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Summary. We give a necessary and sufficient condition for local controllability around
closed orbits for general smooth control systems. We also prove that any such system on
a compact manifold has a closed orbit.

1. Introduction

1.1. Motivation. The aim of this note is to formulate and prove a
necessary and sufficient condition for local controllability of general control
systems around a closed orbit.

Let M be a smooth (or real analytic) manifold, and let U be a subset
of Rk. Consider a smooth (or real analytic) control system

(Σ) ẋ = f(x, u), u(·) ∈ U ,
where controls u : [0, T ] → U are bounded measurable, and the final time
T = T (u) ≥ 0 is not fixed and depends on the control u. If u : [0, T (u)]→ U
is a control then a solution of the ordinary differential equation ẋ(t) =
f(x(t), u(t)) is called a trajectory (or an admissible curve, or an orbit) of (Σ)
generated by u.

The system (Σ) is said to be controllable if for every x, y ∈ M there
exists a control u defined on [0, T (u)] such that if γ is the trajectory of (Σ)
generated by u and satisfying γ(0) = x, then γ(T (u)) = y. The system (Σ)
is locally controllable at a point x if there exists a neighbourhood U of x such
that the restriction of (Σ) to U is a controllable system. A neighbourhood
U as above is called a controllable neighbourhood.

There are a lot of results devoted to controllability question for control
systems in connection with the existence of closed or ‘almost closed’ orbits:
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see, for instance, [2], [3], [5], [6], [10], [11]. Before we quote a few of them,
we will fix some notation.

If Z1, . . . , Zl are vector fields on a manifold M then we denote by
Lie{Z1, . . . , Zl} the Lie algebra generated by Z1, . . . , Zl. For x ∈ M , let
Liex{Z1, . . . , Zl} stand for the subspace in TxM spanned by all vectors v
of the form v = W (x) where W ∈ Lie{Z1, . . . , Zl}. Recall that a point x is
Poisson stable for a vector field X if for every neighbourhood V of x, and
for every T > 0, there exist t1, t2 > T such that gt1X(x) ∈ V and g−t2X (x) ∈ V .
Also, a vector field X defined on a Riemannian manifold is conservative if
gtX preserves the natural measure on M . In both cases gtX stands for the
flow of X.

Let us start by quoting two results on global controllability.

Theorem (Bonnard [2]). Consider an affine control system ẋ = X +∑k
i=1 uiYi on an analytic manifold M , where

∑k
i=1 |ui| ≤ 1 and the fields

X,Yi, i = 1, . . . , k, are supposed to be analytic. Assume that the set of points
which are Poisson stable for X is dense in M . Then the system in question
is controllable if and only if dim Liex{X,Y1, . . . , Yk} = dimM for every
x ∈M .

Note that in the particular case when all orbits of X are closed, the set
of points that are Poisson stable for X coincides with the whole of M .

Theorem (Lobry [11]). Consider an affine control system ẋ = X +∑k
i=1 uiYi on a compact analytic manifold M , where

∑k
i=1 |ui| ≤ 1 and the

fields X,Yi, i = 1, . . . , k, are supposed to be analytic and conservative. Then
the system in question is controllable if and only if dim Liex{X,Y1, . . . , Yk}
= dimM for every x ∈M .

The last two theorems are not exact quotations but can be deduced
respectively from [2] and [11].

There are also results concerning local controllability. The result which
is closest to our interests is as follows.

Theorem (Nam and Arapostathis [12]). Consider a smooth control sys-

tem ẋ = X+
∑k

i=1 uiYi, u ∈ U , where U is a neighbourhood of 0 in Rk, and

let Γ be a closed orbit for X. Define Gi = {adiX.Yj : j = 1, . . . , k}, and
suppose that there exists a point x ∈ Γ such that

(1.1) rank{X,G0,G1, . . .}(x) = dimM.

Then Γ has a controllable neighbourhood.

