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Summary. We find the optimal universal constant Cp (1 < p ≤ ∞) in the following
inequality. If X = (Xt)t≥0 is a martingale and Y = (

	t

0
Hs dXs)t≥0 for some predictable

process H taking values in [−1, 1], then

E| sup
t≥0

Yt| ≤ Cp‖X‖p.

1. Introduction. Suppose that (Ω,F ,P) is a probability space, equip-
ped with a nondecreasing right-continuous family (Ft)t≥0 of sub-σ-fields
of F . In addition, assume that F0 contains all the sets of probability 0. Let
X = (Xt)t≥0 be an adapted real-valued right-continuous martingale with
left limits. Let Y be the Itô integral of H with respect to X, that is,

Yt = H0X0 +
�

(0,t]

Hs dXs, t ≥ 0.

Here H is a predictable process with values in [−1, 1]. For p ∈ [1,∞],
let ‖X‖p = supt≥0 ‖Xt‖p. Furthermore, let X∗ = supt≥0Xt and |X|∗ =
supt≥0 |Xt|.

The purpose of this paper is to compare the moments of X and Y ∗.
In [B2], Burkholder developed a method to obtain the following sharp esti-
mate.

Theorem 1.1. If X is a martingale and Y is as above, then

(1.1) ‖Y ‖1 ≤ γ
∥∥|X|∗∥∥

1
,
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where γ = 2.536 . . . is the unique solution of the equation

γ − 3 = − exp
(

1− γ
2

)
.

The constant is the best possible.

It was shown in [O1] that if X is assumed to be a nonnegative super-
martingale, then the optimal constant in (1.1) decreases to 2 + (3e)−1 =
2.1226 . . . . The paper [O2] contains the following fact.

Theorem 1.2. If X and Y are as above, then

(1.2) ‖Y ∗‖1 ≤ β
∥∥|X|∗∥∥

1
,

where β = 2.0856 . . . is the positive solution to the equation

2 log
(

8
3
− β0

)
= 1− β0.

Furthermore, if X is assumed to be nonnegative, then the optimal constant
in (1.2) decreases to 14/9 = 1.5555 . . . .

In the present paper we continue this line of research and provide new
sharp bounds for the first moment of Y ∗ by ‖X‖p for p > 1. If p = 1, then
there is no finite constant C1 such that ‖Y ∗‖1 ≤ C1‖X‖1, even when Y = X.
For example, take Xt = eαWt−α2t/2, where W is the Wiener process; then
EX∗ =∞ and E|Xt| = EXt = 1 for all t. Let

Cp =


Γ

(
2p− 1
p− 1

)1−1/p

if 1 < p ≤ 2,(
2p/(p−1) − p

p− 1

2�

1

s1/(p−1)es−2 ds

)1−1/p

if 2 < p <∞,

1 + e−1 if p =∞.
Here is our main result.

Theorem 1.3. Suppose X is a martingale and Y is as above. If 1 <
p ≤ ∞, then

(1.3) ‖Y ∗‖1 ≤ Cp‖X‖p.

The constant Cp is the best possible.

By the approximation arguments of Bichteler [Bi], the theorem above is
a quick consequence of its discrete-time version, which we will prove next.
Suppose that (Ω,F ,P) is a probability space, filtered by (Fn)n≥0. Let f =
(fn)n≥0 be an adapted martingale and g = (gn)n≥0 be its transform by a
predictable sequence v = (vn)n≥0 bounded in absolute value by 1. That is,
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we have

gn =
n∑
k=0

vkdfk, n = 0, 1, 2, . . . ,

where df0 = f0 and dfk = fk − fk−1 for k ≥ 1. Here by predictability of v
we mean that v0 is F0-measurable and for any k ≥ 1, vk is measurable with
respect to Fk−1. In the particular case when each vk is deterministic and
takes values in the set {−1, 1}, we will say that g is a ±1 transform of f .

Denote f∗n = maxk≤n fk and f∗ = supk fk.

Theorem 1.4. Suppose f , g are martingales such that g is a transform
of f by a predictable sequence bounded in absolute value by 1. If 1 < p ≤ ∞,
then
(1.4) ‖g∗‖1 ≤ Cp‖f‖p.

