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Summary. We prove in ZFC that there is a set A C 2“ and a surjective function H :
A — (0,1) such that for every null additive set X C (0,1), H*(X) is null additive in 2%.
This settles in the affirmative a question of T. Bartoszyniski.

1. Introduction. Recall that by (2*,®) we denote the Cantor space
with modulo 2 coordinatewise addition, and ((0,1),+;) is the unit inter-
val with modulo 1 addition. For brevity, 2¥ (respectively, (0, 1)) stands for
(20.)’ @) (respeCtivel% (<Oa 1)7 +1))

We shall say that X C 2% is null additive if for every null set A, X ® A =
{z®a:z € X, a€ A} isnull in 2¥. By analogy, we define a null additive set
in (0,1). In [4], it has been proven that if X is a null additive set in 2, then
T(X) is null additive in (0,1), where T is the Cantor-Lebesgue function
that maps 2¢ into (0, 1). Thus the existence of an uncountable null additive
set in 2% implies that there is an uncountable null additive set in R. In this
paper, we prove the converse implication which provides a complete answer
to the measure version of T. Bartoszynski’s question (see [4, p. 91]). To
do this we show that there exists a set A C 2“ and a surjective function
H : A — (0,1) such that for every null additive set X C (0,1), H~*(X) is
null additive in 2¢.

2. Main theorems. In this paper, for n € w, p, denotes the nth prime
number, and Z,, = {0,...,p, — 1} with modulo p,, addition. We define

C = Zpy % Zp, % -+
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and we assume that H is coordinatewise addition in C' or in any set of the
form Z, x ---x Z, , where r,s € w, and r < s. Let f: C' — (0,1) be the
Cantor—Lebesgue function given by the formula

o 2(i)
f(ﬂf)zg Zc for z € C,|
=0 [j=op;

where z(i) € {0,...,p; — 1} for i € w. It is not difficult to check that f is
one-to-one except on a countable subset of C'. Throughout the paper, x is
often identified with f(z).

Suppose that X C (0,1) is a null additive set.

THEOREM 1. Given a sufficiently fast increasing sequence {ap}new of
positive integers, there is {Kp}new, with K, C Zp, X -+ X Z

0. S and
| K| <27 for all n € w, such that for every T € X,

J 7 @) g1 %o % Dy, € K

for almost every n € w.

Proof. We will follow the notation, and we refine the proofs, of Theorem
2.7.18 in [I], and Lemma 0 and Claim & in [2].

LEMMA 2. For any non-negative integers k, I, m, with k < I, there is
newandT C Z, XX Zp X+ xZy, such that u(T) ~ 27, and for any
(0i,Ti) € Zp,, X -+ X Zy, (1 € 1), where o; (i € I) belong to Zy,, X --- X Z,
and are distinct, the sets T B (o, 7;) (i € I) are stochastically independent.

Proof. Assume that m = pg - ... p;. In {pj41,...,pn}, where n is suffi-
ciently large, find a family {A;};<m of m disjoint sets, each of cardinality m.
Fix j < m, and for each p, € A;, let B, C Z, be such that |B,|/p, ~ 1/2.
Put

T; = {erle X - X Zp, :x[Aj S H Br}-
p'reAj

Define T' = |J;m{0i} x T}, where {0;};<m is a bijective enumeration of
Zp, X -+ X Zy,, and then follow the proof of Lemma 0 in [2] to show that T
is as required. =

REMARK 3. Notice that for every m € w, m > 4,
1\ o 1\™ 3\
— <uM <|=+— < |- .
(3) ==(m) =()

LEMMA 4. For anyr,s € w withr < s, Z,. X --- X Z,_ is isomorphic to
L. -
Pr-..."Ds
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Proof. Put ¢; = pw#ps for r < i < s, and define, for (a,,...,as) €
Zyp X -+ X L,

irs(@r,...,05) =G ar + Qg1 - Qrp1+ -+ ¢s - as (modp, - ... -pg).
It is well-known that i, s is an isomorphism. m

Clearly.

ir,s(av b) = iT,T’ (a) + 2.7"/Jr1,s(b) (mOde T 'ps)

whenever r <7’/ <r'+1<sanda€ Z, x--- p,,bGZp, e X D
Here i,,(a) is an element of the subgroup of Z,, .. .,,, that has order Drve o Py
and i1 5(b) belongs to the subgroup of Z,, .. ., of orderpy iy - ... ps.
Suppose that T € Z... .p,. From now on, depending on the context, we
identify  with Z/(po - ... pn). Thus for every [ with 0 < [ < n, T has the

following (unique) form:
ITj= OpJ i =0
Let z][0,!] denote the ﬁrst sum, and Z[[l + 1,n] the second.

