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Summary. We say that a function f from [0, 1] to a Banach space X is increasing with
respect to E ⊂ X∗ if x∗ ◦ f is increasing for every x∗ ∈ E. A function f : [0, 1]m → X
is separately increasing if it is increasing in each variable separately. We show that if X
is a Banach space that does not contain any isomorphic copy of c0 or such that X∗ is
separable, then for every separately increasing function f : [0, 1]m → X with respect to
any norming subset there exists a separately increasing function g : [0, 1]m → R such that
the sets of points of discontinuity of f and g coincide.

Throughout the paper, X will be a real Banach space and X∗ its topolog-
ical dual, and m will be a natural number, m ≥ 2. The Banach space of all
real bounded functions on a given setM equipped with the supremum norm
will be denoted by L∞(M). The set of points of discontinuity of a function
f from a metric space into X will be denoted by D(f). For other notations
and terminology the reader is referred to [14] and [5].

We say that a function f from [0, 1] to a Banach space X is increasing
with respect to E ⊂ X∗ if x∗ ◦ f is increasing (= nondecreasing) for every
x∗ ∈ E. We say that a function f from [0, 1]m into X is separately increasing
if it is increasing in each variable separately. Throughout the paper, we will
assume that E is a norming subset ofX∗, i.e., there exist constants C ≥ c > 0
such that c‖x‖ ≤ sup{|x∗(x)| : x∗ ∈ E} ≤ C‖x‖ for every x ∈ X. Every
increasing function from the unit interval into a Banach lattice F is increasing
with respect to the positive part of the unit ball of F ∗. Consequently, the
definitions cover all natural examples of increasing and separately increasing
vector functions.
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Every real valued separately increasing function on Rm is continuous
and differentiable almost everywhere with respect to the Lebesgue mea-
sure (see [2]). For every separately increasing function f = (f1, . . . , fn) :
Rm → Rn the set D(f) = D(f1 + · · · + fn) in view of the result in [2] has
Lebesgue measure zero. This result does not extend to separately increasing
functions on [0, 1]m with values in Banach spaces. To see this it is enough to
compose the projection onto the first variable of [0, 1]m with an increasing
function g : [0, 1] → X discontinuous at each point of [0, 1]. Such a g exists
if and only if the space X contains an isomorphic and positive copy of the
Banach space D(0, 1) of all real functions on [0, 1] that are right continuous
at each point of [0, 1) with left-hand limit at each point of (0, 1], equipped
with the supremum norm (see [11, Thm. 4] and [5, Cor. 2.3]).

The paper is devoted to relations between the following properties of sep-
arately increasing (with respect to a norming set) functions f : [0, 1]p → X:

(1) f has separable range,
(2) there exists a separately increasing function g : [0, 1]p → R such that

D(f) = D(g),
(3) the set {x∗ ◦ f : x∗ ∈ X∗} is separable in L∞([0, 1]p),
(4) the closed linear hull of f([0, 1]p) does not contain any isomorphic

and positive copy of the Banach space D(0, 1).

In the case p = 1 these four conditions are equivalent (see [11], [4] and [8]).
Then of course the notions of separately increasing and increasing functions
coincide and the condition (2) means that D(f) is countable. In the case
p ≥ 2 no two of the properties (1)–(4) are equivalent (see Example 2.1).
Since D(0, 1) is a nonseparable Banach space, the implication (1)⇒(4) is
clear. Proposition 2.7 shows the implication (3)⇒(2). We show in Theo-
rem 2.6 that if the closed linear hull of the range of a separately increasing
function f does not contain any isomorphic copy of c0, then f has prop-
erty (2). We show that property (3) is a necessary condition to represent a
separately increasing function f : [0, 1]m → X in the form of a pointwise con-
verging series

∑∞
n=1 xngn, where xn ≥ 0 and gn is a real separately increasing

function for every n. Moreover, we show that if a Banach space X has an un-
conditional basis, then every separately increasing function f : [0, 1]m → X
with respect to the order generated by the basis has property (3). The ques-
tions whether every separately increasing (with respect to a norming set E)
function f : [0, 1]m → X with property (4) or with property (1) also has
property (2) remain open.

The paper is divided into three sections. The first section gathers fun-
damental properties of increasing vector functions on [0, 1]. The second sec-
tion concerns separately increasing functions with values in Banach spaces.
We show in the third section that the set D(f) for any real separately in-



Separately Increasing Functions 63

creasing function f on [0, 1]m has Hausdorff dimension less than or equal
to m− 1.

1. Properties of increasing functions on [0, 1]. A subset E of X∗
generates a partial order relation ≤ on X: u ≤ v whenever x∗(u) ≤ x∗(v)
for every x∗ ∈ E. The relation ≤ is closed, i.e., the subset {(u, v) : u ≤ v}
of X ×X is closed. If E is norming and x, y, u, v ∈ X with x ≤ u ≤ v ≤ y,
then

‖y − x‖ ≥ 1

C
sup
x∗∈E
{x∗(y − x)} ≥ 1

C
sup
x∗∈E
{x∗(v − u)} ≥ c

C
‖v − u‖.