A few words about the organization of the paper. The proof of our result is
based on Burkholder’s technique, which exploits properties of certain special
functions; the method is described in the next section. Section 3 contains the
proof of (1.3) and (1.4) for p ∈ (1, 2], while the case p ∈ (2,∞] is postponed
to the final part of the paper, Section 4.

2. Some reductions and the method of proof. Using approximation
arguments of Bichteler [Bi], it suffices to focus on the discrete-time setting.
Now, with no loss of generality, we may assume that in (1.4) we deal with
simple sequences f and g. By simplicity of f we mean that for any integer n,
the random variable fn takes only a finite number of values and there exists
a deterministic number N such that fN = fN+1 = · · · with probability 1.
Clearly, if f and g are simple, then the almost sure limits f∞ and g∞ exist
and are finite. Next, we may assume that g0 ≥ 0 almost surely, which gives
|g∗| = g∗. Indeed, it suffices to replace v0 by sgn f0 if necessary; then |g∗|
increases, so we obtain a stronger estimate to prove.

The key reduction is that it suffices to work with ±1 transforms only.
Recall Lemma A.1 from [B1].

Lemma 2.1. Let g be the transform of a martingale f by a real-valued
predictable sequence v uniformly bounded in absolute value by 1. Then for
each j ≥ 1 there exist martingales F j = (F jn)n≥0 and Gj = (Gjn)n≥0 such
that for j ≥ 1 and n ≥ 0,

fn = F j2n+1 and gn =
∞∑
j=1

2−jGj2n+1,

and Gj is a ±1 transform of F j.

To see how the lemma works in our setting, suppose we have establish-
ed (1.4) for ±1 transforms. Now, if g is a transform of f , then Lemma 2.1
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gives us the processes F j and Gj , for which we may write

‖g∗‖1 =
∥∥∥ sup

n

∞∑
j=1

2−jGj2n+1

∥∥∥
1
≤
∞∑
j=1

2−j‖Gj∗‖1

≤ Cp
∞∑
j=1

2−j‖F j‖p = Cp‖f‖p,

as needed.
Observe that in the proof of (1.4) we may assume that p is finite. Let

A = {(x, y, z) ∈ R3 : y ≤ z} and define Vp : A → R by

Vp(x, y, z) =
{
y ∨ z − |x|p + γp(0) if 1 < p ≤ 2,
y ∨ z − |x|p +Mp if 2 < p <∞,

where γp is given by (3.1) and Mp is introduced in (4.2) below. It is enough
to show that

(2.1) EVp(f∞, g∞, g∗∞) ≤ 0

for all simple martingales f , g such that g is a ±1 transform of f . This
follows from a standard homogenization procedure. Indeed: for 1 < p ≤ 2,
apply (2.1) to the martingales f/λ, g/λ, where λ > 0 is fixed. This yields

Eg∗∞ ≤ λ1−pE|f∞|p − λγp(0).

Now the choice

λ =
(
−p− 1
γp(0)

)1/p

‖f‖p

gives (1.4). For p > 2 the reasoning is the same.
The estimate (2.1) will be achieved if we find a function U : A → R with

the following three properties.

1◦ For any ε ∈ {−1, 1} and (x, y, z) ∈ A there is a number c = c(ε, x, y, z)
such that for all d ∈ R,

U(x+ εd, y + d, (y + d) ∨ z) ≤ U(x, y, z) + cd.

2◦ U(x, y, z) ≥ Vp(x, y, z) for all (x, y, z).
3◦ U(x, y, y) ≤ 0 for all x, y such that x = |y|.

The class of all functions U satisfying 1◦–3◦ will be denoted by U(Vp).
Sometimes it is convenient to replace 1◦ with the following equivalent

condition (see [B2]):

1◦′ For any ε ∈ {−1, 1}, (x, y, z) ∈ A and any simple centered random
variable T , we have

EU(x+ εT, y + T, (y + T ) ∨ z) ≤ U(x, y, z).
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The relation between the inequality (2.1) and the class U(Vp) is described
in the following fact.

Theorem 2.2. If the class U(Vp) is nonempty, then the inequality (2.1)
holds for any simple f , g such that g is a ±1 transform of f .

