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Summary. The celebrated 1967 pole assignment theory of W. M. Wonham for linear
finite-dimensional control systems has been applied to various stabilization problems both
of finite and infinite dimension. Besides existing approaches developed so far, we propose
a new approach to feedback stabilization of linear systems, which leads to a clearer and
more explicit construction of a feedback scheme.

1. Introduction. Since the celebrated pole assignment theory [7] for
linear control systems of finite dimension appeared, the theory has been ap-
plied to various stabilization problems, both of finite and infinite dimension,
such as the one with boundary output/boundary input scheme (see, e.g., [5]
and the references therein).

The symbol H,, n=1,2,..., hereafter will denote a finite-dimensional
Hilbert space with dim H,, = n, equipped with inner product (-,-), and
norm || - ||. The symbol || - ||, is also used for the £ (H,,)-norm. Let A, B,
and C be operators in .Z(H,), Z(CN; H,), and Z(H,;C"), respectively.
Given A, C, and any set of n complex numbers, Z = {(;}1<i<n, the problem
is to seek a suitable B such that o(A + BC) = Z. Or, given A and B, its
algebraic counterpart is to seek a C' such that o(A + BC) = Z. Stimulated
by the result of 7], various approaches and algorithms for computation of
B or C have been proposed (see, e.g., [2-4]). As long as the author knows,
however, each approach needs much preparation and background in linear
algebra to achieve stabilization and determine the necessary parameters.
Explicit realizations of B or C sometimes seem complicated. One reason is
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no doubt the complexity of the process of determining B or C that exactly
satisfy the relation o(A + BC) = Z.

Let us describe our control system: The system, consisting of a state
x(-) € Hy, output y = Cz € CV, and input u € CV, is described by a linear
differential equation in H,,

d
(1.1) d—i =Ax+ Bu, y=Cz, z(0)=u1x0€ H,.

Here,
N
Bu = Zukbk for u = (uy ... uy)T e CV,
k=1

Cr = ({z,c1)n - <$7CN>n)T forxz € Hy,,

(...)T being the transpose of vectors or matrices. The vectors ¢ € H,, denote
given weights of the observation (output); and by, € H,, are actuators to be
constructed. By setting u = y in ([L.1]), the control system yields a feedback
system,

(1.2) % =(A+ BC)x, z(0)=x0€ Hy.

According to the choice of a basis for H,, the operators A, B, and C are
identified with matrices of suitable size.

Let us assume that o(A)NCy # (), so that the system with u = 0 is
unstable. Given a p > 0, the stabilization problem for the finite-dimensional
control system is to seek a B or a C such that

(1.3) |efAFBOY|| < conste ™, t > 0.

The pole assignment theory [7] plays a fundamental role in the above prob-
lem, and has been applied so far to various linear systems. The theory is
stated as follows: Let Z = {(j}i<i<n be any set of n complex numbers,
where some (; may coincide. Then there exists an operator B such that
o(A+ BC) = Z if and only if the pair (C, A) is observable. Thus, if the set
Z is chosen such that max¢cz Re(, say —u1 (= Re(1), is negative, and if
there is no generalized eigenspace of A+ BC' corresponding to (1, we obtain
the decay estimate .

Now we ask: Do we need all information on o(A + BC) for stabiliza-
tion? In fact, to obtain the decay estimate , it is not necessary to
designate all elements of the set Z. What is really necessary is the num-
ber —u = max¢,cz Re(;, say = Re(1, and the spectral property that ¢y
does not allow any generalized eigenspace; the latter is the requirement that
no factor of algebraic growth in time is added to the right-hand side of
. In fact, when an algebraic growth is added, the decay property be-
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comes a little worse, and the constant (> 1) in increases. The above
operator A + BC' also appears, as a pseudo-substructure, in stabilization
problems for infinite-dimensional linear systems such as parabolic or re-
tarded systems (see, e.g., [5]): These systems are decomposed into two, and
understood as composite systems consisting of two states; one belongs to
a finite-dimensional subspace, and the other to an infinite-dimensional one.
It is impossible, however, to manage the infinite-dimensional substructures.
Thus, no matter how precisely the finite-dimensional spectrum o(A + BC')
could be assigned, it does not exactly dominate the whole structure of infi-
nite dimension. In other words, the assigned spectrum of finite dimension is
not necessarily a subset of the spectrum of the infinite-dimensional feedback
control system.