There are also other results (cf. for instance [5]), but they use stronger
assumptions than those of [12]. As will be seen at the end of this paper, the
assumptions in [12] can be weakened.
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1.2. Statement of main results. The goal of this paper (which gener-
alizes some ideas from sub-Lorentzian geometry that were developed by the
author in [8]) is to prove two theorems: one concerns the existence of closed
orbits, the other states necessary and sufficient conditions for local control-
lability around closed orbits. In order to state them, we first formulate our
assumptions. Again, let

(Σ) ẋ = f(x, u) = fu(x), u ∈ U ,
be a control system, where M is a smooth manifold, U is (an arbitrary)
subset of Rk, f is a continuous mapping M ×U → TM , and fu is a smooth
vector field on M for every u ∈ U . By a closed orbit of (Σ) we mean every
trajectory Γ : [a, b]→ M of (Σ) such that a < b, Γ (a) = Γ (b) and Γ|(a,b) is
not a constant curve. Our main assumption is

(1.2) dim Liex{fu : u ∈ U} = n = dimM

for every x ∈ M . As above, our controls are bounded measurable and the
final time is not fixed. It follows from known results for ODEs with measur-
able right hand side (see e.g. [4]) that under such assumptions, to every con-
trol u : [0, T ]→ U and every point x0 ∈M there corresponds an admissible
trajectory of (Σ) starting from x0 (and defined maybe on a smaller interval).

The first result that we will prove is the following:

Theorem 1.1. Consider the control system (Σ) for which (1.2) holds,
and suppose that M is compact. Then the system (Σ) has closed orbits.

Let x ∈ M and take its neighbourhood U . Denote by A+(x, U) the
reachable set from x in U for the system (Σ), i.e. the set of endpoints of all
trajectories of (Σ) that start from x, are generated by measurable controls
(the final time is not fixed), and are contained in U . The sets A+(x,M)
will be denoted simply by A+(x). Let us remark that controllability of (Σ)
means that A+(x) = M for every x ∈M .

Suppose now that Γ is a closed orbit for (Σ). If a point x belongs to Γ
then Γx will stand for the set Γ \ {x}.

Definition 1.1. We say that the closed orbit Γ is regular if there exists
x ∈ Γ and a neighbourhood U of x such that

(1.3) Γx ∩ A+(x, U) ⊂ intA+(x, U).

Our second result can be stated as follows.

Theorem 1.2. Suppose that Γ is a closed orbit for the system (Σ) for
which (1.2) holds. Then the following conditions are equivalent:

(i) Γ is a regular closed orbit;
(ii) (Σ) is locally controllable at every point of Γ ;

(iii) Γ has a controllable neighbourhood.
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Note that in Theorem 1.2, M is not supposed to be compact, and Γ need
not be smooth. Theorem 1.2 slightly generalizes results from [12], as will be
clarified at the end of the paper.

2. Proofs of theorems. Along with (Σ) we will consider the system

(Σ−) ẋ = −f(x, u), u ∈ U .
Let us record a simple observation which will be useful later.

Lemma 2.1. γ(t) is a trajectory of the system (Σ) generated by a control
u(t) if and only if γ̃(t) = γ(−t) is a trajectory of the system (Σ−) generated
by the control ũ(t) = u(T (u)− t).

Denote by A−(x, U) the corresponding reachable set from x for (Σ−).
At the same time let A+

0 (x), A−0 (x) be the reachable sets for (Σ) and (Σ−),
respectively, generated by piecewise constant controls. Recall now Krener’s
theorem [9] which states that under the assumption (1.2) we have the in-

clusion A+
0 (x) ⊂ intA+(x) (and the same for A−0 (x)). Therefore intA+(x)

and intA−(x) are non-empty for every x ∈M . Notice also that

x ∈ intA+(x) ∩ intA−(x)

for any x ∈M . Indeed, by Krener’s theorem

x ∈ A+
0 (x) ⊂ intA+

0 (x) ⊂ intA+(x),

and the same for A−(x). Now it is easy to show that

Lemma 2.2. y ∈ intA+(x) if and only if x ∈ intA−(y).

Proof. Suppose that y ∈ intA+(x). Since y ∈ intA−(y), it follows that
intA+(x) ∩ intA−(y) 6= ∅. Taking a z ∈ intA+(x) ∩ intA−(y) we see that
there exist admissible curves for the system (Σ): σ1 joining x to z, and
(cf. Lemma 2.1) σ2 joining z to y. Reversing time in σ1 ∪ σ2 we obtain
an admissible curve σ̃ for (Σ−) that joins y to x, and which belongs to
intA−(y) from a certain time t0 > 0 on (for instance take t0 corresponding
to z). But this means that σ̃ stays in intA−(y) for all t > t0, and therefore
x ∈ intA−(y).

