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Summary. We prove the existence of a compact connected global attractor for a class of
abstract semilinear parabolic equations with infinite delay.

1. Introduction. The study of functional differential equations is moti-
vated by the fact that when one wants to model some evolution phenomena
arising in physics, biology, engineering, etc., with hereditary characteristic
aftereffects, time lag and time delay can appear in the variables. Typical
examples arise from research of materials with thermal memory, biochemical
and population models, etc. (see e.g. [9, 21]). Partial differential equations
(PDEs) with delay are often considered in models such as maturation time
for population dynamics in mathematical biology and other fields. Such
equations are naturally more difficult than ordinary differential equations
with delay since they are infinite-dimensional both in time and space vari-
ables.

In recent years, the existence and long-time behavior of solutions to
PDEs with delay has attracted wide attention. The development was initi-
ated for PDEs with finite delay by Travis and Webb [19, 20], and continued
by many other authors (see e.g. [21] and references therein). The problem
for PDEs with infinite delay has also been discussed recently. However, most
of existing results are devoted to the existence of solutions and stability of
equilibrium points or steady states (see e.g. [1, 2, 3, 5, 10, 11]). On the
other hand, it is known that attractors are a very useful tool (valid in more
general situations than for stability) in investigating the asymptotical be-
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havior of solutions. However, as far as we know, most of existing results deal
with the existence of attractors in the case of finite delay (see, for example,
[4, 13, 14, 15, 17, 22]); only very few papers [6, 7] deal with the case of
infinite delay in some concrete phase spaces.

Motivated by this fact, in this paper we study the existence of a global
attractor for partial functional differential equations with infinite delay

(1.1)

{
u′(t) +Au(t) = F (ut), t > 0,

u0 = ϕ ∈ L1
g(D(Aα)),

where the operator A and the nonlinearity F satisfy the following conditions:

(A) The operator A is a positive sectorial operator with compact resol-
vent on a Banach space (E, ‖ · ‖). Hence we can define fractional
power spaces D(Aα), and the semigroup e−tA generated by −A
satisfies the following estimate for some λ > 0:

‖e−tAx‖D(Aα) ≤ Cαe−λtt−α‖x‖ for all t > 0, x ∈ E

(see Sect. 2.1 for more details).
(F) The nonlinear term F : L1

g(D(Aα)) → E, for some α ∈ [0, 1), is a
function satisfying

‖F (ϕ)− F (ψ)‖ ≤ L‖ϕ− ψ‖L1
g

for all ϕ,ψ ∈ L1
g(D(Aα)).

Here L1
g(D(Aα)) is the Banach space of functions mapping (−∞, 0] into the

fractional power space D(Aα), which is defined in Sect. 2.2 below; and for
each u : (−∞, T ] → D(Aα), T > 0, and t ∈ [0, T ], ut denotes, as usual, the
element of L1

g(D(Aα)) defined by ut(θ) = u(t+ θ) for θ ∈ (−∞, 0].

It is known that numerous technical difficulties arise in dealing with
partial differential equations with infinite delay. Let us explain the method
used in the paper. First, we use the fixed point method to prove the ex-
istence of a unique mild solution to problem (1.1). Then we prove the
continuous dependence of solutions on initial data. Therefore, we can de-
fine a continuous semigroup {S(t)} associated to the problem. Finally, we
prove that this semigroup has a global attractor by showing the existence
of a bounded absorbing set and the asymptotic compactness of the semi-
group.

The paper is organized as follows. In Section 2, for the convenience of
the readers, we recall some properties of fractional power spaces and frac-
tional power operators generated by the operator A, and some properties
of the phase space L1

g(D(Aα)). The existence, uniqueness and continuous
dependence of a mild solution to problem (1.1) is proved in Section 3. In
Section 4, we prove the existence of a global attractor.
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2. Preliminaries

2.1. Operator. We now recall some results of [16].
Since A is a sectorial operator, −A is the infinitesimal generator of an

analytic semigroup {e−tA}t≥0. Because A is a positive sectorial operator, for
0 < α < 1, one can define

A−α =
1

Γ (α)

∞�

0

tα−1e−tA dt,

where Γ (·) is the Gamma function. Since A−α is one-to-one, we can define

Aα = (A−α)−1.