In view of the above observations, our aim is to develop a new approach
much simpler than in the existing literature, which allows us to construct
a desired operator B or a set of actuators by ensuring the decay in
a simpler and more explicit manner (see just below Lemma 2.2). The
result is, however, not so sharp as in [7] in the sense that it does not generally
provide the precise location of the assigned eigenvalues @ From the above
viewpoint of infinite-dimensional control theory, however, the result would
be meaningful enough, and satisfactory for stabilization.

Our approach is based on a Sylvester equation of finite dimension. Syl-
vester equations in infinite-dimensional spaces have also been studied ex-
tensively (see, e.g., [1] for equations involving only bounded operators), and
even unboundedness of the given operators is allowed [5]. The Sylvester
equation in this paper is of finite dimension, so that there arises no diffi-
culty caused by the complexity of infinite dimension. Given a positive integer
s and vectors &, € Hs, 1 < k < N, let us consider the Sylvester equation
in Hp,:

XA-MX=5C, =Ze%(CV;H,), where

(1.4) _ N TN
:u:Zukgk foru=(uy...uy)" € C".

Here, M denotes a given operator in .Z(H,), and & vectors to be designed
in Hs. A possible solution X would belong to .Z(H,; Hs). The approach
via Sylvester equations is found, e.g., in [2H4], where, by setting n = s,
a condition for the existence of the bounded inverse X ! € #(H,,) is sought.
Choosing an M such that o(M) C C_, it is then proved that

A—(X'5)c=X""MX, oX'MX)=0o(M)cCC._,

(*) In the case where we can choose N = 1, our result exactly coincides with the
standard pole assignment theory in [7] (see our Proposition 2.3).
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the left-hand side of which means a desired perturbed operator. The proce-
dure of its derivation is, however, rather complicated, and the choice of the
&, is unclear. In fact, X ~! might not exist for some &y.

Our new approach is rather different. Let us characterize the operator A
n . There is a set of eigenpairs {—\;, ;;} with the following properties:

(i) o(A) ={- ;1 <i<n' (<n)}, \i # A for i # j; and
(i) Apij = =Xipij + D gy Wik, 1 < i <, 1< j < m.

Let P_,, be the projector in H,, corresponding to the eigenvalue —\;. Then
we see that P_y,u = Z;Zl u;jp;j for uw € Hy. The restriction of A onto the
invariant subspace P_y,H,, is, in the basis {¢i1,..., Yim,}, represented by
the m; x m; upper triangular matrix —A;, where

—a};j, i<k,
AilGry =9 Mo j=k,
0, j> k.

If we set A; = A\; + N;, the matrix N; is nilpotent, that is, N;"* = 0. The
minimum integer n such that ker N* = ker Ni”H, denoted as l;, is called
the ascent of —\; — A. It is well known that the ascent [; coincides with the
order of the pole —\; of the resolvent (A — A)~!. The Laurent expansion of
(A — A)~! in a neighborhood of the pole —\; € o(A) is expressed as

Ly

71 )\+>\ —I-Z)\—i-/\ j» where
(1.5) = X (C 41
L<mi, Kj=-— | >———1d(, j=0+1,42, ...
™ aaes E M)

Note that K_1 = P_y,. The set {¢;j; 1 <i<n/,1<j <m;} forms a basis
for H,. Each z € H, is uniquely expressed as ¢ = Z” z;jpi;. Let T be a

bijection, defined as Tx = (z11 12 ... xn/mn,)T. Then A is identified with
the upper triangular matrix —A;
(1.6) TAT ' = —A = —diag (A; ... Ay).