It is clear that the following subsets of X∗: E, Ew
∗
(the closure of E in the

weak∗ topology), conv(E) (the convex hull of E) and aE for any a > 0,
generate the same order relation.

For a function f : [0, 1] → C we define its variation var(f) in the usual
way, i.e.,

var(f) = sup
{n−1∑
k=0

|f(tk+1)− f(tk)| : 0 ≤ t0 < t1 < · · · < tn ≤ 1, n ∈ N
}
.

We define the variation of a vector function f : [0, 1]→ X by the formula

Var(f) = sup{var(x∗f) : x∗ ∈ X∗, ‖x∗‖ ≤ 1}.
A function f is said to be of bounded weak variation if Var(f) < ∞. We
gather properties of functions of bounded weak variation in the following

Proposition 1.1.

(a) If X is a Banach space which does not contain an isomorphic copy
of c0, then for every function f : [0, 1] → X with bounded weak
variation, the limits

f(t−) = lim
s→t−

f(s) and f(u+) = lim
s→u+

f(s)

exist in the norm topology of X for every t ∈ (0, 1] and for every
u ∈ [0, 1).

(b) If f : [0, 1]→ X is an increasing function with respect to a norming
subset E of X∗, then f has bounded weak variation and

Var(f) ≤ C

c
‖f(1)− f(0)‖

where C = sup‖x‖≤1{|x∗(x)| : x∗ ∈ E} and c = inf‖x‖=1 sup{|x∗(x)| :
x∗ ∈ E}.

These facts are known (part (a) can be deduced from [3, Thm. 6]), but
for the sake of completeness we present their proofs.
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Proof. (a) We only show the first case. Suppose that lims→t− f(s) does
not exist. Then there exist an ε > 0 and a strictly increasing sequence
{tn : n ∈ N} ⊂ [0, 1] such that ‖f(tn+1) − f(tn)‖ ≥ ε for every n. Let
S : c0 → X be given by

S((αn)) =
∞∑
n=1

αn(f(tn+1)− f(tn)).

Since f has bounded weak variation, for every (αn) ∈ c0 we have

‖S((αk))‖ ≤ sup
k
{|αk|} sup

‖x∗‖≤1

{ ∞∑
n=1

|x∗(f(tk+1)− f(tk))|
}
≤ ‖(αk)‖c0Var(f).

This shows that the linear operator S is well defined and continuous. By
the Bessaga–Pełczyński theorem (see [1]) there exists a subspace Y of c0
isomorphic to c0 such that the operator S|Y is an isomorphism. We arrive
at a contradiction.

(b) For any increasing function f : [0, 1]→ X with respect to a norming
subset E of X∗ and any α0, α1, . . . , αn ∈ [0, 1] such that 0 ≤ α0 < α1 <
· · · < αn ≤ 1 we have

sup
‖x∗‖≤1

{n−1∑
k=0

|x∗(f(αk+1)− f(αk))|
}

= sup
(ε1,...,εn)∈{−1,1}n

{∥∥∥n−1∑
k=0

εk+1(f(αk+1)− f(αk))
∥∥∥}

≤ 1

c
sup
x∗∈E

{n−1∑
k=0

x∗(f(αk+1)− f(αk))
}

=
1

c
sup
x∗∈E
{x∗(f(1)− f(0))} ≤ C

c
‖f(1)− f(0)‖.

Part (b) is a straightforward consequence of the above estimates.

As a straightforward consequence of the proposition above we get

Corollary 1.2. If X is a Banach space which does not contain an
isomorphic copy of c0, then every function f : [0, 1] → X of bounded weak
variation has relatively compact range.

Let (M,ρ) be a metric space. For any function f :M → X the oscillation
function df :M → R ∪ {∞} is defined by

df (t) = inf
δ>0

sup{‖f(s)− f(u)‖ : s, u ∈M, ρ(s, t) ≤ δ, ρ(u, t) ≤ δ}.

It is clear that f is continuous at t if and only if df (t) = 0. The function df
is upper semicontinuous (see [10]). For a given function f :M → X and for
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every ε > 0 we set

D(f) = {t ∈M : df (t) > 0} and D(f, ε) = {t ∈M : df (t) ≥ ε}.

For every function f : M → X and every ε > 0 the set D(f, ε) is closed in
M and D(f) is an Fσ subset of M .

It was shown in the proof of [11, Thm. 1] (see also [5, Prop. 3.1]) that
for every increasing function f : [0, 1]→ X with respect to a norming set E
we have

D(f) =
⋃

x∗∈Ew∗

D(x∗ ◦ f).

This equality does not hold for functions of bounded weak variation (see [12,
p. 233]). We will need the following quantitative version of the fact.

Theorem 1.3. If f : [0, 1]→ X is an increasing function with respect to
a norming subset E of X∗, then

cdf ≤ sup{dx∗◦f : x∗ ∈ Ew∗} ≤ Cdf

where C = sup‖x‖≤1{|x∗(x)| : x∗ ∈ E} and c = inf‖x‖=1 sup{|x∗(x)| :
x∗ ∈ E}.

