviously,
Ψ1 ≥ 0. Then the formulas (10) and (2) imply that

Ψn(Z) = Ψn(Z − EnZ) = EnΨn−1(Z − EnZ) − Ψn−1(0) ≥ 0,sin
e by the indu
tion hypothesis Ψn−1(Z − EnZ) ≥ 0 a.s.The in
lusion ⊆ is more tri
ky. First, Proposition 2 allows us to 
onsiderthe 
ase n = 3 only. The argument presented below is due to K. Oleszkiewi
zand is reprodu
ed here with his kind permission. (The author's argument
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was a bit more 
ompli
ated and was not so general�it worked e.g. for U =
(0,∞) ⊆ R but not for �nite intervals).First, assume that ϕ ∈ C3(U) is (C∞) smooth. We de�ne X : {−1, 1}3

→ R by
X(ε1, ε2, ε3) =

{
3 if |ε1 + ε2 + ε3| = 3,
−1 otherwise.Fix a ∈ U and v ∈ R

d. For ε ∈ R, we de�ne Zε = a+vεX. If |ε| is su�
ientlysmall, Zε has values in U . The hypothesis implies that Ψ3(Zε) ≥ 0. On theother hand, if we put f(x) = ϕ(a + vx) for x from some open interval
ontaining 0, we obtain
Ψ3(Zε) =

∑

K⊆{1,2,3}

(−1)|K|EKcf(εEKX)(11)

=
1

4
f(3ε) − 3

2
f(ε) + 2f(0) − 3

4
f(−ε).Noti
e that the right hand side vanishes if we take 1, x or x2 as f(x), andis equal to 6 for f(x) = x3. Sin
e f is smooth, applying Taylor's expansion

f(x) = f(0) + f ′(0)x + 1
2f ′′(0)x2 + 1

6f ′′′(0)x3 + o(x3) to (11) we obtain
lim
ε→0

Ψ3(Zε)

ε3
= f ′′′(0).Sin
e Ψ3(Zε)/ε3 ≥ 0 for ε > 0 and Ψ3(Zε)/ε3 ≤ 0 for ε < 0, we obtain

f ′′′(0) = 0, hen
e D3
v,v,vϕ(a) = 0 for any v ∈ R

d and a ∈ U , so D3ϕ ≡ 0.An elementary reasoning shows that ϕ is of the desired form�we leave thedetails to the reader. (A similar result dealing with fun
tions on an in�nite-dimensional ve
tor spa
e was given e.g. in [5℄. That result says that if a fun
-tion restri
ted to any line is a one-variable polynomial of degree at most k,then the whole fun
tion is a polynomial of degree at most k.)The general 
ase (without assuming ϕ to be smooth) follows easily fromthe above. For ε > 0, we de�ne
U ε = {x ∈ U : B(x, ε) ⊆ U}.Clearly, U ε is an open, 
onvex subset of U . De�ne ϕε : U ε → R as the
onvolution ϕε = ϕ ∗ ηε, where ηε ≥ 0 is a smooth approximation of δ0 withsupp(ηε) ⊆ B(0, ε). Sin
e C3(U) is a 
onvex 
one, ϕε ∈ C3(U

ε) and so ϕε isa �quadrati
 fun
tion�. Passing to the limit we 
on
lude that so also is ϕ.The following proposition states what the �tensorization property� forthe 
lasses Cn(U) means.Proposition 3. Let ϕ ∈ Cn+1(U) (n ≥ 1). Let µ0
k and µ1

k for k =
1, . . . , n be probability measures. Then for any Z :

⊗n
k=1(µ

0
k ⊗µ1

k) → U su
h
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that E|Z| < ∞ and E|ϕ(Z)| < ∞ we have

Ψn(Z) ≤ E
∑

A⊆{1,...,n}

ΨA
n (Z),

where ΨA
n (Z) means the fun
tional Ψn applied to Z 
onsidered as a randomvariable de�ned on the produ
t ⊗n

k=1 µ
IA(k)
k with all 
oordinates ω

1−IA(k)
k�xed.Proof. We shall prove that for Z : (µ0

1⊗µ1
1)⊗µ2⊗· · ·⊗µn → U (satisfyingappropriate integrability 
onditions) one has

Ψn(Z) ≤ E(Ψ0
n(Z) + Ψ1

n(Z)),where Ψ0
n(Z) means Ψn applied to Z 
onsidered as a random variable de�nedon the produ
t µ0

1 ⊗ µ2 ⊗ · · · ⊗ µn with ω1
1 �xed (and similarly for Ψ1

n(Z)).Labelling the produ
t 
oordinates ω0
1, ω

1
1 , ω2, . . . , ωn as 10, 11, 2, . . . , n respe
-tively we have

Ψn(Z) =
∑

K⊂{10,11,2,...,n}
|K∩{10,11}|6=1

(−1)|K|EKcϕ(EKZ),

EΨ0
n(Z) =

∑

K⊂{10,2,...,n}

(−1)|K|E{11}∪Kcϕ(EKZ),

EΨ1
n(Z) =

∑

K⊂{11,2,...,n}

(−1)|K|E{10}∪Kcϕ(EKZ),

and we easily 
he
k that EΨ0
n(Z) + EΨ1

n(Z) − Ψn(Z) = Ψn+1(Z).Now observe that it su�
es to apply the above argument re
ursively.A
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