We turn to the operator M in . Let n;5, 1 < i <n,1 <35 < 4,
be an orthonormal basis for H,. Then necessarily s = > | ¢; > n. Every
vector v € Hy is expressed as v = >, Z?;l vijNij, where vi; = (v, 1ij)s.
Let {u;}7_; be a set of positive numbers such that 0 < 1 < -+ < pp, and
set

n Zl‘ n ei
(L7) Mv==> " muvim; for v=> Y wvymj, vij=(0,n;)s

i=1 j=1 i=1 j=1
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It is apparent that (i) o(M) = {—pu;}7; and (ii) (ui+M)ni; = 0,1 < i < mn,
1 < j < ¥¢;. The operator M is self-adjoint, and negative-definite,

n Mg
(Mv,v)s = *ZZMH%‘F < —pa vz

i=1 j=1
Let @Q_,, be the projector in H; corresponding to the eigenvalue —u; €
o(M), say Q_,,v = 2?;1 vy for v =37, ;vijnij. We put an additional
condition on M in (1.7):

(1.8) o(A) No(M) = 0.

Assuming ((1.8)), we derive our first result. Since the proof is carried out in
exactly the same manner as in [5], it is omitted.

PROPOSITION 1.1. Suppose that the condition (1.8) is satisfied. Then the
Sylvester equation (1.4)) admits a unique operator solution X € £ (Hy; Hy).
The solution X is expressed as

Xu=—=|A-M)T2Ch-A) T udr =~ > QECOH-A)u

2mi
r AEa(M)

= Z Q*uiEC(Mi + A)_lua
=1

where I' denotes a Jordan contour encircling o(M) in its inside, with o(A)
outside I'. The above first expression is the so called Rosenblum formula [1].

Our main results are stated as Theorem 2.1 and Lemma 2.2 in the next
section, where a more explicit and concrete expression than ever before of
a set of stabilizing actuators by in is obtained. As we see in the next
section, an advantage of considering the operator X € Z(H,; Hs) with
s > n is that the bounded inverse (X*X)~! is ensured under a reasonable
assumption on the operator =. A numerical example is also given. Finally,
Proposition 2.3 is stated, where our feedback scheme exactly coincides with
the standard pole assignment theory [7] in the case where we can choose
N =1.

2. Main results. We assume that o(A) N Cy # (), so that the semi-
group €', t > 0, is unstable. We construct suitable actuators b, € H, in
such that e!(ATBC) has a preassigned decay rate, say —/i1 (see )
The operator (C' CA ... CA" )T belongs to £ (H,; C™"). Recall that the
observability condition on the pair (C,A) is that it is injective, in other
words, ker(C' CA ... CA" 1T = {0}. Throughout the section, the condi-
tion is assumed in the Sylvester equation . Then we obtain one of
the main results:
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THEOREM 2.1. Assume that
2.1) ker (C CA ... cA"H)T = {0},
' kerQ_,, = ={0}, 1<i<n.

Then ker X = {0}.

Proof. Let Xu = 0. In view of Proposition 1.1, we see that

Q- ZC (i +A) lu=0, 1<i<n.

Since ker Q_,, 5 = {0}, 1 <i < n, by (2.1)), we obtain

C’(,ui+A)_1u:0, 1<i<n, or
<(ui+A)_1u,ck>n =0, 1<k<N,1<i<n.
Set fr(\u) = (A + A)7lu,e)n. By recalling that T(A — A)~1T-1 =
(A + A)7L (see (1.6), fu(A;u) is rewritten as (A + A) " Tu, (T~ *ci)cn.
Each element of the n x n matrix (A + A)~! is a rational function of \;
its denominator is a polynomial of order n, and the numerator at most of
order n — 1. This means that each fi(A\;u) is a rational function of A, the
denominator of which is a polynomial of order n, and the numerator of order

n — 1. Since the numerator of f; has at least n distinct zeros p;, 1 < i < n,
by (2.2]), we conclude that

fk’()‘au) = <()\+A>_1U,Ck>n:0, —)\E,O(A), 1<k<N.
Let ¢ € p(A), and set A, = ¢ — A. In view of the identity
A+A =AM+ AT = AT - (NN +A)TTAT

(2.2)

let us introduce a series of rational functions fk()\; u), l=0,1,..., as
!
0(y.,\ — ) iy JEA ) _
fk()‘vu)_fk()‘au)7 k+ ()‘7u)_ N+ c ) Z_O)la-'--

It is easily seen that

~

—(I+1—1)

(2.3)  fiesu) = ((A+A) A, ) U, C)ns

=1
and
fLsu) =0, Ae—p(A)\{-c}, 1<E<N,1>0.