Proof. It is clear that dx∗◦f (t) ≤ Cdf (t) for every t ∈ [0, 1] and x∗ ∈ E.
It is enough to consider a function f with f(0) = 0 and ‖f(1)‖ > 0. LetH

be the space of all increasing functions from [0, 1] into [0, C‖f(1)‖] equipped
with the pointwise convergence topology. It is clear that this space is home-
omorphic to the Helly space (see [7, p. 164]). Therefore H is a Hausdorff,
first countable, compact and sequentially compact space.

Let Φf : (E
w∗
, w∗) → H be given by Φf (x∗) = x∗ ◦ f . It is clear that

Φf is continuous. Hence Hf = Φf (E
w∗

) is a closed subset of H. Let t be
in [0, 1]. If df (t) = 0, the inequalities are clear. Suppose that t ∈ (0, 1)
and df (t) > 0. Let min{t, 1 − t} > 1/k. Then for every n ≥ k there exist
sn, un ∈ [t− 1/n, t+1/n] such that ‖f(un)− f(sn)‖ > df (t)− 1/n. Since E
is a norming subset of X∗, we find x∗n ∈ E with

c(df (t)− 1/n) ≤ |x∗n(f(un)− f(sn))| ≤ x∗n(f(t+ 1/n)− f(t− 1/n))).

Let (jn) be a sequence such that the sequences (x∗jn(f(t + 1/jn))) and
(x∗jn(f(t− 1/jn))) are convergent. Then

lim
n→∞

x∗jn(f(t+ 1/jn)− f(t− 1/jn)) ≥ cdf (t).

Let g be a cluster point of {x∗jn ◦ f : n ∈ N}. Since Hf is compact, g is a
member of Hf . Consequently, there exists x∗ ∈ Ew

∗
such that Φf (x∗) = g.
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It is easy to see that for every s < t < u we have

g(s) = lim
n→∞

x∗jn(f(s)) ≤ lim
n→∞

(x∗jn(f(t− 1/jn))) < lim
n→∞

(x∗jn(f(t+ 1/jn)))

≤ lim
n→∞

x∗jn(f(u)) = g(u).

Hence
lim
s→t+

g(s)− lim
s→t−

g(s) ≥ cdf (t).

Thus we have shown that dx∗◦f (t) ≥ cdf (t).
For t = 0 and t = 1 the considerations are similar.

2. Properties of separately increasing functions on [0, 1]m. We
start with the following two examples.

Example 2.1. (a) Let M be an infinite set. For every t ∈ [0, 1] let
gt : M → R be a function such that 0 ≤ gt ≤ 1. Let f : [0, 1]2 → L∞(M)
and h : [0, 1]2 → R be given by

f(x, y) =


1 if y > 1− x,
0 if y < 1− x,
gx if y = 1− x,

and h(s, t) =

{
1 if y ≥ 1− x,
0 if y < 1− x.

It is clear that f and h are separately increasing functions. If {gt : t ∈ [0, 1]}
is a nonseparable subset of L∞(M), then f has nonseparable range but
D(f) = D(h).

If we put M = [0, 1] and gt = χ{t} for every t ∈ [0, 1], then f([0, 1]2) is
contained in a closed subspace of L∞([0, 1]) isomorphic to c0([0, 1]).

(b) Let M be a subset of [0, 1][0,1], compact and metrizable in the point-
wise convergence topology but not separable in L∞([0, 1]) (for example:
M = {g ∈ [0, 1][0,1] : g−1(R \ {0}) ⊂ {1/n : n ∈ N}}). For every g ∈ M
let fg : [0, 1]2 → R be given by

fg(x, y) =


1 if y > 1− x,
0 if y < 1− x,
g(x) if y = 1− x.

Let L = {fg : g ∈M}. It is clear that L is a compact and metrizable in the
pointwise convergence topology but nonseparable (in L∞([0, 1]2)) subset of
[0, 1][0,1]

2 . For every x ∈ [0, 1]2 let px : L → R be given by px(h) = h(x).
We define f : [0, 1]2 → C(L) by the formula f(x) = px. It is clear that f
is separately increasing function with respect to the set {δl : l ∈ L} of all
Dirac measures on L and D(f) = D(h) where h is defined in part (a). The
set {δl ◦ f : l ∈ L} = {fg : g ∈M} is not separable in L∞([0, 1]2).
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In what follows, we will apply the following definitions and notations.
For every x ∈ Rm we put

Γ−x = x− Rm+ and Γ+
x = x+ Rm+

where as usual R+ denotes the set of positive real numbers. For every f :
[0, 1]m → X and x = (x1, . . . , xm) ∈ [0, 1]m we define

fx : [−min{x1, . . . , xm}, min{1− x1, . . . , 1− xm}]→ X

by the formula
fx(t) = f(x+ t(1, . . . , 1)).