In particular, A0 = I.

Proposition 2.1 ([16]).

(1) The operator Aα is closed with domain D(Aα) = R(A−α), the range
of A−α.

(2) D(Aα) is a Banach space with the norm ‖x‖α := ‖Aαx‖, x ∈ D(Aα),
and D(Aα) = E for every α ≥ 0.

(3) If α ≥ β > 0, then D(Aα) ⊂ D(Aβ).
(4) e−tA : E → D(Aα) for every t > 0 and α ≥ 0, and there exists λ > 0

such that

‖e−tAx‖α ≤ Cαe−λtt−α‖x‖ for t > 0, x ∈ E.
We now give a typical example of the operator A, appearing in [8]: A is

a self-adjoint positive linear operator with discrete spectrum in a separable
Hilbert space E (for example, the negative Laplacian operator −∆ with the
homogeneous Dirichlet boundary condition in a bounded domain Ω; then
E = H1

0 (Ω)).

2.2. Phase space. Let g : (−∞, 0] → R be a positive function. Let
L1
g(D(Aα)) consist of all classes of Lebesgue measurable functions ϕ :

(−∞, 0]→ D(Aα) such that g(·)‖ϕ(·)‖α is Lebesgue integrable on (−∞, 0].
The norm in L1

g(D(Aα)) is defined by

‖ϕ‖L1
g

:=

0�

−∞
g(θ)‖ϕ(θ)‖α dθ.

We suppose that

(G) g satisfies the following:

(g1) there exists a locally bounded function G : (−∞, 0] → [0,∞)
such that

g(ξ + θ) ≤ G(ξ)g(θ) for all ξ ≤ 0 and θ ∈ (−∞, 0] \Nξ,

where Nξ ⊆ (−∞, 0] is a set of Lebesgue measure 0;
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(g2) k1 :=
	0
−∞ g(θ) dθ <∞;

(g3) k2 :=
	0
−∞ g(θ)e−λθ dθ <∞ for λ > 0 as in Proposition 2.1(4);

(g4) G(−t)→ 0 as t→∞.

A concrete example is g(θ) := eρθ, where ρ > λ. Theorem 1.3.8 in [12] asserts
that L1

g(D(Aα)) has the following properties:

(A) If u : (−∞, a) → D(Aα), a > 0, is such that u0 ∈ L1
g(D(Aα)) and

u(·) is continuous on [0, a), then for all t ∈ [0, a):

(1) ut ∈ L1
g(D(Aα)),

(2) ‖u(t)‖α ≤ ‖ut‖L1
g
,

(3) ‖ut‖L1
g
≤ K(t) sup0≤s≤t ‖u(s)‖α +M(t)‖u0‖L1

g
, where

K(t) = 1 +

0�

−t
g(θ) dθ and M(t) = G(−t).

(A1) For the function u(·) in (A)(1), t 7→ ut is an L1
g(D(Aα))-valued

continuous function [0, a).
(B) L1

g(D(Aα)) is a Banach space (if we identify functions that are
equal almost everywhere).

(C1) If {ϕn} is a Cauchy sequence in L1
g(D(Aα)) that converges com-

pactly to ϕ on (−∞, 0], then ϕ ∈ L1
g(D(Aα)) and ‖ϕn −ϕ‖L1

g
→ 0

as n→∞.

Let C00 be the set of continuous functions from (−∞, 0] into D(Aα) with
compact support; denote by supp(ϕ) the support of ϕ in C00. From a result
in [12, Chapter 1], we have

Remark 2.1. Any function ϕ ∈ C00 belongs to L1
g(D(Aα)). If supp(ϕ) ⊂

[−r,−s] for some 0 ≤ s ≤ r < ∞, then there exists a constant δ(r, s) such
that

‖ϕ‖L1
g
≤ δ(r, s) sup

θ∈[−r,−s]
‖ϕ(θ)‖α.