Proof. Take U ∈ U(Vp) and simple f , g such that g is a ±1 transform
of f . The process (U(fn, gn, g∗n))n≥0 is a supermartingale: indeed, the in-
equality E[U(fn, gn, g∗n) | Fn−1] ≤ U(fn−1, gn−1, g

∗
n−1), n ≥ 1, follows from

the conditional form of 1◦′, with x = fn−1, y = gn−1, z = g∗n−1, T = dgn and
ε ∈ {−1, 1} such that dgn = εdfn. Consequently, using 2◦ and then 3◦, one
gets

EVp(f∞, g∞, g∗∞) ≤ EU(f∞, g∞, g∗∞) ≤ EU(f0, g0, g
∗
0) ≤ 0.

Thus the problem of proving a given martingale inequality (2.1) is re-
duced to the problem of constructing a function with properties 1◦, 2◦ and 3◦.

It turns out that the implication can be reversed. For Vp as above, con-
sider U0 : A → R given by

U0(x, y, z) = sup EVp(f∞, g∞, g∗∞ ∨ z),
where the supremum is taken over the class M(x, y) of all pairs (f, g) of
simple martingales such that (f0, g0) = (x, y) and dgn = ±dfn for all n ≥ 1
(that is, there is a deterministic v = (vn)n≥1 taking values in {−1, 1} such
that dgn = vndfn, n ≥ 1).

Theorem 2.3. If (2.1) is valid, then the class U(Vp) is nonempty and
U0 is its least element.

For the proof, one needs to slightly modify the argument used in [B2]
(see Theorem 2.2 there). Theorem 2.3 will be quite useful in the proof of the
optimality of the constants Cp. In the next two sections we will construct
appropriate special functions.

3. The proof of (1.4) for 1 < p ≤ 2. We start by defining a function
γp : [0,∞)→ (−∞, 0] by

(3.1) γp(t) = − exp(ptp−1)
∞�

t

exp(−psp−1) ds.

Since

γp(t) = −
∞�

0

exp
{
−p(p− 1)

s�

0

(t+ u)p−2 du
}
ds,

the function γp is nonincreasing on [0,∞). Let Gp : (−∞, γp(0)] → [0,∞)
denote the inverse of the function t 7→ γp(t) − t, t ≥ 0. We will need the
following estimate.
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Lemma 3.1. We have GpG′′p + (p− 2)(G′p)
2 ≤ 0.

Proof. The inequality to be proved is equivalent to (Gp/G′p)
′ ≥ p − 1.

Since γ′p(t) = p(p− 1)tp−2γp(t) + 1, we obtain

G′p(x) = (γp(Gp(x))− 1)−1 = [p(p− 1)Gp−2
p (x)(x+Gp(x))]−1

and
1 +G′p(x) =

γp(Gp(x))

p(p− 1)Gp−2
p (x)γp(Gp(x))

.

Therefore(
Gp(x)
G′p(x)

)′
= [p(p−1)Gp−1

p (x)(x+Gp(x))]′ = p−1+
Gp(x)γ′p(Gp(x))

γp(G(x))
≥ p−1,

because Gp(x) ≥ 0 and γp(Gp(x)) < 0, γ′p(Gp(x)) ≤ 0.

Now we are ready to introduce a special function. Let

D1 = {(x, y, z) ∈ A : y − z − |x| ≥ γp(0)},
D2 = {(x, y, z) ∈ A : y − z − |x| < γp(0) and |x| ≥ Gp(y − z − |x|)},
D0 = A \ (D1 ∪D2).

Let Up : A → R be given by

Up(x, y, z) =


−(y − z)2 − x2

2γp(0)
+
γp(0)

2
+ y on D1,

z + γp(0) + (p− 1)Gp(y − z − |x|)p

− p|x|Gp(y − z − |x|)p−1 on D2,

z − |x|p + γp(0) on D0.
We will now verify that Up belongs to U(Vp) and thus establish (1.4). To

do this, it suffices to show the following fact.

Lemma 3.2.

(i) The function Up is of class C1 in the interior of A.
(ii) For any ε ∈ {−1, 1} and (x, y, z) ∈ A, the function F = Fε,x,y,z :

(−∞, z − y]→ R, given by F (t) = Up(x+ εt, y + t, z), is concave.
(iii) For any ε ∈ {−1, 1} and x, y, h ∈ R,

(3.2) Up(x+ εt, y + t, (y + t) ∨ y) ≤ Up(x, y, y) + εUpx(x, y, y)t+ t.