To prove Theorem 1.1, we need to establish the following proposition.

Proposition 2.1. Under assumption (1.2) the family {intA+(x)}x∈M
forms an open covering of M .

Proof. Fix x ∈ M and consider a trajectory γ, γ(0) = x, of (Σ−) such
that γ(t) ∈ intA−(x) for a t > 0; by our assumptions such a curve exists.
Now, the above lemmas imply that x ∈ intA+(γ(t)), proving the assertion.

Proof of Theorem 1.1. By Proposition 2.1 there are x1, . . . , xm ∈ M
such that M =

⋃m
i=1 intA+(xi). Assume that m = 1, i.e. M = intA+(x1).
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Take a trajectory γ : (−ε, ε) → M of (Σ) such that γ(0) = x1. Since
γ(−ε/2) ∈ A+(x1), there exists a trajectory, say, σ of (Σ) connecting x1 to
γ(−ε/e2). Then the concatenation γ|[−ε/2] ∪ σ is a closed orbit for (Σ). As-
sume now that m > 1. Then we have x1 ∈ intA+(xi1) for an i1 ∈ {1, . . . ,m},
xi1 ∈ intA+(xi2) for i2 ∈ {1, . . . ,m} etc. This yields an infinite sequence
{xik}∞k=1 with xik ∈ intA+(xik+1

) and ik ∈ {1, . . . ,m}. Therefore we can find
positive integers l and p such that xil ∈ intA+(xil+1

), xil+1
∈ intA+(xil+2

),
. . . , xil+p

∈ intA+(xil).

Now we turn to the proof of Theorem 1.2. First of all let us list im-
mediate properties of closed orbits. If Γ is a closed orbit for (Σ) then
A+(x1)= A+(x2) for every x1, x2 ∈ Γ . Moreover,A+(x) = A+(Γ ) for x ∈ Γ ,
where A+(Γ ) =

⋃
x∈Γ A+(x). Since Γ , under a suitable parameterization,

is a closed orbit also for (Σ−), we have A−(x1) = A−(x2) = A−(Γ ) for any
x1, x2 ∈ Γ . Let us also recall a standard fact from control theory asserting
that the reachable set A±(x) is open if and only if x ∈ intA±(x).

Next we prove

Lemma 2.3. If Γ is a regular closed orbit for (Σ) then the set A+(Γ ) is
open.

Proof. Take an x ∈ Γ and U such that (1.3) is satisfied, i.e. Γx ∩
A+(x, U) ⊂ intA+(x, U). Clearly intA+(x, U) ⊂ intA+(x). Choose y in
Γx ∩A+(x, U) and an open set V such that y ∈ V ⊂ A+(x). For any z ∈ V
one can construct a trajectory of (Σ) joining y to z: we connect y to x by
a suitable segment of Γ , and then x to z (z ∈ A+(x)). In this way we have
proved that V ⊂ A+(y), i.e. y ∈ intA+(y). This proves thatA+(y) = A+(Γ )
is open, by the properties listed prior to the statement of the lemma.

The last stage in proving Theorem 1.2 is the following observation.

Lemma 2.4. Let Γ be a closed orbit for (Σ). Then Γ is regular for (Σ)
if and only if it is regular for (Σ−) (under a suitable parameterization).

Proof. By symmetry, it is enough to prove one implication. Suppose
that Γ is regular for (Σ) and choose x1 and U such that Γx1 ∩A+(x1, U) ⊂
intA+(x1, U) ⊂ intA+(x1). Select x2 ∈ Γx1 ∩ A+(x1, U) and denote by
[x1, x2] the segment of Γ bounded by x1 and x2. By Lemma 2.3, for every
z ∈ [x1, x2] we have x2 ∈ intA+(z) which, by Lemma 2.2, means that z is in
intA−(x2). Thus [x1, x2] ⊂ intA−(x2), and consequently Γx2∩A−(x2,W ) ⊂
intA−(x2,W ) for a suitably chosen neighbourhood W of x2, proving that
Γ is regular for (Σ−).