2.3. Global attractors. For the convenience of the reader, we recall
some notions and results concerning global attractors from [18]. Let (X, ‖·‖)
be a Banach space (which in our case will be L1

g(D(Aα))) and BX(a, r) be
the (closed) ball in X centered at a with radius r. We use the Hausdorff
semi-distance δX(·, ·) defined by

δX(A,B) := sup
a∈A

inf
b∈B
‖a− b‖ for A,B ⊂ X.

Definition 2.1. Let {S(t)}t≥0 be a semigroup in the Banach space X.
A compact set A ⊂ X is said to be a global attractor for {S(t)}t≥0 if the
following conditions are satisfied:
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(1) S(t)A = A for all t ≥ 0 (invariance), and
(2) limt→∞ δX(S(t)D,A) = 0 for all bounded subsets D of X.

Definition 2.2. A bounded subset B of X is said to be an absorbing set
for the semigroup {S(t)}t≥0 if for any bounded subset B of X, there exists
T (B) ≥ 0 such that

S(t)B ⊂ B for all t ≥ T (B).

The following theorem gives sufficient conditions for existence of a global
attractor.

Theorem 2.2 ([18]). Let {S(t)}t≥0 be a continuous semigroup on X
such that for every t, S(t) = S1(t) + S2(t), where the operator S1(t) is
uniformly compact for t large, i.e., for every bounded set B there exists t0
which may depend on B such that

(2.1)
⋃
t≥t0

S1(t)B is relatively compact in X,

and S2(t) is a continuous mapping from X into itself such that

(2.2) rC(t) = sup
ϕ∈C
‖S2(t)ϕ‖X → 0 as t→∞,

for every bounded set C ⊂ X. If there exists an absorbing set B in X for
{S(t)}t≥0, then there exists a global attractor A in X, and A = ω(B).

3. Existence and continuous dependence of solutions

Definition 3.1. We say that a function u : (−∞, T ]→ D(Aα), T > 0,
is a mild (in D(Aα)) solution of the Cauchy problem (1.1) on the interval
[0, T ] if u0 = ϕ and the restriction u : [0, T ] → D(Aα) is continuous and
satisfies the integral equation

(3.1) u(t) = e−tAϕ(0) +

t�

0

e−(t−s)AF (us) ds, 0 ≤ t ≤ T.

In the rest of this work we will call mild solutions just solutions. The
following result is a direct consequence of Theorem 3.2 in [3].

Theorem 3.1. Let hypotheses (A), (F) and (G) hold. Then for any
ϕ ∈ L1

g(D(Aα)) and T > 0, there exists a unique solution of (1.1) on the
interval [0, T ].

We now prove the continuous dependence of solutions on initial data.

Proposition 3.2. Let hypotheses (A), (F) and (G) hold and let ϕ,ψ ∈
L1
g(D(Aα)). Denote by u, v the solutions of problem (1.1) with initial data

ϕ and ψ, respectively. If

(1 + k1)LCαΓ (1− α)λα−1 < 1,
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then there exists a positive locally bounded function m : [0,∞)→ [0,∞) such
that

(3.2) ‖ut − vt‖L1
g
≤ m(t)‖ϕ− ψ‖L1

g
for all t ≥ 0.

Moreover, the map t 7→ ‖ut‖L1
g

belongs to the space Cb([0,∞)).

Proof. Set w(t) = u(t)− v(t) and w0 = ϕ− ψ. By (3.1), for t ≥ 0,

(3.3) ‖w(t)‖α ≤ Ce−λt‖w(0)‖α + LCα

t�

0

e−λ(t−s)(t− s)−α‖ws‖L1
g
ds.

If 0 ≤ τ ≤ t, then (3.3) yields

‖w(τ)‖α ≤ Ce−λτ‖w(0)‖α + LCα

τ�

0

e−λ(τ−s)(τ − s)−α‖ws‖L1
g
ds

≤ C‖w0‖L1
g

+ LCαΓ (1− α)λα−1 sup
0≤s≤t

‖ws‖L1
g
.