(iv) We have

(3.3) Up(x, y, z) ≥ Vp(x, y, z) for (x, y, z) ∈ A.
(v) We have

(3.4) supUp(x, y, y) = 0,

where the supremum is taken over all x, y satisfying |x| = |y|.
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Proof. (i) This is straightforward: Up is of class C1 in the interior of
D0, D1 and D2, so the claim reduces to tedious verification that the partial
derivatives Upx, Upy and Upz match at the common boundaries of D0, D1

and D2.
(ii) In view of (i), it suffices to show that F ′′(t) ≤ 0 for those t for which

the second derivative exists. In view of the translation property Fε,x,y,z(u) =
Fε,x+εs,y+s,z(u− s), valid for all u and s, it suffices to check F ′′(t) ≤ 0 only
for t = 0. Furthermore, since we have Upx(0, y, z) = 0 and Up(x, y, z) =
Up(−x, y, z), we may restrict ourselves to x > 0.

If ε = 1, then we easily verify that F ′′(0) = 0 if (x, y, z) lies in the interior
(D1 ∪ D2)o of D1 ∪ D2 and F ′′(0) = −p(p − 1)xp−2 ≤ 0 if (x, y, z) ∈ Do

0.
Thus it remains to check the case ε = −1. We start from the observation
that F ′′(0) = 0 if (x, y, z) ∈ Do

1. If (x, y, z) ∈ Do
2, then

F ′′(0) = 4p(p− 1)Gp−3
p [GpG′p(G

′
p + 1) + (Gp − x)((p− 2)(G′p)

2 +GpG
′′
p)],

where all the functions on the right are evaluated at x0 = y − z − x. Since
y ≤ z, we have x ≤ −x0 and, in view of Lemma 3.1,

F ′′(0) ≤ 4p(p− 1)Gp−3
p (x0)[Gp(x0)G′p(x0)(G′p(x0) + 1)(3.5)

+ (Gp(x0) + x0)((p− 2)(G′p(x0))2 +Gp(x0)G′′p(x0))]

= 0.

Here in the last step we have used the equality

Gp(x)G′′p(x) + (p− 2)(G′p(x))
2 = −

Gp(x)G′p(x)(G
′
p(x) + 1)

Gp(x) + x
,

which can be easily extracted from the proof of Lemma 3.1. Thus we are
done with Do

2. Finally, if (x, y, z) belongs to the interior of D0, then F ′′(0) =
−p(p− 1)xp−2 ≤ 0.

(iii) We may assume that x ≥ 0, due to the symmetry of the function Up.
Note that Upy(x, y−, y) = 1; therefore, if t ≤ 0, then the estimate follows
from the concavity of Up along the lines of slope ±1, established in the
previous part. If t > 0, then

Up(x+ εt, y + t, (y + t) ∨ y) = Up(x, y + t, y + t) = y + t+ Up(x+ εt, 0, 0),

and hence we will be done if we show that the function s 7→ Up(s, 0, 0) is
concave on [0,∞). However, its second derivative equals 1/γp(0) < 0 for
s < γp(0) and

p(p− 1)Gp−3
p (−s)[(Gp(−s)− s)((p− 2)(G′p(−s))2 +Gp(−s)p−2G′′p(−s))

+Gp(−s)G′p(−s)(G′p(−s) + 2)]

= p(p− 1)Gp(−s)p−2G′p(−s) ≤ 0

for s > γp(0). Here we have used the equality from (3.5), with x0 = −s.
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(iv) Again, it suffices to deal only with nonnegative x. On the set D0 both
sides of (3.3) are equal. To prove the majorization onD2, let Φ(s) = γp(0)−sp
for s ≥ 0. Observe that

Up(x, y, z) = z + Φ(Gp(y − z − x))
+ Φ′(Gp(y − z − x))(x−Gp(y − z − x)),

which, by concavity of Φ, is not smaller than z+Φ(x). Finally, the estimate
for (x, y, z) ∈ D1 is a consequence of the fact that

Upy(x, y−, z) =
γp(0)− (y − z)

γp(0)
≥ 0,

so
Up(x, y, z)− Vp(x, y, z) ≥ Up(x, y0, z)− Vp(x, y0, z) ≥ 0.

Here (x, y0, z) ∈ ∂D2 and the latter bound follows from the majorization on
D2, which we have just established.