In view of the Laurent expansion (1.5 of (A — A)~! in a neighborhood of
—\;, we obtain

0= fr(Au)
l; [es)
<K_]uck
= —  E—— A+ N)H{K; 1<k<N
S S, 12k
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in a neighborhood of \;. Calculation of the residue of fi(\;u) at A; implies
that

(K_qu,cp)n = (P_au,cp)n =0, 1<i<n/,1<k<N, or

(2.4) ) '
CP_),u=0, 1<i<n.

As for fL(A;u), I > 1, we have a similar expression in a neighborhood of \;,

l; e’

(K_ A u, ¢ ; _
L\ u) Z ])\ ) k> Z(—)\—i- MK A uy )
j=1 7=0
l
)\ + C C S+ Z)ua Ck)n =0

by (2.3). Note that K_lAglu = P_\,A-'u = AZ'P_, u. Calculation of the
residue of f}(\;u) at A; similarly implies that
(K 1 A7 u ep)n = (AZ'P_yu ) =0, 1<i<n/, 1<k<N, or
CA'P yu=0, 1<i<n/,1>1.
Combining these with the above relation , we see that
(2.5) (C CA7Y ... cA;YTP yu=0, 1<i<n
It is clear that ker (C CA ... CA" )T =ker (C CA. ... CA? )T, where
A, = ¢ — A. Thus, by the first condition of (2.1), it is easily seen that
ker (C CA7Y ... CAZ"NT —ker (C CA ... A HT = {0}.
Thus, immediately implies that P_y,u = 0 for 1 < i < n/, and finally
that u =0. m
By Theorem 2.1, there is a positive constant such that
| Xulls > const ||ul|,, Yu € Hy.

The derivation of the above positive lower bound of || Xu|s is due to a
specific nature of finite-dimensional spaces. The operator X*X € Z(H,,) is
self-adjoint, and positive-definite. In fact, by the relation

const Han < HXuH2 (Xu, Xu)s = (X" Xu,u)p < | X* Xu||n|ltn,

we see that || X*Xul|, > const ||u||,. Thus the bounded inverse (X*X)te
Z(H,,) exists. We go back to the Sylvester equation (l.4). Setting X*X =
2 € L(H,) and X*MX = .# € £(H,), we obtain the relation

A—(X*X)IX*MX = (X*X)"'X*=C, or
N

A— <';Ck>ne%71X*€k =2 7.
k=1
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Both operators 2~ and .# are self-adjoint, but 2 ~!.# is not. The following
assertion is the second of our main results, and leads to a stabilization
result:

LEMMA 2.2. Assume that ([2.1)) is satisfied. Then o(Z ~*.4) is con-
tained in RY . Actually,

(2.6) M =maxo(Z L) < —p.
In addition, there is no generalized eigenspace for any \ € o(2 L. 4).

REMARK. By Lemma 2.2, we obtain a decay estimate

(2.7) lexpt(A — (X*X) "' X*ZC)||n = |exp (2 A)|n

< conste it ¢ >0.
In fact, the last assertion of the lemma ensures that no algebraic growth
in time arises in the semigroup, regarding the greatest eigenvalue. Thus,

the set of actuators by, = —(X*X)"'X*¢, 1 < k < N, in other words,
B = —(X*X)"'X*Z, explicitly gives the desired set of actuators in (1.2)).

Proof of Lemma 2.2. Since 2 is positive-definite, we can find a non-

unique bijection Z € £ (H,,) such that
X =XX=U"U,
the so called Cholesky factorization. Define .#' = (%*) ' a#w—' =
(% VY%~ Then .#' € £ (H,) is a self-adjoint operator, enjoying
some properties similar to those of 2 ~1.Z. In fact, let A € o(2 ~14),
or (A2 — A )u =0 for some u # 0. Then, since
0=\U*U — My u=U \N— (U lU U u
=U N—M"Uu=0,
we see that A belongs to o(.#"). The converse relation is also correct, which
means that
o(2 ') =a(") CR.

Inequality (2.6|) is achieved by applying the well known min-max principle

to .#', or more directly by the following observation: Let A\ € (2 ~'.Z),
and (AZ" — A )u = 0 for some u # 0. Then

M Xul|? = M2 u,u)y = (Mu,u)y = (MXu, Xu)s < —pp || Xul?,

from which (2.6) immediately follows, since Xu # 0.