It is clear that if f is a separately increasing function with respect to E,
then for every x = (x1, . . . , xm) ∈ [0, 1]m such that −min{x1, . . . , xm} 6=
min{1− x1, . . . , 1− xm} the function fx is increasing with respect to E. Let
h : R→ [0, 1] be given by

h(x) =


0 if x ≤ 0,
x if 0 ≤ x ≤ 1,
1 if x ≥ 0.

For every f : [0, 1]m → X we define f̃ : Rm → X by

f̃(x1, . . . , xm) = f(h(x1), . . . , h(xm)).

It is clear that f̃ is a separately increasing function on Rm if f is, and
f̃(x) = f(x) for every x ∈ [0, 1]m. For every f : [0, 1]m → X and x ∈ Rm we
define f̃x : R→ X by

f̃x(t) = f̃(x+ t(1, . . . , 1)).

A crucial rule in our considerations is played by the following

Theorem 2.2. Let X be a Banach space with a norming subset E of
X∗ such that c‖x‖ ≤ sup{|x∗(x)| : x∗ ∈ E} ≤ C‖x‖ for every x ∈ X. If
f : [0, 1]m → X is a separately increasing function with respect to E, then

(a) for each x ∈ (0, 1)m,

dfx(0) ≤ df (x) ≤
C

c
dfx(0),

and consequently f is continuous at x ∈ (0, 1)m if and only if fx is
continuous at 0,

(b) for each x ∈ [0, 1]m,

df̃x(0) ≤ df̃ (x) ≤ df (x) ≤
C

c
df̃x(0),

and consequently f is continuous at x ∈ [0, 1]m if and only if f̃x is
continuous at 0,
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(c) for each x = (x1, . . . , xm) ∈ [0, 1]m with min{x1, . . . , xm} > 0 the
limit f(x−) = lim[0,1]m∩Γ−

x 3y→x f(y) exists in the norm topology of
X if and only if the limit fx(0−) = limt→0− fx(t) exists in the norm
topology of X; moreover f(x−) = fx(0−) if the limits exist,

(d) for each x = (x1, . . . , xm) ∈ [0, 1)m with max{x1, . . . , xm} < 1 the
limit f(x+) = lim[0,1]m∩Γ+

x 3y→x f(y) exists in the norm topology of
X if and only if the limit fx(0+) = limt→0+ fx(t) exists in the norm
topology of X; moreover f(x+) = fx(0+) if the limits exist.

Proof. First note that f is bounded. This follows from the estimate

c‖f((1, . . . , 1))−f(x)‖ ≤ sup
x∗∈E

x∗(f(1, . . . , 1)−f(0)) ≤ C‖f(1, . . . , 1)−f(0)‖

for every x ∈ [0, 1]m. Therefore the functions df , df̃ , dfx , df̃y for each x ∈
[0, 1]m and y ∈ Rm take their values in R.

(a) Let x = (x1, . . . , xm) ∈ (0, 1)m. It is clear that dfx(0) ≤ df (x). Since
f is a separately increasing function with respect to E, for every ε > 0
there exist 0 < s ≤ min{min{x1, . . . , xm},min{1 − x1, . . . , 1 − xm}} and
y1, y2 ∈ x+ [−s, s]m such that

c(df (x)− ε) ≤ c‖f(y1)− f(y2)‖ ≤ sup
x∗∈E

|x∗(f(y1)− f(y2))|

≤ sup
x∗∈E

x∗(f(x+ s(1, . . . , 1))− f(x− s(1, . . . , 1)))

≤ C‖fx(s)− fx(−s)‖ ≤ C(dfx(0) + ε).

Since ε > 0 is arbitrary, we have cdf (x) ≤ Cdfx(0).
(b) For every x = (x1, . . . , xm) ∈ (0, 1)m we have f(x) = f̃(x) and

fx(t) = f̃x(t) for |t| ≤ min{min{x1, . . . , xm},min{1−x1, . . . , 1−xm}}. Hence
for every x ∈ (0, 1)m we have

df̃x(0) = dfx(0) ≤ df (x) = df̃ (x) ≤
C

c
dfx(0) =

C

c
df̃x(0).

It is clear that part (a) is valid for any separately increasing function de-
fined on any product [a1, b1] × · · · × [am, bm] where a1, . . . , am, b1, . . . , bm ∈
R and a1 < b1, . . . , am < bm. Consequently, for every x ∈ Rm we have
df̃x(0) ≤ df̃ (x) ≤ (C/c)df̃x(0). Since h is a continuous function, for ev-
ery x = (x1, . . . , xm) ∈ Rm we have df (h(x1), . . . , h(xm)) ≥ df̃ (x). Conse-
quently, for every x ∈ [0, 1]m we have df (x) ≥ df̃ (x).