Corollary 2.1. If Γ is a regular closed orbit for (Σ) then the set
A−(Γ ) is open.
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In order to finish the proof of Theorem 1.2 it is enough to notice that
if Γ is a regular orbit for (Σ) then U = A+(Γ ) ∩ A−(Γ ) is a controllable
neighbourhood. Indeed, take arbitrary x, y ∈ U . Since x ∈ A−(Γ ), there
exists a trajectory σ1 of (Σ) joining x to a point of Γ . Similarly, since
y ∈ A+(Γ ), there exists a trajectory σ2 of (Σ) joining a point of Γ to y.
Finally, it is clear that any two points belonging to Γ can be joined by
a trajectory of (Σ). The concatenation of σ1, a suitable piece of Γ and σ2
connects x to y and does not leave U . Indeed, take for instance σ1. Obviously
it is contained in A−(Γ ). But because x ∈ A+(Γ ), there exists an admissible
curve joining a point of Γ to x, which implies that σ1 is contained in A+(Γ ).
Similarly we show that σ2 does not leave U .

3. An example. Before we state our example let us recall the concept
of geometric optimality and so-called singular extremals for the system (Σ).
So fix a trajectory γ : [0, T ]→ U of (Σ), U being an open subset of M , which
is generated by a control ũ : [0, T ]→ U . We say that γ (or ũ) is geometrically
optimal in U if γ([0, T ]) ⊂ ∂UA+(γ(0), U); here ∂U denotes the boundary
operator with respect to U . On the other hand, γ : [0, T ]→ M is called an
extremal if there exists an absolutely continuous p : [0, T ] → T ∗M (called
an extremal lift) such that p(t) ∈ T ∗γ(t)M \ {0} for every t, and such that if

we set Hu(x, p) = 〈p, fu(x)〉, then

(i) (γ̇(t), ṗ(t)) =
−−−→
Hũ(t)(γ(t), p(t)) a.e. on [0, T ], where

−→
Hu is the

Hamiltonian vector field on T ∗M corresponding to the function
(x, p)→ Hu(x, p),

(ii) Hũ(t)(γ(t), p(t)) = 0 on [0, T ], and
(iii) Hũ(t)(γ(t), p(t)) = maxu∈U Hu(γ(t), p(t)) a.e. on [0, T ].

It follows from [1] that a necessary condition for geometric optimality
in the above sense (corresponding to a free time problem) is that γ be an
extremal. Now, an extremal γ(t) generated by a control ũ with values in
intU is called a singular extremal if there exists an extremal lift p(t) such
that additionally

(iv) ∂Hu(γ(t),p(t))
∂u |u=ũ(t) = 0 for every t.

It is a standard fact that if γ is a geometrically optimal trajectory of (Σ)
generated by a control u : [0, T ] → intU with values in intU , then γ is a
singular trajectory of (Σ).

Consider now a control affine system

(3.1) ẋ = X + uY, |u| ≤ 1,

defined on a manifold M . Fix a point x0 and a time interval [0, T ]. Let
γ be the trajectory of X starting at x0; in other words γ is a trajectory
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of our control system generated by the control u0(t) ≡ 0. Next, consider
the so-called endpoint map ΦT,x0 , i.e. the mapping which to each control
u : [0, T ] → [−1, 1] assigns the point ΦT,x0(u) = γu(T ), where γu is the
trajectory of (3.1) that starts from x0 and is generated by u. It can be
proved (see e.g. [3]) that

im du0Φ
T,x0 = span{Y (γ(T )), (adkX.Y )(γ(T )) : k = 1, 2, . . .},

where adX.Y = [X,Y ], and adk+1X.Y = [X, adkX.Y ], k = 1, 2, . . . . It is
known (see again e.g. [3]) that γ is not a singular trajectory for (3.1) if and
only if

(3.2) dim span{Y (γ(T )), (adkX.Y )(γ(T )) : k = 1, 2, . . .} = dimM.