(v) We have

Up(x, y, y) = Up(|x|, 0, 0) + y ≤ Up(|x|, 0, 0) + |x|.
As shown in the proof of (iii), s 7→ Up(s, 0, 0), s ≥ 0, is concave, hence so is
the function s 7→ Up(s, 0, 0) + s, s ≥ 0. It suffices to note that its derivative
vanishes at −γp(0), so the value at this point (which is equal to 0) is the
supremum we are searching for.

Sharpness. As shown by Peskir [P], the Doob-type bound

‖B∗τ‖1 ≤ Γ
(

2p− 1
p− 1

)1−1/p

‖Bτ‖p, 1 < p ≤ 2,

is sharp. Here B is a Brownian motion (not necessarily starting from 0) and
τ is a stopping time for B satisfying τ ∈ Lp/2. Consequently, the estimate
(1.4) is also sharp, even if X = Y .

4. The proof of (1.4) for p > 2. Suppose that p is finite. Let γp :
[0,∞)→ (−∞, 0) be given by

γp(t) = exp(−ptp−1)
[
−

t�

p−1/(p−1)

exp(psp−1) ds− p−1/(p−1)e
]

= −t+ p(p− 1) exp(−ptp−1)
t�

p−1/(p−1)

sp−1 exp(psp−1) ds

if t > p−1/(p−1), and

γp(t) = (p− 2)(t− p−1/(p−1))− p−1/(p−1)

if t ∈ [0, p−1/(p−1)]. We start with the following straightforward fact.
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Lemma 4.1. The function γp is of class C1 and nondecreasing.

Proof. The first assertion can be verified easily. To prove the second
one, note that it suffices to show γ′p(t) ≥ 0 for t ≥ p−1/(p−1). Equivalently,
γ′p(t) ≥ 0 reads

t2−p exp(ptp−1)− p(p− 1)
t�

p−1/(p−1)

exp(psp−1) ds− p(p−2)/(p−1)(p− 1)e ≤ 0.

However, the inequality is true for t = p−1/(p−1) and the derivative of the
left-hand side equals (2− p)t1−p exp(ptp−1) ≤ 0. This completes the proof.

Let Gp : [0,∞) → [p−1/(p−1),∞) be the inverse to the function t 7→
γp(t) + t, t ≥ p−1/(p−1) (the function is invertible, by the previous fact). We
have the following version of Lemma 3.1.

Lemma 4.2. We have GpG′′p + (p− 2)(G′p)
2 ≥ 0.

Proof. It can be verified that

(4.1) Gp(x)G′′p(x) + (p− 2)(G′p(x))
2 =

Gp(x)G′p(x)(G
′
p(x)− 1)

x−Gp(x)
,

and this is nonnegative: it follows from the very definition of Gp that
Gp(x) ≥ 0, G′p(x) ≥ 0 and G′p(x) ≤ 1, x−Gp(x) < 0.

Define

(4.2) Mp =
p− 1
pp/(p−1)

[
2p/(p−1) − p

p− 1

2�

1

s1/(p−1)es−2 ds

]
.

Let Hp : R2 → R be given by

Hp(x, y) = (p− 1)1−p(−(p− 1)|x|+ |y|)(|x|+ |y|)p−1

and put
D1 = {(x, y, z) ∈ A : y − z ≥ γp(x), x+ y − z ≤ 0},
D2 = {(x, y, z) ∈ A : y − z ≥ γp(x), x+ y − z > 0},
D0 = A \ (D1 ∪D2).

Introduce Up : A → R by

Up(x, y, z) =


z +Hp(x, y − z + (p− 1)p−1/(p−1))−Mp on D1,

z −Mp + (p− 1)Gp(|x|+ y − z)p

− p|x|Gp(|x|+ y − z)p−1 on D2,

z − |x|p −Mp on D0.
Here is the analogue of Lemma 3.2. Again, once we show it, we will be done
with the proof of (1.4).
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Lemma 4.3.
(i) The function Up is of class C1.
(ii) For any ε ∈ {−1, 1} and (x, y, z) ∈ A, the function F = Fε,x,y,z :

(−∞, z − y]→ R, given by F (t) = Up(x+ εt, y + t, z), is concave.
(iii) For any ε ∈ {−1, 1} and x, y, h ∈ R,

(4.3) Up(x+ εt, y + t, (y + t) ∨ y) ≤ Up(x, y, y) + εUpx(x, y, y)t+ t.