Let x = (x1, . . . , xm) ∈ [0, 1]m \ (0, 1)m. For any permutation π of the set
{1, . . . ,m} let pπ : Rm → Rm be given by pπ(y1, . . . , ym) = (yπ(1), . . . , yπ(m)).
It is clear that pπ is a homeomorphism of [0, 1]m. In addition for any sepa-
rately increasing function g on [0, 1]m and each permutation π the function
g ◦pπ is also separately increasing and g̃ ◦pπ = g̃ ◦ pπ. Therefore it is enough
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to consider the following cases:

(1) x = (x1, . . . , xk, 0, . . . , 0) for some k ∈ {1, . . . ,m− 1} and uk > 0,
(2) x = (x1, . . . , xk, 1, . . . , 1) for some k ∈ {1, . . . ,m− 1} and uk > 0,

(3) x = (x1, . . . , xk,

j︷ ︸︸ ︷
0, . . . , 0, 1, . . . , 1) for some k ∈ {1, . . . ,m − 2} and

j ∈ {1, . . . ,m− k − 1} and uk > 0,

(4) x = 0 or x = (1, . . . , 1) or x = (

k︷ ︸︸ ︷
0, . . . , 0, 1, . . . , 1) for some k in

{1, . . . ,m− 1},

where uk = min{min{x1, . . . , xk},min{1− x1, . . . , 1− xk}}.

(1) For every 0 < s < uk and y1, y2 ∈ [−s, s]k × [0, s]n−k we have

c‖f(x+ y1)− f(x+ y2)‖ ≤ sup
x∗∈E

{
x∗
(
f(x1 + s, . . . , xk + s, s, . . . , s)

− f(x1 − s, . . . , xk − s, 0, . . . , 0)
)}

≤ C‖f̃x(s)− f̃x(−s)‖.

The definition of df and df̃x gives cdf (x) ≤ Cdf̃x(0).
(2) For every 0 < s < uk and y1, y2 ∈ [−s, s]k × [1− s, 1]m−k we have

c‖f(x+ y1)− f(x+ y2))‖ ≤ sup
x∗∈E

{
x∗
(
f(x1 + s, . . . , xk + s, 1, . . . , 1)

− f(x1 − s, . . . , xk − s, 1− s . . . , 1− s)
)}

≤ C‖f̃x(s)− f̃x(−s)‖.

As above, this shows that cdf (x) ≤ Cdf̃x(0).
(3) For every 0 < s < uk and y1, y2 ∈ [−s, s]k× [0, s]n−k× [1− s, 1]m−k−l

we have

c‖f(x+ y1)− f(x+ y2)‖ ≤ sup
x∗∈E

{
x∗
(
f(x1 + s, . . . , xk + s, s, . . . , s, 1, . . . , 1)

− f(x1 − s, . . . , xk − s, 0, . . . , 0, 1− s, . . . , 1− s)
)}

≤ C‖f̃x(s)− f̃x(−s)‖.

As above, this shows that cdf (x) ≤ Cdf̃x(0).
For points in (4) the considerations are similar.
(c) If the first limit exists, then it is clear that the second exists too and

they are equal. Suppose now that limt→0− fx(t) exists in the norm topology
of X. Take ε > 0. Then there exists s > 0 such that ‖fx(−s)− fx(0−)‖ < ε.
For every y ∈ x+[−s, 0)m there exists 0 < t < s such that y ∈ x+[−s,−t]m.
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As f is separately increasing, we have

c‖f(y)− fx(−s)‖ ≤ sup
x∗∈E

x∗
(
f(x− t(1, . . . , 1))− f(x− s(1, . . . , 1))

)
≤ sup

x∗∈E
x∗(fx(0−)− fx(−s))

≤ C‖fx(0−)− fx(−s)‖ ≤ Cε.
Consequently, ‖f(y)− fx(0−)‖ ≤ (C/c+ 1)ε.

The proof of (d) is similar.

As a straightforward consequence of [11, Thm. 4(c)] and the result above
we obtain

Corollary 2.3. If a Banach space X does not contain any isomorphic
copy of D(0, 1) and f : [0, 1]m → X is separately increasing with respect
to any norming subset E of X∗, then for any x ∈ [0, 1]m the set D(f) ∩
{x+ t(1, . . . , 1) : t ∈ R} is countable.

For separately increasing functions Theorem 1.3 takes the following form.

Corollary 2.4. If f : [0, 1]m → X is a separately increasing function
with respect to a norming subset E of X∗, then

c2

C
df ≤ sup{dx∗◦f : x∗ ∈ Ew

∗
} ≤ Cdf ,

where C = sup‖x‖≤1{|x∗(x)| : x∗ ∈ E}, c = inf‖x‖=1 sup{|x∗(x)| : x∗ ∈ E}.
Proof. It is clear that for every x∗ ∈ E and x ∈ [0, 1]m we have dx∗◦f (x)

≤ Cdf (x).
Let x ∈ [0, 1]m. Since f̃x is increasing with respect to E, by Theo-

rem 1.3 there exists x∗ ∈ E
w∗

such that dx∗◦f̃x(0) ≥ cdf̃x(0). In view of
Theorem 2.2(b) we have cdf̃x(0) ≥ (c2/C)df (x).

