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Summary. We demonstrate that the Łojasiewicz theorem on the division of distributions
by analytic functions carries over to the case of division by quasianalytic functions locally
definable in an arbitrary polynomially bounded, o-minimal structure which admits smooth
cell decomposition. Hence, in particular, the principal ideal generated by a locally definable
quasianalytic function is closed in the Fréchet space of smooth functions.

In his famous paper [9], S. Łojasiewicz solved the problem of the division
of distributions by analytic functions, posed by L. Schwartz [18]. The first
part of his paper was devoted to distributions D(U) and smooth functions
E(U), i.e. of class C∞ on U . In the theorem from Section 10, he achieved
the division of distributions by a smooth function Φ, provided that its zero
locus Z := {Φ = 0} admits a certain finite smooth stratification which
enjoys some properties of growth and regular separation. In part two, he
established an inequality for analytic functions, a special case of one for
subanalytic functions, now called the Łojasiewicz inequality. It was a crucial
point in the proof that every analytic function Φ satisfies the assumptions
of the above theorem.

Let us emphasize that the regular separation of any two closed suban-
alytic subsets is a direct consequence of the Łojasiewicz inequality applied
to the distance functions from those two sets. Sometimes the condition of
regular separation itself is called Łojasiewicz’s inequality too.

We wish to recall Łojasiewicz’s theorem, and next to prove that its as-
sumptions are satisfied—after a suitable, generic, linear change of coordi-
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nates—by every quasianalytic function definable in a polynomially bounded,
o-minimal structure R which admits smooth cell decomposition. Note that
examples of such structures are the expansions of the real field by restricted
quasianalytic functions (including some classical Denjoy–Carleman classes)
which satisfy certain natural conditions (cf. [17, 13, 14]).

For a bounded open subset U ⊂ Rn, let us introduce, after Łojasiewicz,
the following notation:
D′(U), E ′(U) and P ′(U) stand for the spaces of distributions, distribu-

tions with compact supports and distributions prolongable onto Rn, respec-
tively.

It is easy to check, by means of a partition of unity, that the division
problem is local. Therefore, if the answer to the division problem is affir-
mative for one of those spaces of distributions, it is so for the remaining
two.

For a bounded open subset Ω ⊂ Rk, let H(Ω) denote the set of smooth
functions f : Ω → R that satisfy the following growth condition:

∀α ∈ Nk ∃Mα, sα > 0
∣∣∣∣∂|α|f∂xα

(u)
∣∣∣∣ ≤Mα dist(u, ∂Ω)−sα for all u ∈ Ω.

Further, G(Ω) denotes the set of smooth functions f : Ω → R that satisfy
the following growth condition:

∃ε, s > 0 |f(u)| > εdist(u, ∂Ω)s for all u ∈ Ω.
Consider a bounded smooth leaf Γ ⊂ Rn of the form

(∗) Γ = {(u, v) ∈ Ω × Rn−k
v : v = η(u)},

where Ω is a bounded open subset of Rk
u, u=(x1, . . . , xk), v=(xk+1, . . . , xn),

η(u) = (ηk+1(u), . . . , ηn(u)) and ηi(u) ∈ H(Ω) for i = k + 1, . . . , n. We say
that Γ satisfies condition (R) with respect to a subset E ⊂ Rn if the closures
Γ and E \ Γ of Γ and E \ Γ , respectively, are regularly separated.

For the reader’s convenience, we recall the definition of regular separation,
due to Łojasiewicz (cf. [10, Sect. 18] or [9, Sect. 3]). We say that two closed
subsets E,F ⊂ Rn are regularly separated at a point a ∈ E ∩ F if there are
a neighbourhood W of a and ε, s > 0 such that one of the following two
equivalent inequalities holds:

dist(x,E) ≥ εdist(x,E ∩ F )s for all x ∈ F ∩W
or

dist(x,E) + dist(x,E) ≥ εdist(x,E ∩ F )s for all x ∈W.
The closed subsets E and F are called regularly separated if they are so at
all points a ∈ E ∩ F .

Let us mention that condition (R) presented herein differs slightly from
the one defined by Łojasiewicz in [9, Sect. 4]. However, it is also suitable
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for his proof of the theorem in question (cf. [9, Sect. 10]), which can be
formulated as follows.

Theorem of Łojasiewicz. Let U be a bounded open subset of Rn, Φ
a smooth function in a neighbourhood of the closure U and Z := {x ∈ U :
Φ(x) = 0} its zero locus. Suppose Φ ∈ G(U \Z) and Z admits a finite smooth
stratification

Z =
n−1⋃
k=0

⋃
i

Γ ki

such that each stratum Γ ki is a k-dimensional smooth leaf of the form (∗)
with appropriate functions

ηk,ik+1, . . . , η
k,i
n ∈ H(Ωk

i ), ηk,i = (ηk,ik+1, . . . , η
k,i
n ),

which satisfies condition (R) with respect to the set
k⋃
j=0

⋃
i

Γ ji ∪ ∂U ∪ (∂Ωk
i × Rn−k).

