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Summary. We prove in ZFC that there is a set A ⊆ 2ω and a surjective function H :
A→ 〈0, 1〉 such that for every null additive set X ⊆ 〈0, 1), H−1(X) is null additive in 2ω.
This settles in the affirmative a question of T. Bartoszyński.

1. Introduction. Recall that by (2ω,⊕) we denote the Cantor space
with modulo 2 coordinatewise addition, and (〈0, 1),+1) is the unit inter-
val with modulo 1 addition. For brevity, 2ω (respectively, 〈0, 1)) stands for
(2ω,⊕) (respectively, (〈0, 1),+1)).

We shall say that X ⊆ 2ω is null additive if for every null set A, X⊕A =
{x⊕a : x ∈ X, a ∈ A} is null in 2ω. By analogy, we define a null additive set
in 〈0, 1). In [4], it has been proven that if X is a null additive set in 2ω, then
T (X) is null additive in 〈0, 1〉, where T is the Cantor–Lebesgue function
that maps 2ω into 〈0, 1〉. Thus the existence of an uncountable null additive
set in 2ω implies that there is an uncountable null additive set in R. In this
paper, we prove the converse implication which provides a complete answer
to the measure version of T. Bartoszyński’s question (see [4, p. 91]). To
do this we show that there exists a set A ⊆ 2ω and a surjective function
H : A → 〈0, 1〉 such that for every null additive set X ⊆ 〈0, 1), H−1(X) is
null additive in 2ω.

2. Main theorems. In this paper, for n ∈ ω, pn denotes the nth prime
number, and Zpn = {0, . . . , pn − 1} with modulo pn addition. We define

C = Zp0 × Zp1 × · · ·
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and we assume that � is coordinatewise addition in C or in any set of the
form Zpr × · · · × Zps , where r, s ∈ ω, and r < s. Let f : C → 〈0, 1〉 be the
Cantor–Lebesgue function given by the formula

f(x) =
∞∑
i=0

x(i)∏i
j=0 pj

for x ∈ C,

where x(i) ∈ {0, . . . , pi − 1} for i ∈ ω. It is not difficult to check that f is
one-to-one except on a countable subset of C. Throughout the paper, x is
often identified with f(x).

Suppose that X ⊆ 〈0, 1) is a null additive set.

Theorem 1. Given a sufficiently fast increasing sequence {an}n∈ω of

positive integers, there is {K̃n}n∈ω, with K̃n ⊆ Zpa2n+1 × · · · × Zpa2n+1
and

|K̃n| ≤ 2n for all n ∈ ω, such that for every x ∈ X,

f−1(x)�Zpa2n+1 × · · · × Zpa2n+1
∈ K̃n

for almost every n ∈ ω.

Proof. We will follow the notation, and we refine the proofs, of Theorem
2.7.18 in [1], and Lemma 0 and Claim ♠ in [2].

Lemma 2. For any non-negative integers k, l, m, with k < l, there is
n ∈ ω and T ⊆ Zpk×· · ·×Zpl×· · ·×Zpn such that µ(T ) ∼ 2−m, and for any
〈σi, τi〉 ∈ Zpk × · · · × Zpn (i ∈ I), where σi (i ∈ I) belong to Zpk × · · · × Zpl
and are distinct, the sets T � 〈σi, τi〉 (i ∈ I) are stochastically independent.

Proof. Assume that m = pk · . . . · pl. In {pl+1, . . . , pn}, where n is suffi-
ciently large, find a family {Aj}j<m of m disjoint sets, each of cardinality m.
Fix j < m, and for each pr ∈ Aj , let Br ⊆ Zpr be such that |Br|/pr ∼ 1/2.
Put

Tj =
{
x ∈ Zpl+1

× · · · × Zpn : x�Aj ∈
∏
pr∈Aj

Br

}
.

Define T =
⋃
j<m{σi} × Tj , where {σj}j<m is a bijective enumeration of

Zpk × · · · ×Zpl , and then follow the proof of Lemma 0 in [2] to show that T
is as required.