This implies that for all 0 ≤ s ≤ t,
‖ws‖L1

g
≤ K(s) sup

0≤τ≤s
‖w(τ)‖α +M(s)‖w0‖L1

g

≤ K(s) sup
0≤τ≤t

‖w(τ)‖α +M(s)‖w0‖L1
g

≤ K(s)
(
C‖w0‖L1

g
+ LCαΓ (1− α)λα−1 sup

0≤s≤t
‖ws‖L1

g

)
+M(s)‖w0‖L1

g

= [K(s)C +M(s)]‖w0‖L1
g

+K(s)LCαΓ (1− α)λα−1 sup
0≤s≤t

‖ws‖L1
g
.

Taking supremum over s ∈ [0, t], we have

sup
0≤s≤t

‖ws‖L1
g
≤
[
K(t)C + sup

0≤s≤t
M(s)

]
‖w0‖L1

g

+K(t)LCαΓ (1− α)λα−1 sup
0≤s≤t

‖ws‖L1
g

≤
[
K(t)C + sup

0≤s≤t
M(s)

]
‖w0‖L1

g

+ (1 + k1)LCαΓ (1− α)λα−1 sup
0≤s≤t

‖ws‖L1
g
.

Since (1 + k1)LCαΓ (1− α)λα−1 < 1, we can rewrite this as

‖wt‖L1
g
≤ sup

0≤s≤t
‖ws‖L1

g
≤

K(t)C + sup0≤s≤tM(s)

1− (1 + k1)LCαΓ (1− α)λα−1
‖w0‖L1

g
.

Define m : [0,∞)→ [0,∞) by

m(t) =
K(t)C + sup0≤s≤tM(s)

1− (1 + k1)LCαΓ (1− α)λα−1
;

then (3.2) holds.
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Finally, that t 7→ ‖ut‖L1
g

belongs to Cb([0,∞)) follows immediately from

the assumption (G) on g, and properties (A1), (A)(3) in Section 2.2.

Theorem 3.1 and Proposition 3.2 allow us to define a continuous (non-
linear) semigroup S(t) : L1

g(D(Aα))→ L1
g(D(Aα)) by the formula

(3.4) S(t)ϕ = ut(·, ϕ), t ≥ 0,

where u(·, ϕ) is the unique global solution of (1.1) with initial datum ϕ ∈
L1
g(D(Aα)). The continuity of the semigroup with respect to t follows from

(A1), and with respect to initial data from (3.2). In the next section, we will
prove that {S(t)}t≥0 has a global attractor A in L1

g(D(Aα)).

4. Existence of a global attractor. The aim of this section is to prove
the following result.

Theorem 4.1. Assume that hypotheses (A), (F) and (G) hold and

(1 + k1)LCαΓ (1− α)λα−1 < 1.

Then the semigroup {S(t)}t≥0 associated to problem (1.1) has a compact
connected global attractor A in L1

g(D(Aα)).

By Theorem 2.2, this theorem is a direct consequence of Propositions
4.2 and 4.3 below.

Proposition 4.2. Under the assumptions of Theorem 4.1, there exists
a bounded absorbing set B in L1

g(D(Aα)) for the semigroup {S(t)}t≥0.

Proof. We use some ideas of [11]. By condition (F), for all s ≥ 0 we have

‖F (us)‖ ≤ L‖us‖L1
g

+ ‖F (0)‖ = L‖us‖L1
g

+N.

Hence

‖u(t)‖α ≤ ‖e−tAϕ(0)‖α +

t�

0

‖e−(t−s)AF (us)‖α ds(4.1)

≤ Ce−λt‖ϕ(0)‖α + Cα

t�

0

e−λ(t−s)(t− s)−α‖F (us)‖ ds

≤ Ce−λt‖ϕ‖L1
g

+ Cα

t�

0

e−λ(t−s)(t− s)−α(L‖us‖L1
g

+N) ds

= Ce−λt‖ϕ‖L1
g

+ Cα,N +

t�

0

x(t− s)‖us‖L1
g
ds,

where Cα,N = CαNΓ (1 − α)λα−1, and the function x : (0,∞) → (0,∞) is
defined by

x(s) := CαLe
−λss−α.
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Now using the definition of the norm in L1
g(D(Aα)) we have

‖ut‖L1
g

=

−t�

−∞
g(θ)‖ϕ(t+ θ)‖α dθ +

0�

−t
g(θ)‖u(t+ θ)‖α dθ

≤ G(−t)‖ϕ‖L1
g

+

t�

0

g(s− t)‖u(s)‖α ds.