LEMMA 5. Let 2,y € Zpy X -+ X Zp, X -+ X Lp, X+ X Ly, and suppose
that

T Ly X oo X Ly = Y[ Ly X - X Ly,
Ifion(x)[[I+1,n] and ion(y)[[I+1,n] belong to Zy,, ,....p,, or more precisely,
to the subgroup of Zp, X --- x Z,, that has order piy1 - ... pp, then
ion(2) Ik, 1] = o (y)I[k, 1.

Proof. Assume that Zon( il —|— 1 n] € Zpiiy-.opn- Since igy is one-to-
one, we have ig ,(2)[[0,1] = 71( -+ X Zp,). By the same argument,
Z'om(y)[[O,l] =01 (Y[ Zp, X -+ X Zy ) By the equality [ Zp, X -+ X Ly, =
Yl Zp, X -+ X Zy,, we have

i00(21 Zpy X+ % Zp) ks 1) = 04 (y] Zpg X -+ % Zy ) [k, 1].
Thus ig.,(2)[[k, 1] = ton(y)[[k,1]. =

COROLLARY 6. Let o,y € Zpy X -+ X Zp, X == X Ly X -+ X Zp . If
iom () [l + 1,n], d0n(y)I[l + 1,n] belong to Zy, . ....p,, and ion(x)[[k,1] #
ion(y) Ik, 1], then x[Zy, X -+ X Zy,, and ylZy,, X --- x Zp, are different as
well.

Proof. Follows from Lemma [5[ above. =

LEMMA 7. Assume thatT € Zp,....p,....p,- Then there isT € Zy.. py-....pns
7' <, such that T|[0,1] =Z'[[0,1], T'|[I + 1 1) € Zppiy-opys And
1

1zl +1,n] —Z[+1,n]] < ——M.
Pi+1:---"Pn



4 T. Weiss

Proof. It is clear that

1
ZIl+1,n] < ———.
bo:---"P1
Also, the distance between consecutive elements of Z), +1.pn 18 equal to
1 : 1 .
DT Thus there exists y < v Y € Zppi1-opns With
1
ZIl+1Ln] -yl < —.
Pi41----"Pn

Then 7' = Z][0,1] + y is as required. m

Let us notice that in many cases the fact that Z,7 € Z,).. pp-oprpn
have different sums 7 [ [k, ] and ¥ [ [k, ] does not imply that i L(@), i, L @)
have different restrictions to Z,, x --- x Z,,. However, this holds true when
we choose ', 7/ as in Lemma and moreover sufficiently “close” to Z and 3.

Suppose now that {a,}new is a given increasing sequence of positive
integers. By taking a subsequence, we may assume that the triples ag <
ar < ag, az < az < au, etc. correspond to k < | < n as in Lemma [2]
above. For n € w, let T, be equal to ipay,,0 (Zp, X -+ X Z, x Tp),
, has the same property as T

Pagy,
where T, included in Zp, ., X - X Zp,

in Lemma [2[ above. Also, by the preceding remarks, T,, can be viewed as
a family of intervals of equal length 1/(pg - ... - pa,,.,) contained in (0, 1)
with the group operation being modulo 1 addition.

LEMMA 8. For every n € w, and each set T C Zpy X - X Zp,, .,
the sets T B x; (j € J) are stochastically independent iff ioay,,,(T) +
10,asm42(T5) (J € J) are stochastically independent in Zy,.. (respect-

ively, in (0,1)).

- "Pagp42

Proof. Follows immediately from the fact that igg,, ., (respectively,
i0,asn42/ (PO - - - * Pagnio)) is an isomorphism. =

Assume that for n € w, T, . is obtained from T, by adding to each interval
t € T, its translations of the form
i 1 .
t—1 , t41 where ¢ < po-... Dag,is-
Po .- Pagnqia Po .- Pagnqia

Notice that for fixed n € w,

N(fn) =(po--.. “Pagpi1 T 1) - u(Th).