Remark 3. Notice that for every m ∈ ω, m ≥ 4,(
1

2

)m
≤ µ(T ) ≤

(
1

2
+

1

m

)m
≤
(

3

4

)m
.

Lemma 4. For any r, s ∈ ω with r < s, Zpr × · · · ×Zps is isomorphic to
Zpr·...·ps.
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Proof. Put qi = pr·...·ps
pi

for r ≤ i ≤ s, and define, for (ar, . . . , as) ∈
Zr × · · · × Zs,

ir,s(ar, . . . , as) = qr · ar + qr+1 · ar+1 + · · ·+ qs · as (mod pr · . . . · ps).
It is well-known that ir,s is an isomorphism.

Clearly.

ir,s(a, b) = ir,r′(a) + ir′+1,s(b) (mod pr · . . . · ps)
whenever r < r′ < r′+ 1 < s and a ∈ Zpr ×· · ·×Zpr′ , b ∈ Zpr′+1

×· · ·×Zps .
Here ir,r′(a) is an element of the subgroup of Zpr·...·ps that has order pr·. . .·pr′ ,
and ir′+1,s(b) belongs to the subgroup of Zpr·...·ps of order pr′+1 · . . . · ps.
Suppose that x ∈ Zp0·...·pn . From now on, depending on the context, we
identify x with x/(p0 · . . . · pn). Thus for every l with 0 < l < n, x has the
following (unique) form:

x =

l∑
i=0

x(i)∏i
j=0 pj

+

n∑
i=l+1

x(i)∏i
j=0 pj

.

Let x�[0, l] denote the first sum, and x�[l + 1, n] the second.

Lemma 5. Let x, y ∈ Zp0 ×· · ·×Zpk ×· · ·×Zpl ×· · ·×Zpn, and suppose
that

x�Zpk × · · · × Zpl = y�Zpk × · · · × Zpl .
If i0,n(x)�[l+1, n] and i0,n(y)�[l+1, n] belong to Zpl+1·...·pn, or more precisely,
to the subgroup of Zp0 × · · · × Zpn that has order pl+1 · . . . · pn, then

i0,n(x)�[k, l] = i0,n(y)�[k, l].

Proof. Assume that i0,n(x)�[l + 1, n] ∈ Zpl+1·...·pn . Since i0,n is one-to-
one, we have i0,n(x)�[0, l] = i0,l(x�Zp0 × · · · × Zpl). By the same argument,
i0,n(y)�[0, l] = i0,l(y�Zp0 × · · · × Zpl). By the equality x�Zpk × · · · × Zpl =
y�Zpk × · · · × Zpl , we have

i0,l(x�Zp0 × · · · × Zpl)�[k, l] = i0,l(y�Zp0 × · · · × Zpl)�[k, l].
Thus i0,n(x)�[k, l] = i0,n(y)�[k, l].

Corollary 6. Let x, y ∈ Zp0 × · · · × Zpk × · · · × Zpl × · · · × Zpn. If
i0,n(x)�[l + 1, n], i0,n(y)�[l + 1, n] belong to Zpl+1·...·pn, and i0,n(x)�[k, l] 6=
i0,n(y)�[k, l], then x�Zpk × · · · × Zpl and y�Zpk × · · · × Zpl are different as
well.

Proof. Follows from Lemma 5 above.

Lemma 7. Assume that x ∈ Zp0·...·pl·...·pn. Then there is x′∈Zp0·...·pl·...·pn,
x′ ≤ x, such that x�[0, l] = x′�[0, l], x′�[l + 1, n] ∈ Zpl+1·...·pn, and

|x�[l + 1, n]− x′�[l + 1, n]| ≤ 1

pl+1 · . . . · pn
.
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Proof. It is clear that

x�[l + 1, n] <
1

p0 · . . . · pl
.

Also, the distance between consecutive elements of Zpl+1·...·pn is equal to
1

pl+1·...·pn Thus there exists y < 1
p0·...·pl , y ∈ Zpl+1·...·pn , with

|x�[l + 1, n]− y| ≤ 1

pl+1 · . . . · pn
.

Then x′ = x�[0, l] + y is as required.