Substituting in this expression the upper bound obtained in (4.1), and ap-
plying conditions (g3) and (g4), we obtain

‖ut‖L1
g
≤ G(−t)‖ϕ‖L1

g
+ Cα,N +

t�

0

x(t− s)‖us‖L1
g
ds

+

t�

0

g(s− t)
[
Ce−λs‖ϕ‖L1

g
+ Cα,N +

s�

0

x(s− τ)‖uτ‖L1
g
dτ
]
ds

≤ G(−t)‖ϕ‖L1
g

+ Cα,N +

t�

0

x(t− s)‖us‖L1
g
ds+ Ck2G(−t)‖ϕ‖L1

g

+ Cα,Nk1 +

t�

0

g(s− t)
[ s�
0

x(s− τ)‖uτ‖L1
g
dτ
]
ds

≤ (1 + Ck2)G(−t)‖ϕ‖L1
g

+ Cα,N (1 + k1) + (x ∗ ‖us‖L1
g
)(t)

+ (g̃ ∗ x ∗ ‖us‖L1
g
)(t),

where we have employed the function g̃(s) := g(−s) for s ≥ 0. From the
previous inequality we can write

‖ut‖L1
g
≤ f0(t)‖ϕ‖L1

g
+ C +K(‖us‖L1

g
)(t),(4.2)

where f0 is a continuous function that vanishes at infinity, C is a constant,
and K is the operator defined by

K(f) := (x+ g̃ ∗ x) ∗ f.
Since g̃ and x are positive integrable functions on [0,∞), it is not difficult
to see that K is a positive bounded linear operator on the space Cb([0,∞))
of continuous bounded functions, endowed with the norm of uniform con-
vergence, and the subspace C0([0,∞)) formed by the functions that vanish
at infinity is invariant under K. Furthermore, it is easy to see from the def-
inition of x(·) that K is a contraction. We know from Proposition 3.2 that
the function t 7→ ‖ut‖L1

g
belongs to Cb([0,∞)), so from (4.2) we infer that

‖ut‖L1
g
≤ (I −K)−1[f0(t)‖ϕ‖L1

g
+ C] ≤ f1(t)‖ϕ‖L1

g
+ C1

for some f1 ∈ C0([0,∞)) and a certain positive real number C1.
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If B is a bounded set in L1
g(D(Aα)), there exists d > 0 such that

‖ϕ‖L1
g
≤ d for all ϕ ∈ B.

Since f1(t) vanishes at infinity, there exists a time T = T (B) > 0 such that

f1(t)d ≤ C1 for all t ≥ T.
Letting R = 2C1, we deduce that the closed ball B = BL1

g
(0, R) is a bounded

absorbing set for {S(t)} in L1
g(D(Aα)).

Proposition 4.3. Under the assumptions of Theorem 4.1, the semi-
group {S(t)}t≥0 satisfies conditions (2.1) and (2.2), that is, {S(t)}t≥0 is
asymptotically compact.

Proof. Let S(t) = S1(t) + S2(t), t ≥ 0, where {S1(t)}t≥0 is the solution
semigroup of the equation

u(t) =

{ 	t
0 e
−(t−s)AF (us) ds, t ≥ 0,

0, t < 0,

and {S2(t)}t≥0 is the solution semigroup of the equation{
u(t) = e−tAϕ(0), t ≥ 0,

u0 = ϕ ∈ L1
g(D(Aα)).

It is easy to see that ‖S2(t)ϕ‖L1
g
→ 0 as t → ∞ whenever ‖ϕ‖L1

g
≤ r. We

now prove that S1(t) is compact for t > 0.