Further, assume that, for each stratum Γ ki , there is an integer l = lki such
that

Φ =
∂Φ

∂xn
=
∂2Φ

∂x2
n

= · · · = ∂l−1Φ

∂xl−1
n

= 0 on Γ ki ,

and
∂lΦ

∂xln
(u, ηk,i(u)) ∈ G(Ωk

i ) (a fortiori,
∂lΦ

∂xln
6= 0 on Γ ki ).

Then the mapping
P ′(U) 3 S 7→ ΦS ∈ P ′(U)

is surjective.

We now fix a polynomially bounded, o-minimal structureR which admits
smooth cell decomposition.

Proposition. If f : U → R is a smooth definable function on a bounded
open subset U ⊂ Rn, then

f ∈ H(U) and f ∈ G(U \ Z(f)),

where Z(f) is the zero locus of f .

For the first property, it is sufficient to show that every definable function
g : U → R satisfies the following growth condition:

∃M, s > 0 g(x) ≤M dist(x, ∂U)−s for all x ∈ U.
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For any t > 0, put

θ(t) :=

{
0 if U ∩ {x : dist(x, ∂U) = t} = ∅,
max {|g(x)| : dist(x, ∂U) = t} otherwise.

Since the structure R is polynomially bounded, there areM, s > 0 such that
θ(t) ≤M t−s for all t > 0, as desired.

In order to prove the second property, for any t > 0, put

ζ(t) := min{|f(x)| : x ∈ U, dist(x, ∂U ∪ Z(f)) = t} > 0.

Again, by polynomial boundedness, there are ε, s > 0 such that ζ(t) > ε ts

for all t > 0, which completes the proof.

The Łojasiewicz inequality (cf. [10, Sect. 18], [5, Sect. 4.14] or [3, Theo-
rem 6.2]) yields immediately the regular separation of any two closed defin-
able subsets. Consider a smooth function Φ definable in a neighbourhood of
the closure U of a bounded open definable subset U ⊂ Rn. Then, in view of
the foregoing proposition, the assumptions of the theorem in question will
be satisfied for Φ, once we find a finite smooth definable stratification

Z =
n−1⋃
k=0

⋃
i

Γ ki

such that each stratum Γ ki is a k-dimensional smooth leaf of the form (∗)
with appropriate functions

ηk,ik+1, . . . , η
k,i
n ∈ H(Ωk

i ), ηk,i = (ηk,ik+1, . . . , η
k,i
n ),

for which there is an integer l = lki such that

Φ =
∂Φ

∂xn
=
∂2Φ

∂x2
n

= · · · = ∂l−1Φ

∂xl−1
n

= 0 on Γ ki ,

and
∂lΦ

∂xln
(u, ηk,i(u)) ∈ G(Ωk

i ) (a fortiori,
∂lΦ

∂xln
6= 0 on Γ ki ).

Our procedure will be to construct a stratification just described. We need
the lemma below, a generalization of the classical lemma of Koopman–Brown
(cf. [8], [10, Sect. 22] or [5, Sect. 4.9]).

Good Directions Lemma. Let E be a definable subset of Rn of di-
mension ≤ n − 1. Then for a generic line λ ∈ Pn−1, i.e. for every line λ
outside a nowhere dense, definable subset of the projective space Pn−1, we
have

](E ∩ (a+ λ)) <∞ for all a ∈ Rn.



Division of Distributions 205

As a direct consequence, we obtain

Corollary. Let E be a definable subset of Rn of dimension ≤ n − k.
Then for a generic k-dimensional vector subspace V ∈ Gn,k, i.e. for every
subspace V outside a nowhere dense, definable subset of the Grassmannian
Gn,k, we have

](E ∩ (a+ V )) <∞ for all a ∈ Rn.

Now, we shall demonstrate how to construct the required stratification.
First, consider the decreasing sequence of quasianalytic subsets

Z := {x ∈ U : Φ(x) = 0} ⊃ Z1 :=
{
x ∈ U : Φ(x) =

∂Φ

∂xn
= 0
}
⊃ · · ·

· · · ⊃ Zj :=
{
x ∈ U : Φ(x) =

∂Φ

∂xn
= · · · = ∂jΦ

∂xjn
= 0
}
⊃ · · · .