Let us notice that in many cases the fact that x, y ∈ Zp0·...·pk·...·pl·...·pn
have different sums x � [k, l] and y � [k, l] does not imply that i−10,n(x), i−10,n(y)
have different restrictions to Zpk × · · · ×Zpl . However, this holds true when
we choose x′, y′ as in Lemma 7, and moreover sufficiently “close” to x and y.

Suppose now that {an}n∈ω is a given increasing sequence of positive
integers. By taking a subsequence, we may assume that the triples a0 <
a1 < a2, a2 < a3 < a4, etc. correspond to k < l < n as in Lemma 2
above. For n ∈ ω, let Tn be equal to i0,a2n+2 (Zp0 × · · · × Zpa2n × Tn),
where Tn included in Zpa2n+1 × · · · × Zpa2n+2

has the same property as T

in Lemma 2 above. Also, by the preceding remarks, Tn can be viewed as
a family of intervals of equal length 1/(p0 · . . . · pa2n+2) contained in 〈0, 1)
with the group operation being modulo 1 addition.

Lemma 8. For every n ∈ ω, and each set T ⊆ Zp0 × · · · ×Zpa2n+2
,

the sets T � xj (j ∈ J) are stochastically independent iff i0,a2n+2(T ) +
i0,a2n+2(xj) (j ∈ J) are stochastically independent in Zp0·...·pa2n+2

(respect-

ively, in 〈0, 1)).

Proof. Follows immediately from the fact that i0,a2n+2 (respectively,
i0,a2n+2/(p0 · . . . · pa2n+2)) is an isomorphism.

Assume that for n ∈ ω, T̃n is obtained from Tn by adding to each interval
t ∈ Tn its translations of the form

t−1
i

p0 · . . . · pa2n+2

, t+1
1

p0 · . . . · pa2n+2

where i ≤ p0 · . . . · pa2n+1 .

Notice that for fixed n ∈ ω,

µ(T̃n) = (p0 · . . . · pa2n+1 + 1) · µ(Tn).

Thus, by making pa2n+2 sufficiently large, we can have(
1

2

)n
≤ µ(T̃n) ≤

(
3

4

)n
for almost every n ∈ ω
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(see Lemma 2 and Remark 3 above). The advantage of using a larger set T̃n
instead of Tn is that if (T̃n +1 x) ∩ F = ∅ for some x ∈ Zp0·...·pa2n+2

and a

closed set F ⊆ 〈0, 1) then (Tn +1 x
′) ∩ F = ∅, where x′ is an in Lemma 7.

Assume that X is a null additive set in 〈0, 1). Let G be an open set with
µ(G) < 1 such that for every basic closed set τ 6⊆ G, we have µ(τ \G) > 0
and ⋂

m∈ω

⋃
n≥m

T̃n +1 X ⊆ G.

As in the proof of Claim ♠ in [2], we define, for each basic set τ and n ∈ ω,

Kτ,n = {x�Zpa2n+1 × · · · × Zpa2n+1
: x ∈ Zp0 × · · · × Zpa2n+2

,

(Tn +1 i0,a2n+2(x)) ∩ (τ \G) = ∅}.

Suppose that x ∈ X. Clearly, for some m0 ∈ ω and some basic interval τ ,( ⋃
n≥m0

T̃n +1 x
)
∩ (τ \G) = ∅.

Since ∑
i>a2n+2

x(i)∏i
j=0 pj

≤ 1

p0 · . . . · pa2n+2

= diam(t),

for every n ∈ ω and each interval t ∈ Tn, we have(
Tn +1

∑
i≤a2n+2

x(i)∏i
j=0 pj

)
∩ (τ \G) = ∅

for n ≥ m0. By Lemma 7 above, for n ≥ m0, there is x′ ∈ Zp0×· · ·×Zpa2n+2

such that

x�[0, a2n+1] = i0,a2n+2(x′)�[0, a2n+1],

and i0,a2n+2(x′)�[a2n+1 + 1, a2n+2] is sufficiently “close” to x�[a2n+1 + 1,

a2n+2]. Hence, by the construction of T̃n,

(Tn +1 i0,a2n+2(x′)) ∩ (τ \G) = ∅.