As a straightforward consequence of Proposition 1.1 and Theorem 2.2 we
get

Corollary 2.5. If a Banach space X does not contain any isomorphic
copy of c0, then for every function f : [0, 1]m → X separately increasing with
respect to a norming subset E of X∗ the limits

f(x−) = lim
[0,1]m∩Γ−

x 3z→x
f(z) and f(y+) = lim

[0,1]m∩Γ+
x 3z→y

f(z)

exist in the norm topology of X for every x = (x1, . . . , xm) ∈ [0, 1]m with
min{x1, . . . , xm} > 0 and for every y = (y1, . . . , ym) ∈ [0, 1]m with
max{y1, . . . , ym} < 1.

Theorem 2.6. If a Banach space X does not contain any isomorphic
copy of c0, then for every separately increasing function f : [0, 1]m → X with
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respect to any norming subset E of X∗ there exists a separately increasing
function g : [0, 1]m → R such that D(f) = D(g).

Proof. Let A be a countable dense subset of Rm. Let f,f : Rm → X be
given by

f(x) = lim
A∩Γ−

x 3z→x
f̃(z) and f (x) = lim

A∩Γ+
x 3z→x

f̃(z).

According to Corollary 2.5 the functions f and f are well defined. Let Y be
the closed linear hull of f̃(A). It is clear that f and f take their values in Y
and are separately increasing with respect to E. According to Corollary 2.5
and Theorem 2.2 for every x ∈ Rm we have

f(x) = lim
t→0−

f̃(x+ t(1, . . . , 1)) ≤ f̃(x) ≤ lim
t→0+

f̃(x+ t(1, . . . , 1)) =f (x).

It is easy to see that for every x ∈ Rm and x∗ ∈ Ew
∗
we have

dx∗◦f̃ (x) = x∗(f (x))− x∗(f(x)).

Let F = {x∗|Y : x∗ ∈ E
w∗
}. Since Y is separable, F is a compact and

metrizable subset of Y ∗ in the weak∗ topology of Y ∗. Let {y∗n : n ∈ N} ⊂ E
be such that {y∗n|Y : n ∈ N} is dense in F in the weak∗ topology. Let
x ∈ D(f). In view of Theorem 2.2(b), D(f̃) ∩ [0, 1]m = D(f). According to
Corollary 2.4 there exists x∗ ∈ Ew

∗
such that dx∗◦f̃ (x) > 0. Since f and f

take values in Y , there exists n such that

|y∗n(f(x))− x∗(f(x))| ≤ dx∗◦f̃ (x)/4, |y∗n(f (x))− x∗(f (x))| ≤ dx∗◦f̃ (x)/4.
Hence

dx∗◦f̃ (x) ≤ |x
∗(f (x))− y∗n(f (x))|+ |y∗n(f(x))− x∗(f(x))|

+ y∗n(f (x))− y∗n(f(x))
≤ dx∗◦f̃ (x)/2 + dy∗n◦f̃

(x).

This shows that dy∗n◦f̃ (x) > 0. In view of Theorem 2.2 we have dy∗n◦f (x) ≥
dy∗n◦f̃

(x) > 0. Thus we show that D(f) =
⋃∞
n=1D(y∗n ◦ f). Let g =∑∞

n=1 (y
∗
n ◦ f)/2n. It is clear that D(g) =

⋃∞
n=1D(y∗n ◦ f).

We will need the following simple facts.

Proposition 2.7.

(a) Let (M,ρ) be a metric space. If A is a separable subset of L∞(M),
then for every dense subset B of A we have⋃

f∈A
D(f) =

⋃
f∈B

D(f).
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(b) Let X be a Banach space. If f : [0, 1]m → X is a separately increasing
function with respect to a norming subset E of X∗ such that the set
of functions {x∗ ◦ f : x∗ ∈ E

w∗
} is separable in L∞([0, 1]m), then

there exists a separately increasing function g : [0, 1]m → R such that
D(f) = D(g).

Proof. (a) Let f ∈ A, and let x ∈ D(f). We can find g ∈ B such that
supz∈M |f(z)− g(z)| < df (x)/3. Then

df (x) ≤ dg(x) + 2 sup
z∈M
|f(z)− g(z)| < dg(x) + 2df (x)/3.

This shows that dg(x) > 0.
(b) Let {x∗n : n ∈ N} ⊂ E be such that {x∗n ◦ f : n ∈ N} is dense in

{x∗ ◦ f : x∗ ∈ E
w∗
} in the uniform topology. According to Corollary 2.4

and part (a) we have D(f) =
⋃
x∗∈Ew∗ D(x∗ ◦ f) =

⋃∞
n=1D(x∗n ◦ f). Let

g =
∑∞

n=1 (x
∗
n ◦ f)/2n. It is clear that D(g) =

⋃∞
n=1D(x∗n ◦ f).

Corollary 2.8. Let X be a Banach space such that X∗ is separable.
If f : [0, 1]m → X is a separately increasing function with respect to a
norming subset E of X∗, then there exists a separately increasing function
g : [0, 1]m → R such that D(f) = D(g).