Now let us take a closer look at the result from [12] cited in the Introduc-
tion, applied to the system (3.1). Suppose that Γ is a closed orbit of X and
fix an x ∈ Γ . If (1.1) is satisfied at x then (3.2) does not have to be satisfied,
as explained in [12]. On the other hand assume that (3.2) is satisfied at x.
Then of course (1.1) is also satisfied and, by the above remark, Γ is not
a singular trajectory. Consequently, it is not geometrically optimal from x,
and consequently it is a regular closed orbit for (3.1). Thus the satisfaction
of (3.2) implies that Γ is a regular closed orbit.

Now, we are going to present a simple construction of a closed trajectory
Γ which satisfies neither (3.2) nor (1.1), but anyway is a regular closed orbit.

To this end consider

W = {(x1, x2, x3) : x22 + x23 < 1, 0 ≤ x1 ≤ 2π} ⊂ R3.

Let us introduce the following equivalence relation on W : (x1, x2, x3) ∼
(x′1, x

′
2, x
′
3) if and only if x2 = x′2, x3 = x′3, and either x1 = 0, x′1 = 2π, or

x1 = 2π, x′1 = 0. Consider the factorization p : W →M = W/∼. The space
M is a 3-dimensional manifold which in an obvious way can be embedded
in R3. Let

X̃ =
∂

∂x1
+ xk2

∂

∂x3
, Ỹ =

∂

∂x2
, k ≥ 3,

be vector fields on R3. After factorization they are transformed to vector
fields

(3.3) X = p∗X̃, Y = p∗Ỹ

on M . Now denote by (Σ) the control system (3.1) on M where X and Y
are defined by (3.3). It is easily seen that the image under p of the x1-axis,
denoted by Γ , is a closed and singular trajectory for (Σ). Indeed, its extremal
lift is given by λ(t) = (tmod 2π, 0, 0, 0, 0, 1).

Define a rank 2 distribution H on M by letting H = span{X,Y }. If x is
a point in M and l is a positive integer, then we will write H l

x for the span
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of all vectors of the form

[X1, [X2, . . . , [Xi−1, Xi] . . .]](x),

where X1, . . . , Xi are smooth local sections of H defined near x, with i ≤ l.
Now it is not difficult to see that if S = {x2 = 0}, then H is a contact
distribution on M \ S, i.e. H2

x = TxM whenever x ∈ M \ S. It can also be
seen that H has the following bracket properties on S: H l

x ⊂ Hx, 1 ≤ l ≤ k,
and Hk+1

x = TxM whenever x ∈ S.

All this permits us to conclude that, as is explained in [7], (Σ) is an
affine control system induced by the generalized Martinet sub-Lorentzian
structure of Hamiltonian type of order k. Suppose that k is odd. It follows
from [7] that for every x0 ∈ Γ there exists a neighbourhood U of x0 and
coordinates x̃1, x̃2, x̃3 on U , with x̃1(x0) = x̃2(x0) = x̃3(x0) = 0, such that
S ∩U = {x̃2 = 0}, Γ ∩U = {x̃2 = x̃3 = 0} and A+(x0, U) = A1 ∪A2, where

A1 = {x ∈ U : η1(x̃1(x), x̃2(x), x̃3(x)) ≤ 0, x̃1(x) ≥ 0, x̃3(x) ≥ 0},
A2 = {x ∈ U : η2(x̃1(x), x̃2(x), x̃3(x)) ≤ 0, x̃1(x) ≥ 0, x̃3(x) ≤ 0},

with

η1(x̃1, x̃2, x̃3) = x̃3 +
1

2k
(x̃1 + x̃2)

(
x̃k2 −

1

2k
(x̃1 + x̃2)

k

)
+O(rk+2),

η2(x̃1, x̃2, x̃3) = −x̃3 −
1

2k
(x̃1 − x̃2)

(
x̃k2 +

1

2k
(x̃1 − x̃2)k

)
+O(rk+2);

here r = (x̃21 + x̃22 + x̃23)
1/2.

Since η1(x̃1, 0, 0) < 0 and η2(x̃1, 0, 0) < 0 (we choose U to be sufficiently
small), it is seen that Γx0 ∩ U ⊂ intA+(x0, U) and Γ is a regular closed
orbit. At the same time one easily sees that

[X̃, Ỹ ] = −kxk−12

∂

∂x3
,

which yields adl X̃.Ỹ = 0 for all l ≥ 2, meaning that (1.1) does not hold at
any point of Γ .
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