This implies (see Corollary 6 above) that the cardinality of the set

{x�[a2n + 1, a2n+1] : x ∈ X and (Tn +1 x�[0, a2n+2]) ∩ (τ \G) = ∅}

is at most |Kτ,n|, for n ≥ m0. Using Lemma 8 above, we now proceed exactly
as in the proof of Claim ♠ in [2] to show that |Kτ,n| ≤ 2n for almost every
n ∈ ω.

Lemma 9. For almost every n ∈ ω, |Kτ,n| ≤ 2n.
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Proof. As in the proof of Claim ♠ in [2], let kn = |Kτ,n| for n ∈ ω, and
suppose that xn1 , . . . , x

n
kn

are elements of Zp0×· · ·×Zpa2n+2
whose restrictions

to Zpa2n+1 × · · · × Zpa2n+1
are different, and exhaust the whole Kτ,n. We

have

µ
( ⋂
j≤kn

i0,a2n+2

(
Zp0 × · · · × Zpa2n+2

\ ((Zp0 × · · · × Zpa2n × Tn) � xnj )
))

= µ
( ⋂
j≤kn

(〈0, 1) \ (Tn +1 i0,a2n+2(xnj ))
)
.

By independence (see Lemma 8), the latter number is not greater than
(1− 1/2n)kn . Now, let

Bn =
⋂
j≤kn

(〈0, 1) \ (Tn + i0,a2n+2(xnj ))) for n ∈ ω.

Claim 10. For every m ∈ ω, µ(B0 ∩ · · · ∩Bm) = µ(B0) · . . . · µ(Bm).

Proof. It suffices to prove Claim 10 for m = 1. Consider the sets B0, B1.
We may assume without loss of generality that both are included in Zp0·...·pa4 .

Then, by symmetry of B0 and B1 (recall the definition of Tn), we have
µ(B0 ∩B1) = µ(B0) · µ(B1).

To finish the proof of Lemma 9, notice that for every m ∈ ω, B0∩· · ·∩Bm
contains τ \G. Hence for each m ∈ ω,

m∏
n=0

(
1− 1

2n

)kn
≥ λ > 0,

where λ = µ(τ \G). This implies that∑
n∈ω

kn · 2−n

is convergent.

Since there are countably many basic sets τ in 〈0, 1), we easily find a

sequence {K̃n}n∈ω, with K̃n ⊆ Zpa2n+1 × · · · × Zpa2n+1
and |K̃n| ≤ 2n for

n ∈ ω, such that

f−1(x)�Zpa2n+1 × · · · × Zpa2n+1
∈ K̃n

for almost every n ∈ ω whenever x ∈ X. This finishes the proof of Theo-
rem 1.

Let X be a null additive set in 〈0, 1).
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Corollary 11. Given a sufficiently fast increasing sequence {an}n∈ω
of positive integers, there is {K̃n}n∈ω with K̃n ⊆ Zpan × · · · × Zpan+1−1 and

|K̃n| ≤ 2n for all n ∈ ω so that for every x ∈ X,

f−1(x)�Zpan × · · · × Zpan+1−1 ∈ K̃n

for almost every n ∈ ω.

Proof. We follow the proof of Theorem 1 to calculate the cardinalities
of the sets {f−1(x)�Zpa2n × · · · ×Zpa2n+1−1 : x ∈ X} and {f−1(x)�Zpa2n+1

×
· · · × Zpa2n+2−1 : x ∈ X} for n ∈ ω.

Next we define a one-to-one correspondence between C and a subset of
the Cantor space 2ω, denoted by A. Let n−1 = 0, n0 = 1, and for k ∈ ω,
k ≥ 1, put nk = min{l : 2l−nk−1 ≥ pk}. Fix pk leftmost nodes in 2[nk−1,nk) for
k ∈ ω, and denote them by {ski }i<pk . Define a one-to-one function g : C → 2ω

as follows: if x ∈ C, then g(x)�[nk−1, nk) = ski iff x(k) = i, for k ∈ ω and
i < pk.

Put A = range(g), and let H : A→ 〈0, 1〉 be the composition f ◦ g−1.