Next let us show that there is no generalized eigenspace for \ €
(X)), Let (N — Z 7' #)?u = 0 for some u # 0. Setting v =
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(A — Z L )u, we calculate

=X \N—2Z ) u= (N2 — M)
= (\NUU — M) 0=U* \N— (U)ol U U
=UN— M w=0, w=XUv,

or (A —.#")w = 0. On the other hand, since

w=Uv=UN-Z " Myw=UN-U"U)" " M)u
=N ()t YU uw=(\— MU,

we see that
0=W\—ttVw=\—M"VUu, Uu#0.

But .4’ is self-adjoint, so that there is no generalized eigenspace for \ €
o(.#"). Thus, Z u turns out to be an eigenvector of .Z’ for A\, and

0=U*\—MUw=U" N— (W) U Uu
= O\UU — My =N — M)

This means that v is an eigenvector of 2 ~1. for \. u

The following example shows that A\, = — max (2 ~!'.#) does not gen-
erally coincide with the prescribed p;.

EXAMPLE. Let n = 3, and set H3 = C3, so that A is a 3 x 3 matrix. Let
A = —diag (a a b), where a,b < 0 and a # b. Since n = 3, n' =2, my = 2,
and ma = 1, we choose N =2, s =6, Hg = C%, and ¢; = {5 = {3 = 2. As for
the operator C' € Z(C3;C?), let us consider the case, for example, where
=(101)T and ¢y = (01 0)T. The operator C is a 2 x 3 matrix given by
( é (1) (1)) The pair (C, A) is then observable, and the first condition of
is satisfied.
To consider the Sylvester equation , let {mij;1 <@ < 3, =
1 } be a standard basis for C% such that mp = (100 ... O)T, Ny =
10...0)% o = (001 ...0)T, ..., and 32 = (0...01)T. Set
= —dlag (11 p1 po po 43 ,ug) for 0 < p1 < pe < ps. In the operator
given by Su = u1&; + usls for (ug uz)’ € C?, set & = (101010)7T
and & = (010101)". Then we see that ker@Q_,,= = {0}, 1 < i < 3,
and the second condition of is satisfied. The unique solution X €
Z(C3;CY) to the Sylvester equation is a 6 x 3 matrix described as
(u= (u11 w12 ug1)t € C3)

[1] EA
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1 0 1
H1—a p1—b
1
(1 +A) ", en) 0 — 0
(11 + A) ", ca) " .
11
uo |G DT wen | =a ¥ my
u = 1 = U1z | »
(2 + )~ ) A SR
((us + A)~Lu, cq) 1 p2 —a 2
1
0 0
M3 —a

where (-, -) denotes the inner product in C3. Setting, for computational con-
venience,

( 1 1 1 >T < 1 1 1 )T
a: s /6 = ,
pr—a p2—a pz—a pr—b p2—b uz—>

1=(111)7,

we see that

’6’2 0 _<a7 >
(X" X)) = 5 0 B —{a,B)*/lal*> O ,
—(a, ) 0 |of?

where v = |a|?|3|? — (a, 8)2. By noting that X*& = ((a, 1) 0 (8,1))T and
X*& = (0 {(a,1) 0)T, the matrix A—(X*X)~!X*ZC is concretely described
as

—diag (a a b)
) 1B1* (e, 1) — (o, B)(B, 1) 0 1B1%(ax, 1) — (o, BY(B, 1)
> 0 (o, (181> = (o, B)?/]o|) 0
laf*(B,1) — (a, B){a, 1) 0 la?(B,1) — (a, B){ar, 1)

It is apparent that one of the eigenvalues of this matrix is the (2, 2)-element:

(a,1) (, . <a,ﬁ>2> e

gl of? jof?

and is certainly smaller than —u;. Note that

<M2,u1 w3 — 1

— 0, , [h3 — OQ.
(2 —a)* ~ (uz — 0)2) o 1t
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The other eigenvalues are those of the matrix

1 <1/3|2<a, 1) — (., (B, 1) +va  [B*a, 1) — (a, B)(B,1) )