(iv) We have

(4.4) Up(x, y, z) ≥ Vp(x, y, z) for (x, y, z) ∈ A.
(v) We have

(4.5) supUp(x, y, y) = 0,

where the supremum is taken over all x, y satisfying |x| = |y|.
Proof. (i) Straightforward.
(ii) We proceed as in the proof of Lemma 3.2(ii) and check F ′′(0) ≤ 0 for

x > 0 and (x, y, z) lying in the interior of some Di.
If ε = 1, there is nothing to check: we have F ′′(0) = 0 if (x, y, z) ∈

(D1 ∪ D2)o or F ′′(0) = −p(p − 1)xp−2 ≤ 0 if (x, y, z) ∈ Do
0. It remains

to verify the case ε = −1. If (x, y, z) belongs to the interior of D1, then
F ′′(0) ≤ 0; this follows from the fact that for any (x′, y′) ∈ R2, the function
t 7→ Hp(x′ + t, y′ − t) is concave (see [B1, p. 17]). If (x, y, z) ∈ Do

2, then

F ′′(0) = 4p(p− 1)Gp−3
p [GpG′p(G

′
p − 1) + (Gp − x)((p− 2)(G′p)

2 +GpG
′′
p)],

where all the functions on the right are evaluated at x0 = x+y−z. We have
y ≤ z, so x ≤ x0 and, by Lemma 4.2,

F ′′(0) ≤ 4p(p− 1)Gp−3
p (x0)[Gp(x0)G′p(x0)(G′p(x0)− 1)

+ (Gp(x0)− x0)((p− 2)(G′p(x0))2 +Gp(x0)G′′p(x0))]

= 0,

where we have used the equality from (4.1). Finally, if (x, y, z) belongs to
the interior of D0, then F ′′(0) = −p(p− 1)xp−2 ≤ 0.

(iii) We have Upy(x, y−, y) = 1 and Up(x, y, y) = y + Up(x, 0, 0). There-
fore, arguing as in the proof of Lemma 3.2, we see that it suffices to show that
the function s 7→ Up(s, 0, 0), s > 0, is concave. Indeed, its second derivative
at s equals

−p(p− 1)Gp−2
p (s)G′p(s) ≤ 0(4.6)

and we are done.
(iv) The majorization can be proved in the same manner as in Lemma 3.2,

using the concave function Φ(s) = −sp, s ≥ 0. The details are left to the
reader.
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(v) Observe that

Up(x, y, y) = y + Up(|x|, 0, 0) ≤ |x|+ Up(|x|, 0, 0).

Denoting the right-hand side by Ψ(|x|), we find that Ψ is concave on (0,∞)
(see the proof of (iii)) and

Ψ ′(t) = p(p− 1)G′p(t)Gp(t)
p−2(Gp(t)− t)− pGp(t)p−1 + 1

= −pGp(t)p−1 + 2.

Consequently, Ψ attains its maximum at the point t0 satisfying Gp(t0) =
(2/p)1/(p−1), or

t0 = γp((2/p)1/(p−1)) + (2/p)1/(p−1)(4.7)

= p(p− 1)e−2

(p/2)−1/(p−1)�

p−1/(p−1)

sp−1 exp(psp−1) ds

= p−1/(p−1)
2�

1

s1/(p−1)es−2 ds,

and, as one easily checks, the maximum is equal to 0. This completes the
proof.

Sharpness, 2 < p <∞. We have, by Young’s inequality,

c‖f‖p ≤ ‖f‖pp + p−p/(p−1)(p− 1)cp/(p−1),

so if (1.4) held with some c < Cp, we would have

(4.8) ‖g∗‖1 ≤ ‖f‖pp + C

for some C < p−p/(p−1)(p − 1)Cp/(p−1)
p = Mp. Therefore it suffices to show

that the smallest C for which (4.8) is valid equals Mp.
Suppose, then, that (4.8) holds with some universal C, and let us use

Theorem 2.3 with V = Vp given by Vp(x, y, z) = z − |x|p. As a result, we
obtain a function U0 satisfying 1◦–3◦. Observe that for any (x, y, z) ∈ A and
t ∈ R,

(4.9) U0(x, y, z) = t+ U0(x, y − t, z − t).
This is a consequence of the fact that the function Vp also has this property,
and of the very definition of U0.

Now it is convenient to split the proof into a few parts.

Step 1. First we will show that for any y,

(4.10) U0(0, y, y) ≥ y + (p− 1)p−p/(p−1) = Up(0, y, y).