Proof. Since f is bounded, the linear operator S : X∗ → L∞([0, 1]m)
given by S(x∗) = x∗ ◦ f is continuous. Since X∗ is separable, {x∗ ◦ f :
x∗ ∈ X∗} = S(X∗) is a separable subset of L∞([0, 1]m). An appeal to
Proposition 2.7 completes the proof.

Proposition 2.9. Let X be a Banach space and E a norming subset
of X∗. If (vn) is a sequence of positive elements of X and (fn) is a sequence
of separately increasing real functions such that the series

∑∞
n=1 vnfn(x) con-

verges in the norm topology of X for each x ∈ [0, 1]m, then

(a) the series
∑∞

n=1 vn(fn(1, . . . , 1)− fn(0)) converges unconditionally,
(b) the function

∑∞
n=1 vnfn has relatively compact range,

(c) the set {x∗(
∑∞

n=1 vnfn) :x
∗∈X∗} is a separable subset of L∞([0, 1]m).

Proof. Let P = {n ∈ N : fn(1, . . . , 1) − fn(0) > 0}. Since the series∑∞
n=1 vnfn(0) and

∑∞
n=1 vnfn(1, . . . , 1) are convergent in the norm topology

of X, for every k, l ∈ N, l > k we have

c sup
(εk,...,εl)∈{−1,1}l−k+1

∥∥∥ l∑
n=k

εnvn(fn(1, . . . , 1)− fn(0))
∥∥∥

≤ sup
x∗∈E

{ ∞∑
n=k

x∗(vn)(fn(1, . . . , 1)−fn(0))
}
≤ C

∥∥∥ ∞∑
n=k

vn(fn(1, . . . , 1)−fn(0))
∥∥∥
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where C = sup‖x‖≤1{|x∗(x)| : x∗ ∈ E}, c = inf‖x‖=1 sup{|x∗(x)| : x∗ ∈ E}.
Hence the series

∑∞
n=1 vn(fn(1, . . . , 1) − fn(0)) converges unconditionally.

Therefore the linear operator S : l∞ → X given by

S((αn)) =

∞∑
n=1

αnvn(fn(1, . . . , 1)− fn(0))

is compact. Moreover, for every x ∈ [0, 1]m,
∞∑
n=1

vnfn(x) =
∑
n∈P

vn(fn(x)− fn(0)) +
∞∑
n=1

vnfn(0)

=
∑
n∈P

vn(fn(1, . . . , 1)− fn(0))
fn(x)− fn(0)

fn(1, . . . , 1)− fn(0)

+

∞∑
n=1

vnfn(0)

is a member of the relatively compact set S({w ∈ l∞ : ‖w‖ ≤ 1}) +∑∞
n=1 vnfn(0). Since for each x

∗ ∈ X∗ the series
∑∞

n=1 |x∗(vn)(fn(1, . . . , 1)−
fn(0))| converges and l1 is a separable Banach space and

x∗
( ∞∑
n=1

vnfn

)
=
∑
n∈P

x∗(vn)(fn(1, . . . , 1)− fn(0))
fn − fn(0)

fn(1, . . . , 1)− fn(0)

+ x∗
( ∞∑
n=1

vnfn(0)
)
,

the set {x∗
(∑∞

n=1 vnfn
)
: x∗ ∈ X∗} is separable in L∞([0, 1]m).

A Schauder basis {en : n ∈ N} of a Banach space X is said to be un-
conditional if for each v in X its basic extension v =

∑∞
n=1 anen converges

unconditionally (see [9]).

Corollary 2.10. If {en : n ∈ N} is an unconditional basis of a Banach
space X, then for every separately increasing function f : [0, 1]m → X with
respect to E = {x∗ ∈ X∗ : x∗(en) ≥ 0, n ∈ N, ‖x∗‖ ≤ 1} the set {x∗ ◦ f :
x∗ ∈ X∗} is separable in L∞([0, 1]m) and there exists a separately increasing
function g : [0, 1]m → R such that D(f) = D(g).

Proof. Let {e∗n : n ∈ N} be the sequence of biorthogonal functionals
associated to the basis {en : n ∈ N}, i.e., e∗n(ek) = δkn where δkn is the
Kronecker delta. First we show that E is a norming set. Since {en : n ∈
N} is an unconditional basis, there exists a constant K such that for any
sequence {εn : n ∈ N} ⊂ {0, 1} the linear operator M(εn) : X → X
given by M(εn)(

∑∞
n=1 αnen) =

∑∞
n=1 εnαnen is well defined, continuous, and

‖M(εn)‖≤K (see [9, p. 18]). Therefore the adjoint operator M∗(εn) : X
∗→X∗
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also satisfies ‖M∗(εn)‖ ≤ K. Let v ∈ X and v∗ ∈ X∗ be such that ‖v∗‖ ≤ 1

and v∗(v) = ‖v‖. Let P = {n ∈ N : v∗(en) ≥ 0} and

ηn =

{
1 if n ∈ P ,
0 if n /∈ P .