Thus, by making pq,, ., sufficiently large, we can have

1\" ~ 3\"
(2) <w(Ty,) < (4) for almost every n € w
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(see Lemma |2l and Remark [3{above). The advantage of using a larger set Tn
instead of T, is that if (Tn +1ZT)NF = for some T € Zpo._,.pa%+2 and a
closed set F' C (0,1) then (T, +1 ') N F = 0, where 7 is an in Lemma
Assume that X is a null additive set in (0, 1). Let G be an open set with
u(G) < 1 such that for every basic closed set 7 € G, we have p(7\ G) > 0

and
m U fn—l—ngG

mewn>m

As in the proof of Claim # in [2], we define, for each basic set 7 and n € w,

K., ={z1Z, XX Z

a9, +1 Pagy 41

YT E Lpy X X 4

Pagy 407
(Tn +1 i07a2n+2 ([E)) N (T \ G) = Q)}
Suppose that T € X. Clearly, for some mg € w and some basic interval 7,
( U Tn—i—lf) N(r\G) =0
n>mqo

Since

> T(i) < ! = diam(¢),

1>a2n+2 HjZO Py Po - Pagnyz

for every n € w and each interval t € T,,, we have
— (i
(T ¥ 2 ) nie) -0
i<azn42 Hj:O Pj

for n > myg. By Lemma above, for n > my, there is 2’ € Z,; x - - Zpa2n+2
such that

Z[[0, azny1] = 10,a2, 42 (x/) M0, azn+1],
and 40,40, (@) [[a2n4+1 + 1, a2p42] is sufficiently “close” to Tlagn+1 + 1,
asn+2|. Hence, by the construction of Ty,

(Tn +1 90,0212 (xl)) N (T \ G) = 0.
This implies (see Corollary |§| above) that the cardinality of the set

{Zlagn + 1,a2p41] : T € X and (T, +1 ZT[[0, agni2]) N (7 \ G) = 0}

is at most | K |, for n > mg. Using Lemmaabove, we now proceed exactly
as in the proof of Claim & in [2] to show that |K,,| < 2" for almost every
n e w.

LEMMA 9. For almost every n € w, |K;,| < 2".
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Proof. As in the proof of Claim & in [2], let k,, = |K; | for n € w, and

suppose that 27, ..., z} are elements of Zp, x---x Zpa%+2 whose restrictions
to Z. X o X 4 are different, and exhaust the whole K,,. We
pa2n+1 Pa2n+1 ? 5

have

() i0aznsa(Zon %+ X Zpug o \ (g X -+ % Zp,y, % Tn) Ba})))
J<kn

=1V €O\ (T +1 0,030 () )
J<kn
By independence (see Lemma , the latter number is not greater than

(1 —1/2")*». Now, let

Bp= () (0, )\ (Tn + 0,304 (z}))) forn € w.
J<kn

CrLAM 10. For every m € w, u(BoN-+- N Bp,) = u(Bo) - ... p(Bm).

Proof. 1t suffices to prove Claim [10|for m = 1. Consider the sets By, Bj.

We may assume without loss of generality that both are included in Zy,.....p,, -

Then, by symmetry of By and Bj (recall the definition of T,), we have
1(Bo N B1) = u(Bo) - p(B1). m

To finish the proof of Lemmal9] notice that for every m € w, BoN---N By,
contains 7\ G. Hence for each m € w,

m 1 kn
H<1—2n> >\ >0,

n=0

where A = p(7\ G). This implies that

an-r”

new

is convergent. m

Since there are countably many basic sets 7 in (0,1), we easily find a
sequence {Ky}new, With K C© Zp, .\ X - x Zp, . and [Ky| < 27 for
n € w, such that

FT @) g1 X+ X 2, € K

for almost every n € w whenever T € X. This finishes the proof of Theo-
rem [l =

Let X be a null additive set in (0, 1).



Addendum 7

COROLLARY 11. Given a sufficiently fast increasing sequence {ap }new
of positive integers, there is {Kp}new with Ky C Zp,, X -+ X Zp,  _, and

\I?n] < 2™ for all n € w so that for everyx € X,
f_l(f) eran X X Zpan+171 € Kn
for almost every n € w.