In view of (4.9), it suffices to prove this for y = 0. Let d = p−1/(p−1) and
δ > 0. Applying 1◦′ to ε = −1, x = y = z = 0 and a mean-zero T taking
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values δ and −d, we obtain

U0(0, 0, 0) ≥ d

d+ δ
U0(−δ, δ, δ) +

δ

d+ δ
U0(d,−d, 0).

By (4.9), U0(−δ, δ, δ) = δ + U0(−δ, 0, 0). Furthermore, by 2◦, U0(d,−d, 0)
≥ −dp, so the above estimate yields

(4.11) U0(0, 0, 0) ≥ d

d+ δ
(δ + U0(−δ, 0, 0))− δ

d+ δ
|d|p.

Similarly, one uses property 1◦′ and then 2◦ to get

U0(−δ, 0, 0) ≥ d

d+ δ
U0(0, δ, δ) +

δ

d+ δ
U0(−d− δ,−d, 0)

≥ d

d+ δ
(δ + U0(0, 0, 0))− δ

d+ δ
(d+ δ)p.

Combining this with (4.11), subtracting U0(0, 0, 0) from both sides of the re-
sulting estimate, dividing through by δ and letting δ → 0 leads to U0(0, 0, 0)
≥ d− dp = Up(0, 0, 0), which is what we need.

Consequently, by the definition of U0, for any y ∈ R and κ > 0 there is
a pair (fκ,y, gκ,y) ∈M(0, y) satisfying
(4.12) Up(0, y, y) ≤ Vp(fκ,y∞ , gκ,y∞ , (gκ,y∞ )∗) + κ.

Step 2. Let N be a positive integer and let δ = t0/N , where t0 is given
by (4.7). We will need the following auxiliary fact.

Lemma 4.4. There is a universal R such that the following holds. If
x ∈ [δ, t0], y ∈ R and T is a centered random variable which takes values in
[γp(Gp(x)), δ], then

(4.13) EUp(x− T, y + T, (y + T ) ∨ y) ≤ Up(x, y, y) +Rδ2.

Proof. We start from the observation that for any fixed x ∈ [δ, t0] and
y ∈ R, if t ∈ [−γp(Gp(x)), 0],

Up(x− t, y + t, y) = Up(x, y, y)− Upx(x, y, y)t+ t.

For t ∈ (0, δ], by the concavity of s 7→ Up(s, 0, 0),

Up(x− t, y + t, y + t) = y + t+ Up(x− t, 0, 0)

≥ y + t+ Up(x, 0, 0)− Upx(x, 0, 0)t−Rδ2

= Up(x, y, y)− Upx(x, y, y)t+ t−Rδ2.
Here, for example, one may take R = − infx∈[0,t0] Upxx(x, 0, 0), which is fi-
nite: see (4.6). The inequality (4.13) follows immediately from the above two
estimates.

Now consider a martingale f = (fn)Nn=1, starting from t0, which satisfies
the following condition: if 0 ≤ n ≤ N − 1, then on the set {fn = t−nδ}, the
difference dfn+1 takes values −δ and −γp(Gp(fn(ω))); on the complement of
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this set, dfn+1 ≡ 0. Let g be the ±1 transform of f given by g0 = f0 and
dgn = −dfn, n = 1, . . . , N . The key fact about the pair (f, g) is that

(4.14)

EUp(fn, gn, g∗n) ≤ EUp(fn+1, gn+1, g
∗
n+1) +Rδ2, n = 0, 1, . . . , N − 1.

This is an immediate consequence of Lemma 4.4 (applied conditionally with
respect to Fn) and the fact that Up(fn, gn, g∗n) 6= Up(fn+1, gn+1, g

∗
n+1) if and

only if fn = t− nδ or gn = t+ nδ = g∗n.
The next property of the pair (f, g) is that if fN 6= 0, then we have

Up(fN , gN , g∗N ) = Vp(fN , gN , g∗N ). Indeed, fN 6= 0 implies dfn > 0 for some
n ≥ 1 and then, by construction,

g∗N − gN = g∗n − gn = −dgn = dfn = γp(fn) = γp(fN ).

Thus we may write

Mp = Up(t0, t0, t0)(4.15)

≤ EUp(fN , gN , g∗N ) +RNδ2

= EVp(fN , gN , g∗N )1{fN 6=0} + Up(0, 2t0, 2t0)P(fN = 0) +RNδ2,

since gN = g∗N = 2t0 on {fN = 0}.