Then M∗(ηn)(v
∗)(ek) = v∗(ηkek) ≥ 0 and M∗(1−ηn)(v

∗)(ek) = v∗((1 − ηk)ek)
≤ 0 for every k. Therefore M∗(ηn)(v

∗) and −M∗(1−ηn)(v
∗) are elements of

KE. The inequality |v∗(v)| ≤ |M(ηn)(v
∗)(v)|+ |M(1−ηn)(v

∗)(v)| provides the
estimates

1

2K
‖v‖ ≤ sup{|x∗(v)| : x∗ ∈ E} ≤ ‖v‖.

Let fn = e∗n ◦ f . Then f =
∑∞

n=1 enfn and the series converges at each
point of [0, 1]m in the norm topology ofX. Since e∗n is a member of ‖e∗n‖E, the
function fn is separately increasing. An appeal to Propositions 2.9 and 2.7
completes the proof.

3. Geometric properties of D(f). For a given d ≥ 0 and η > 0 the
measure µd,η for any subset A of Rm is defined by

µd,η(A) = inf
{ ∞∑
n=1

(diam(Bn))
d : A ⊂

∞⋃
n=1

Bn, diam(Bk) ≤ η, k ∈ N
}

where diam(C) = sup{‖x− y‖2 : x, y ∈ C} and ‖ · ‖2 is the Euclidean norm
on Rm. The Hausdorff measure µd(A) and the Hausdorff dimension dH(A)
of a Borel subset A of Rm are defined by

µd(A) = lim
η→0

µd,η(A) and dH(A) = inf{d ≥ 0 : µd(A) = 0}.

More on Hausdorff measures and Hausdorff dimension can be found in [6].

Proposition 3.1. If f : [0, 1]m → R is a separately increasing function,
then

(a) for every ε > 0,

µm−1(D(f, ε)) ≤ (6m)m−1
f(1, . . . , 1)− f(0)

ε
,

(b) dH(D(f)) ≤ m− 1.

Proof. Let V = {(x1, . . . , xm) ∈ Rm : x1 + · · · + xm = 0}. Let A be the
orthogonal projection of [0, 1]m onto V . For every x ∈ A we consider the
function f̃x on [0, 1]. Let B(r) = {x ∈ Rm : ‖x‖2 < r}. Let η > 0. For every
y ∈ A the set

D(f, ε) ∩ {y + t(1, . . . , 1) : t ∈ [0, 1]} ⊂ y +D(f̃y, ε)(1, . . . , 1)
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has at most
f̃y(1)− f̃y(0)

ε
≤ f(1, . . . , 1)− f(0)

ε
= Nε

elements. For every t /∈ D(f̃y, ε) there exists δ1 > 0 such that

sup{|f̃y(s)− f̃y(u)| : s, u ∈ [t− δ1, t+ δ1]}
= sup{|f̃(x)− f̃(z)| : x, z ∈ y + t(1, . . . , 1) + [−δ1, δ1]m} < ε.

For every t ∈ D(f̃y, ε) the function f̃y has left and right limits. Consequently,
there exists δ2 > 0 such that

sup{|f̃(x)− f̃(z)| : x, z ∈ y + t(1, . . . , 1) + (0, δ2]
m} < ε,

sup{|f̃(x)− f̃(z)| : x, z ∈ y + t(1, . . . , 1) + [−δ2, 0)m} < ε.

Therefore for every y ∈ A there exists δy such that η > 4δy
√
m > 0 and

D(f, ε) ∩
(
{y + t(1, . . . , 1) : t ∈ [0, 1]}+ [−δy, δy]m

)
⊂ y +D(f̃y, ε)(1, . . . , 1) + [−2δy, 2δy]m.

Since the set A is compact, there exists a finite subset {y1, . . . , yp} of A
such that A ⊂

⋃p
n=1 yn+B(δyn). The Hausdorff measure µm−1 coincides on

V with the m − 1-dimensional Lebesgue measure multiplied by a constant
(see [6]). Applying a standard procedure (see [13, Lemma 8.4]), we find
{z1, . . . , zk} ⊂ {y1, . . . , yp} such that A ⊂

⋃k
n=1 zn + B(δzn) and the sets

z1 +B(δz1/3), . . . , zk +B(δzk/3) are pairwise disjoint. Therefore

D(f, ε) ⊂
k⋃

n=1

zn +D(f̃zn , ε)(1, . . . , 1) + [−2δzn , 2δzn ]m

and

3m−1µm−1((A+B(η)) ∩ V ) ≥
k∑

n=1

2m−1δm−1zn .

Hence

µm−1,η(D(f, ε)) ≤ Nε

k∑
n=1

(4δzn
√
m )m−1

≤ (6
√
m )m−1Nεµm−1((A+B(η)) ∩ V )

≤ (6
√
m(
√
m+ 2η))m−1Nε.

This shows (a). Part (b) is a straightforward consequence of (a).

The result above enables us to express the smallness of D(f) in terms of
Hausdorff dimension. The following question is connected with Corollary 2.3:
is it true that if a Banach space X does not contain any isomorphic copy
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of D(0, 1), then dH(D(f)) ≤ m − 1 for each separately increasing function
f : [0, 1]m → X with respect to any norming subset?
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