By topological noetherianity (cf. [5, Sect. 4.17], [3, Theorem 6.1] or [12,
Appendix]), this sequence stabilizes:

Zl = Zl+1 = Zl+2 = · · · for an l ∈ N.
Next, choose a line λ1 ∈ Pn−1 according to the above lemma applied to the
zero locus Z := {Φ = 0}; we may assume that λ1 = R · en. Take a smooth
cell decomposition C of Rn compatible with the sets Z,Z1, . . . , Zl. The cells
of dimension n − 1 are, of course, smooth definable leaves of the form (∗).
Project the cells of dimension < n − 1 onto Rn−1 parallel to R · en, again
choose a line λ2 ∈ Pn−2 according to the above lemma applied to those
projections, and take λ2 = R · en−1. Consequently, the plane R · en+R · en−1

satisfies the conclusion of the foregoing corollary applied to the initial cells
of dimension n− 2 in Rn.

Further, refine the cell decomposition of Rn−2 induced by C so that all
cells of dimension n−1 and n−2 are smooth definable leaves of the form (∗).
We continue in this fashion, and eventually attain, after performing a linear
change of coordinates, a new, finer, smooth definable cell decomposition such
that every cell C is a smooth definable leaf of the form (∗).

Finally, we must take a smooth definable stratification compatible with
that new cell decomposition. We are thus led to the following quasianalytic
generalization of the Łojasiewicz division theorem.

Division Theorem. Consider a polynomially bounded, o-minimal
structure R which admits smooth cell decomposition. Let U be a connected
open subset of Rn and Φ : U → R a smooth, non-vanishing function locally
definable on U with respect to the structure R. Then the mapping

D′(U) 3 S 7→ Φ · S ∈ D′(U)

is surjective.
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Hence and by routine arguments from functional analysis, we obtain

Corollary. Let Φ : U → R be a function as in the above theorem. Then
Φ · E(U) is a closed ideal of the Fréchet algebra E(U) of smooth functions on
U , and the linear mapping

ϕ : E(U) 3 f 7→ Φf ∈ Φ · E(U)

is a homeomorphism.

Our proof starts with the observation that, by the Banach open mapping
theorem, the ideal Φ · E(U) is closed iff the mapping ϕ is a homeomorphism.
Suppose, on the contrary, that ϕ is not a homeomorphism. Then there is a
sequence (fν) ⊂ E(U) such that Φfν → 0 and fν 9 0. We may, of course,
assume that all the functions fν lie outside a neighbourhood W of 0 ∈ E(U).

For any distribution T ∈ E ′(U), take a distribution S ∈ E ′(U) for which
T = Φ · S. Then

T (fν) = (Φ · S)(fν) = S(Φfν)→ 0,

and thus the numerical sequence (T (fν)) is bounded. The sequence (fν) is
therefore bounded in E(U). Indeed, any subset F of a locally convex topo-
logical vector space is bounded iff it is weakly bounded (see e.g. [7, Chap. 6,
§8, Theorem 4′]). This fact relies on two fundamental results from functional
analysis, namely, the Banach–Steinhaus and Hahn–Banach theorems.

Since E(U) is a Montel space (i.e. it has the Heine–Borel property), the
set {fν} is relatively compact. Consequently, we can take a subsequence (fνk)
convergent to an element f ∈ E(U). But we must have f 6= 0, whence

Φfνk → Φf 6= 0.

This contradicts our assumption, concluding the proof.

Remarks. 1) It follows immediately from the Hahn–Banach theorem
that the converse is also valid:

If the linear mapping

ϕ : E(U) 3 f 7→ Φf ∈ Φ · E(U)

is a homeomorphism, then the mapping

D′(U) 3 S 7→ Φ · S ∈ D′(U)

is surjective.

2) B. Malgrange generalized the foregoing theorem on closed ideals to the
case of ideals generated locally by finitely many analytic functions (cf. [11,
Chap. 6, Theorem 1.1]). This strengthening seems not to carry over easily to
the quasianalytic setting for lack of theorems about good algebraic proper-
ties of quasianalytic local rings (such as, for instance, noetherianity, flatness
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properties or coherence). Actually, the problem whether quasianalytic local
rings are noetherian remains open as yet.

3) The above corollary is tantamount to the quasianalytic division theo-
rem to the effect that a smooth function f formally divisible by a quasian-
alytic function Φ is divisible by Φ. The latter was established by Bierstone–
Milman [3, Section 6], who followed Atiyah’s proof of the analytic division
theorem [1], based on transformation to normal crossings by blowing up.

4) The above results related to division by a quasianalytic function will be
applied in our further research (e.g. [15, 16]) on carrying over the issues linked
with Glaeser’s composite function theorem (cf. [6, 4, 2]) to the quasianalytic
setting.
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