Theorem 12. Assume that X ⊆ 〈0, 1) is a null additive set. Then Y =
H−1(X) is null additive in 2ω.

Proof. Let G be a measure zero subset of 2ω. We can assume without
loss of generality that G ⊆

⋂
m∈ω

⋃
n≥mGn, where for n ∈ ω,

Gn = {x : x�[an, an+1) ∈ G′n} with
|G′n|

2an+1−an ≤
1

22n
,

and {an}n∈ω is a sufficiently fast increasing sequence of positive integers.
Also we may require that {an}n∈ω is a subsequence of the sequence {nk}k∈ω
defined above. By Corollary 11, there is a sequence {K̃n}n∈ω, with K̃n ⊆
2[an,an+1) and |K̃n| ≤ 2n for n ∈ ω, such that ∀y ∈ Y , ∀∞n y�[an, an+1) ∈ K̃n.
Clearly, this suffices to prove that Y ⊕G is null (cf. [4, Theorem 13]).

Now we can provide a complete solution of Problem 2.4 from [3].

Theorem 13. Suppose that X and Y are null additive sets in 〈0, 1)
(respectively, R). Then X ×Y is null additive in 〈0, 1)×〈0, 1) (respectively,
R× R).

Proof. According to the introductory remarks we identify an infinite
series x ∈ 〈0, 1) with f−1(x) ∈ C. Proceeding as in the proof of Theorem
2.5.7 in [1], we show that every null set G ⊆ 〈0, 1)× 〈0, 1) is included in the
union of two sets of the form

{(x, y) ∈ 〈0, 1)× 〈0, 1) : ∃∞n (x, y)�(Zpan × · · · × Zpan+1−1)2 ∈ Kn},
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where {an}n∈ω is a certain increasing sequence of positive integers, Kn ⊆
(Zpan × · · · × Zpan+1−1)2 for n ∈ ω, and∑

n∈ω

|Kn|
(pan · . . . · pan+1−1)

2
<∞.

Assume that X and Y are null additive in 〈0, 1). Using Corollary 11 and
the above characterization of null sets in 〈0, 1) × 〈0, 1), we can follow the
proof of Theorem 13 in [4] to show that both sets X ×{0}, {0}× Y are null
additive in 〈0, 1) × 〈0, 1) with modulo 1 coordinatewise addition. Applying
the same argument as in [4, Corollary 3] (see also [4, Remark 11]) completes
the proof.

Finally, we prove for sets included in 〈0, 1) a version of the influential
theorem of Shelah (see [1, Theorem 2.7.20]) which can be stated as “every
null additive subset of 2ω is meager additive”.

We define a meager additive set in 2ω (or in 〈0, 1)) analogously to null
additive by replacing “null” with “meager”. Suppose that X ⊆ 2ω is meager
additive in 2ω. Then (see [1, Theorem 2.7.17]) X can be characterized by
the following property due to Bartoszyński, Judah and Shelah. For every
f̃ ∈ ωω↑, there are g̃ ∈ ωω↑ and y ∈ 2ω such that

∀x ∈ X, ∀∞n ∃k g̃(n) ≤ f̃(k) < f̃(k + 1) < g̃(n+ 1),

and
x�[f̃(k), f̃(k + 1)) = y�[f̃(k), f̃(k + 1)).

Theorem 14. Every null additive set X ⊆ 〈0, 1) is meager additive.

Proof. Suppose f̃ ∈ ωω↑ is a function with range(f̃) ⊆ range({nk})k∈ω,
where {nk}k∈ω is as in the definition of the set A. Since X is null additive,
H−1(X) is null additive in 2ω (by Theorem 12), and it is meager addi-
tive by an argument of Shelah. From this we derive that H−1(X) satisfies
the Bartoszyński–Judah–Shelah characterization for the function f̃ . Hence
X = H(H−1(X)) satisfies a condition which is similar to the above charac-
terization, and this suffices to show that X is meager additive in 〈0, 1) (see
[4, proof of Theorem 1]).

Acknowledgements. The author thanks Professor J. Browkin for valu-
able suggestions related to the number-theoretic part of this paper.
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