Proof. We follow the proof of Theorem 1 to calculate the cardinalities
ofthesets{f Y@z Das,, X 7. 7€ X}yand {f~1(@)]Z

pa2+11
.xeX}fornEw .

Pagy 41 X
"X Zp02n+2*1

Next we define a one-to-one correspondence between C' and a subset of
the Cantor space 2“, denoted by A. Let n_y = 0, ng = 1, and for k£ € w,
k> 1, put ny = min{l : 2"-"1 > p, }. Fix pj, leftmost nodes in 2[*-17%) for
k € w, and denote them by {sf}ka. Define a one-to-one function g : C' — 2%
as follows: if = € C, then g(z)[[ny_1,n%) = s¥ iff 2(k) = 4, for k € w and
1 < Pg-

Put A = range(g), and let H : A — (0,1) be the composition f o g~!.

THEOREM 12. Assume that X C (0,1) is a null additive set. Then' Y =
H~Y(X) is null additive in 2%.

Proof. Let G be a measure zero subset of 2. We can assume without

loss of generality that G C (,,c,, U, >, Gn, Where for n € w,
. |G| 1
GTL = {$ . $[[an,an+1) € G;l} with m S 2%,

and {an}new is a sufficiently fast increasing sequence of positive integers.
Also we may require that {ay }ne, is a subsequence of the sequence {nk} kew
defined above. By Corollary |1 . there is a sequence {Kn}new, with K,, C
9lanant1) and |K,| < 2" for n € w, such that Vy € Y, V2° y|[an, ans1) € Kp.
Clearly, this suffices to prove that Y & G is null (cf. [4, Theorem 13]). m

Now we can provide a complete solution of Problem 2.4 from [3].

THEOREM 13. Suppose that X and Y are null additive sets in (0,1)
(respectively, R). Then X x Y is null additive in (0,1) x (0,1) (respectively,
R x R).

Proof. According to the introductory remarks we identify an infinite
series x € (0,1) with f~!(x) € C. Proceeding as in the proof of Theorem
2.5.7 in [I], we show that every null set G C (0,1) x (0,1) is included in the
union of two sets of the form

{(:E7y) € <0; ]-) X <O, ].) : Elzo(:z‘,y)r(zpan X oo X Zpan+1_1)2 c Kn},
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where {a,}ne, is a certain increasing sequence of positive integers, K, C
2
(Zpa,, X -+ X Zp, )° for n € w, and

| Fn|
new (pan T 'pan+1fl)
Assume that X and Y are null additive in (0, 1). Using Corollary (11| and
the above characterization of null sets in (0,1) x (0,1), we can follow the
proof of Theorem 13 in [4] to show that both sets X x {0},{0} x Y are null
additive in (0,1) x (0,1) with modulo 1 coordinatewise addition. Applying

the same argument as in [4, Corollary 3] (see also [4, Remark 11]) completes
the proof. m

n+1*1

2<oo.

Finally, we prove for sets included in (0,1) a version of the influential
theorem of Shelah (see [I, Theorem 2.7.20]) which can be stated as “every
null additive subset of 2¥ is meager additive”.

We define a meager additive set in 2* (or in (0,1)) analogously to null
additive by replacing “null” with “meager”. Suppose that X C 2“ is meager
additive in 2. Then (see [I, Theorem 2.7.17]) X can be characterized by
the following property due to Bartoszynski, Judah and Shelah. For every
f € w¥l, there are § € w*! and y € 2¢ such that

Ve e X,V 3k g(n) < f(k) < f(k+1) < g(n+1),

and

2I[f(K), f(k+1)) = yI[f(k), F(k +1)).
THEOREM 14. FEvery null additive set X C (0,1) is meager additive.

Proof. Suppose f € w*! is a function with range(f) C range({n;})rcw,
where {ny}re, is as in the definition of the set A. Since X is null additive,
H~1(X) is null additive in 2¢ (by Theorem , and it is meager addi-
tive by an argument of Shelah. From this we derive that H—!(X) satisfies
the Bartoszyriski-Judah—Shelah characterization for the function f. Hence
X = H(H7'(X)) satisfies a condition which is similar to the above charac-
terization, and this suffices to show that X is meager additive in (0, 1) (see
[4, proof of Theorem 1]). m
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