Let (ψn)n≥0 be a bounded sequence in L1
g(D(Aα)). First, we prove that

{(S1(t)ψn)(θ)}n≥0, θ ∈ (−∞, 0],

is a totally bounded sequence in D(Aα), and for any t > 0 the sequence
(S1(t)ψn)n≥0 is equicontinuous in (−∞, 0]. To this end, let θ ∈ (−∞, 0];
then for n ≥ 0, we have

(S1(t)ψn)(θ) =

{
[S1(t+ θ)ψn](0), θ ∈ [−t, 0],

0, θ ∈ (−∞,−t).
Let 0 < ε < t+ θ. We have

(S1(t)ψn)(θ) =

t+θ�

0

e−(t+θ−s)AF (us(·, ψn)) ds

= e−εA
t+θ−ε�

0

e−(t+θ−ε−s)AF (us(·, ψn)) ds

+

t+θ�

t+θ−ε
e−(t+θ−s)AF (us(·, ψn)) ds.
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Moreover,

‖F (us(·, ψn))‖ ≤ ‖F (us(·, ψn))− F (0)‖+ ‖F (0)‖
≤ L‖us(·, ψn)‖L1

g
+ ‖F (0)‖ ≤ Lm(s)‖ψn‖L1

g
+ ‖F (0)‖,

where we have used Proposition 3.2. Hence, we can put

αt = sup
s∈[0,t]

‖F (us(·, ψn))‖ <∞.

Since e−εA is compact, there exists a compact set Wε such that

e−εA
{ t+θ−ε�

0

e−(t+θ−ε−s)AF (us(·, ψn)) ds : n ≥ 0
}
⊂Wε.

Furthermore, for all n ≥ 0,∥∥∥ t+θ�

t+θ−ε
e−(t+θ−s)AF (us(·, ψn)) ds

∥∥∥
α
≤ Cααt

t+θ�

t+θ−ε
e−λ(t+θ−s)(t+ θ − s)−α ds

≤ Cααt
t+θ�

t+θ−ε
(t+ θ − s)−α ds = Cααt

ε1−α

1− α
.

This shows the first assertion.

To establish the second assertion, let θ0 ∈ (−∞, 0]. For θ ∈ (−∞, 0] close
enough to θ0 such that θ0 < θ, we see that

(S1(t)ψn)(θ)− (S1(t)ψn)(θ0)

=


[S1(t+ θ)ψn](0)− [S1(t+ θ0)ψn](0), θ0 > −t,
[S1(t+ θ)ψn](0), θ0 = −t,
0, θ0 < −t.

For −t < θ0 < θ ≤ 0, we have

‖(S1(t)ψn)(θ)− (S1(t)ψn)(θ0)‖α

=
∥∥∥ t+θ0�

0

[e−(t+θ−s)A − e−(t+θ0−s)A]F (us(·, ψn)) ds
∥∥∥
α

+
∥∥∥ t+θ�

t+θ0

e−(t+θ−s)AF (us(·, ψn)) ds
∥∥∥
α

≤
∥∥∥[e−(θ−θ0)A − I]

t+θ0�

0

e−(t+θ0−s)AF (us(·, ψn)) ds
∥∥∥
α

+ Cααt
(θ − θ0)1−α

1− α
.
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Moreover, there exists a compact set W such that

[e−(θ−θ0)A − I]
{ t+θ0�

0

e−(t+θ0−s)AF (us(·, ψn)) ds : n ≥ 0
}
⊂W,

and using the fact that (e−·Ax)x∈W is equicontinuous on the right at 0, we
obtain

lim
θ→θ+0

‖(S1(t)ψn)(θ)− (S1(t)ψn)(θ0)‖α = 0.

By a similar argument for −∞ < θ < θ0 ≤ 0, we deduce the claimed
equicontinuity.

By Arzelà–Ascoli’s theorem, there are a continuous function ϕ : (−∞, 0]
→ D(Aα) and a subsequence ϕn of (S1(t)ψn)n≥0 which converges compactly
to ϕ in (−∞, 0]. By Remark 2.1, (ϕn)n≥0 is also a norm Cauchy sequence
in L1

g(D(Aα)). Then from (C1), ϕ is in L1
g(D(Aα)) and ‖ϕn − ϕ‖L1

g
→ 0 as

n→∞. This completes the proof.
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