Step 3. Now let us extend the pair (f, g) as follows. Fix κ > 0 and put
fN = fN+1 = fN+2 = · · · and gN = gN+1 = gN+2 = · · · on {fN 6= 0}, while
on {fN = 0}, let the conditional distribution of (fn, gn)n≥N with respect to
{fN = 0} be that of the pair (fκ,2t0 , gκ,2t0), obtained at the end of Step 1. The
process (f, g) we get consists of simple martingales and, by (4.12) and (4.15),
we have

Mp ≤ EVp(f∞, g∞, g∗∞) +RNδ2 + κP(fN = 0).

Now it suffices to note that choosing N sufficiently large and κ sufficiently
small, we can make the expression RNδ2 + κP(fN = 0) arbitrarily small.
This shows that Mp is indeed the smallest C which is allowed in (4.8).

Sharpness, p = ∞. We may assume that ‖X‖∞ = 1. The proof will be
entirely based on the following version of Theorem 2.3.

Theorem 4.5. Let U0 : {(x, y, z) : |x| ≤ 1, y ≤ z} → R be given by

U0(x, y, z) = Eg∗∞ ∨ z,
where the supremum is taken over the class of all pairs (f, g) ∈M(x, y) such
that ‖f‖∞ ≤ 1. Then U0 enjoys the following properties:

1◦ For any ε ∈ {−1, 1}, x ∈ [−1, 1], y ≤ z and any simple centered
random variable T satisfying |x+ εT | ≤ 1, we have

EU0(x+ εT, y + T, (y + T ) ∨ z) ≤ U0(x, y, z).
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2◦ U0(x, y, z) ≥ z for all (x, y, z) from the domain of U0.
3◦ U0(x, y, y) ≤ C∞ for all x, y such that |x| = |y| ∈ [−1, 1].

For the proof, modify the argument from [B2]. Note that the function U0

satisfies (4.9) (with the obvious restriction to x lying in [−1, 1]).
Now we turn to the optimality of the constant C∞. First we will show

that
(4.16) U0(0, 0, 0) ≥ 1.

To prove this, take δ ∈ (0, 1) and use 1◦ to obtain

U0(0, 0, 0) ≥ 1
1 + δ

U0(δ, δ, δ) +
δ

1 + δ
U0(−1,−1, 0).

We have U0(−1,−1, 0) ≥ 0 by 2◦, and U0(δ, δ, δ) = δ + U(δ, 0, 0) by (4.9).
Thus we have

(4.17) U0(0, 0, 0) ≥ δ + U0(δ, 0, 0)
1 + δ

.

Similarly, using 1◦ and then 2◦ yields
U(δ, 0, 0) ≥ (1− δ)U0(0, δ, δ) + δU0(1, δ − 1, 0) ≥ (1− δ)[δ + U0(0, 0, 0)].

Plug this into (4.17), subtract U0(0, 0, 0) from both sides, divide through by
δ and let δ → 0. As a result, one gets (4.16).

Now fix a positive integer N and set δ = (1 − e−1)/N . For any k =
1, . . . , N , we have, by 1◦, 2◦ and (4.9),

U0(kδ, 0, 0) ≥ δ

1− kδ + δ
U0(1, kδ − 1, 0) +

1− kδ
1− kδ + δ

U0((k − 1)δ, δ, δ)

≥ 1− kδ
1− kδ + δ

[δ + U0((k − 1)δ, 0, 0)],

or, equivalently,
U0(kδ, 0, 0)

1− kδ
≥ U0((k − 1)δ, 0, 0)

1− (k − 1)δ
+

δ

1− (k − 1)δ
.

It follows by induction that

eU0(1− e−1, 0, 0) =
U0(Nδ, 0, 0)

1−Nδ
≥ U0(0, 0, 0) +

N∑
k=1

δ

1− (k − 1)δ
.

Letting N →∞ and using (4.16), we arrive at

eU0(1− e−1, 0, 0) ≥ 1 +
1−e−1�

0

dx

1− x
= 2,

and hence, by (4.9),
U0(1− e−1, 1− e−1, 1− e−1) = 1− e−1 + U0(1− e−1, 0, 0) ≥ 1 + e−1.

It suffices to apply 3◦ to complete the proof.
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