(2.8) - ) .
T\ falf(8,1) = {a, B0, 1) [af*(B,1) = (o, B){e, 1) + b

To see that these eigenvalues are generally smaller than —puq, let us consider
a numerical example: Let (p1 p2 p3) = (234), a =0, and b = —1. Then

11 1\" 8 11 1\" al? 61 e 769
o= —_——_- - = _——_- - (0% = —_— = —_—
2 34)" 345)° 144 3600

3 13 47

_E7 </871>:@7

253
— 1121812 _ 2 _

One of the eigenvalues —a — (o, 1)/|a|? is —156/61 < —2 (= —u1). The
matrix (2.8)) is then

—1 (—1860 —1860

253 \ 3540  3287)°

the eigenvalues of which are denoted as (; and (2. Then (s < —156/61 <
(1 < —2=—p1,and thus =\, = (4 < —pu1 = —2.

We close this paper with the following remark: There is a case where A,
coincides with p;. Following [6], let us consider in the space H, = C"
(see ) All operators A, B, and C are then matrices of respective sizes.
Let o(A) consist only of simple eigenvalues, so that m; =1, 1 < i < n, and
n = n/. Thus we can choose N =1, ¢; = 1,1 < i < n, and thus s = n.
The operator in is written as A — (X*X)" 1 X*ZC, where Zu = u¢ for
u€Cl and C = (-,¢)p, c= (1 ... ¢;)T € C™. The observability condition
then turns out to be ¢; # 0, 1 < i < n. Let us consider the Sylvester equation
in H, = C". By setting ¢ = (11 ... 1)T € C", the solution X to (T.4)

is an n X n matrix, and has a bounded inverse:

X =&C, where

1 } 1,... ~
Q= ;? boLem, and C =diag(cy ... cp).
Bi—Aj j— 1,....n

Thus, A—(X*X)"1X*ZC = A—X~1¢cT. We have shown in [6] that, given a
set { i }1<i<n, there is a unique h € C” such that o(A—hc") = {—wit1<i<n,
and that h is expressed as
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h1 = A1 f(M)
ha 1 _éAQf()‘Q) n
- 1
h = h.s - gﬂzf(A3) ,  where f()\) = 1:[1(/\ — 1),
hy (—1)”—1éAnf()\n)
A= ] i=x), A= J] i—X), 1<k<n.
1<i<j<n 1<i<j<n
i,j#k

PROPOSITION 2.3. Suppose in Lemma 2.2 that o(A) consists only of
simple eigenvalues. Set € = (1 1 ... 1) as above. Then X~ 1¢ = h, and
thus A = p1. In fact, o(A — (X* X)L X*Z2C) = {—pi}1<i<n-

Proof. The relation X ~'¢ = h is rewritten as

1 = A1 f(M) Arf(M)

1 — 2 Asf () —Asf(A2)
~A|1] =aC =A3f () = Az f(As)

1 (=D)AL f (M) (=1)" " Anf (M)

In other words, we show that

" (=1 1A, )

j=1 Hi = A (=27 4)
=S (=177 I N —m) =4, 1<i<n
7j=1 1<t<n
22

The left-hand side of , a polynomial of \;, 1 < ¢ < n, is in particular
a polynomial of A\; of order n — 1, and the coefficient of )\711*1 is Ay =
[lo<icj<n(Ai = Aj). For j < k, let us compare the jth and the kth terms.
The following lemma is elementary:

LEMMA 2.4 ([6]). Let 1 < j < k < n. In the product Ay, a polynomial
of {N\itizk, set \j = A. Then,
Ay = (1)1 A,

In the left-hand side of (2.9), set A; = Ag. Since the terms other than
the jth and the kth contain the factor A; — A, they become 0. The kth term
is then
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(DA T] Q=) = (DM =014 T Ok — )

1<t<n 1<t<n
O£ 122
=—(=1)77'A; T] (\j = me) = —(the jth term).
1<4<n
22

Thus the left-hand side of (2.9) has factors A\; — A, j < k, and is written
as cA. But cA is a polynomial of A\; of order n — 1, and the coefficient of
A7 is ¢Ap. This means that ¢ = 1, and the proof of relation (2.9) is now
complete. m
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