DOI: 10.4064/ba62-1-9

SYSTEMS THEORY, CONTROL

Remarks on the Stabilization Problem for Linear Finite-Dimensional Systems

bv

Takao NAMBU

Presented by Jerzy ZABCZYK

Summary. The celebrated 1967 pole assignment theory of W. M. Wonham for linear finite-dimensional control systems has been applied to various stabilization problems both of finite and infinite dimension. Besides existing approaches developed so far, we propose a new approach to feedback stabilization of linear systems, which leads to a clearer and more explicit construction of a feedback scheme.

1. Introduction. Since the celebrated pole assignment theory [7] for linear control systems of finite dimension appeared, the theory has been applied to various stabilization problems, both of finite and infinite dimension, such as the one with boundary output/boundary input scheme (see, e.g., [5] and the references therein).

The symbol H_n , $n=1,2,\ldots$, hereafter will denote a finite-dimensional Hilbert space with dim $H_n=n$, equipped with inner product $\langle\cdot,\cdot\rangle_n$ and norm $\|\cdot\|_n$. The symbol $\|\cdot\|_n$ is also used for the $\mathscr{L}(H_n)$ -norm. Let A,B, and C be operators in $\mathscr{L}(H_n)$, $\mathscr{L}(\mathbb{C}^N;H_n)$, and $\mathscr{L}(H_n;\mathbb{C}^N)$, respectively. Given A,C, and any set of n complex numbers, $Z=\{\zeta_i\}_{1\leq i\leq n}$, the problem is to seek a suitable B such that $\sigma(A+BC)=Z$. Or, given A and B, its algebraic counterpart is to seek a C such that $\sigma(A+BC)=Z$. Stimulated by the result of [7], various approaches and algorithms for computation of B or C have been proposed (see, e.g., [2–4]). As long as the author knows, however, each approach needs much preparation and background in linear algebra to achieve stabilization and determine the necessary parameters. Explicit realizations of B or C sometimes seem complicated. One reason is

[87]

²⁰¹⁰ Mathematics Subject Classification: Primary 93D15; Secondary 93C35, 93B07. Key words and phrases: stabilization, pole assignment in linear systems, observability, static feedback scheme.

no doubt the complexity of the process of determining B or C that exactly satisfy the relation $\sigma(A + BC) = Z$.

Let us describe our control system: The system, consisting of a state $x(\cdot) \in H_n$, output $y = Cx \in \mathbb{C}^N$, and input $u \in \mathbb{C}^N$, is described by a linear differential equation in H_n ,

(1.1)
$$\frac{dx}{dt} = Ax + Bu, \quad y = Cx, \quad x(0) = x_0 \in H_n.$$

Here,

$$Bu = \sum_{k=1}^{N} u_k b_k \quad \text{for } u = (u_1 \dots u_N)^{\mathrm{T}} \in \mathbb{C}^N,$$
$$Cx = (\langle x, c_1 \rangle_n \dots \langle x, c_N \rangle_n)^{\mathrm{T}} \quad \text{for } x \in H_n,$$

 $(...)^{\mathrm{T}}$ being the transpose of vectors or matrices. The vectors $c_k \in H_n$ denote given weights of the observation (output); and $b_k \in H_n$ are actuators to be constructed. By setting u = y in (1.1), the control system yields a feedback system,

(1.2)
$$\frac{dx}{dt} = (A + BC)x, \quad x(0) = x_0 \in H_n.$$

According to the choice of a basis for H_n , the operators A, B, and C are identified with matrices of suitable size.

Let us assume that $\sigma(A) \cap \mathbb{C}_+ \neq \emptyset$, so that the system (1.1) with u = 0 is unstable. Given a $\mu > 0$, the *stabilization problem* for the finite-dimensional control system (1.2) is to seek a B or a C such that

(1.3)
$$||e^{t(A+BC)}||_n \le \operatorname{const} e^{-\mu t}, \quad t \ge 0.$$

The pole assignment theory [7] plays a fundamental role in the above problem, and has been applied so far to various linear systems. The theory is stated as follows: Let $Z = \{\zeta_i\}_{1 \leq i \leq n}$ be any set of n complex numbers, where some ζ_i may coincide. Then there exists an operator B such that $\sigma(A+BC)=Z$ if and only if the pair (C,A) is observable. Thus, if the set Z is chosen such that $\max_{\zeta \in Z} \operatorname{Re} \zeta$, say $-\mu_1$ (= $\operatorname{Re} \zeta_1$), is negative, and if there is no generalized eigenspace of A+BC corresponding to ζ_1 , we obtain the decay estimate (1.3).

Now we ask: Do we need all information on $\sigma(A + BC)$ for stabilization? In fact, to obtain the decay estimate (1.3), it is not necessary to designate all elements of the set Z. What is really necessary is the number $-\mu = \max_{\zeta_i \in Z} \operatorname{Re} \zeta_i$, say = $\operatorname{Re} \zeta_1$, and the spectral property that ζ_1 does not allow any generalized eigenspace; the latter is the requirement that no factor of algebraic growth in time is added to the right-hand side of (1.3). In fact, when an algebraic growth is added, the decay property be-

comes a little worse, and the constant (≥ 1) in (1.3) increases. The above operator A+BC also appears, as a pseudo-substructure, in stabilization problems for infinite-dimensional linear systems such as parabolic or retarded systems (see, e.g., [5]): These systems are decomposed into two, and understood as composite systems consisting of two states; one belongs to a finite-dimensional subspace, and the other to an infinite-dimensional one. It is impossible, however, to manage the infinite-dimensional substructures. Thus, no matter how precisely the finite-dimensional spectrum $\sigma(A+BC)$ could be assigned, it does not exactly dominate the whole structure of infinite dimension. In other words, the assigned spectrum of finite dimension is not necessarily a subset of the spectrum of the infinite-dimensional feedback control system.

In view of the above observations, our aim is to develop a new approach much simpler than in the existing literature, which allows us to construct a desired operator B or a set of actuators b_k ensuring the decay (1.3) in a simpler and more explicit manner (see (2.7) just below Lemma 2.2). The result is, however, not so sharp as in [7] in the sense that it does not generally provide the precise location of the assigned eigenvalues (1). From the above viewpoint of infinite-dimensional control theory, however, the result would be meaningful enough, and satisfactory for stabilization.

Our approach is based on a Sylvester equation of finite dimension. Sylvester equations in infinite-dimensional spaces have also been studied extensively (see, e.g., [1] for equations involving only bounded operators), and even unboundedness of the given operators is allowed [5]. The Sylvester equation in this paper is of finite dimension, so that there arises no difficulty caused by the complexity of infinite dimension. Given a positive integer s and vectors $\xi_k \in H_s$, $1 \le k \le N$, let us consider the Sylvester equation in H_n :

(1.4)
$$ZA - MX = \Xi C, \quad \Xi \in \mathcal{L}(\mathbb{C}^N; H_s), \quad \text{where}$$

$$\Xi u = \sum_{k=1}^N u_k \xi_k \quad \text{for } u = (u_1 \dots u_N)^{\mathrm{T}} \in \mathbb{C}^N.$$

Here, M denotes a given operator in $\mathcal{L}(H_s)$, and ξ_k vectors to be designed in H_s . A possible solution X would belong to $\mathcal{L}(H_n; H_s)$. The approach via Sylvester equations is found, e.g., in [2–4], where, by setting n = s, a condition for the existence of the bounded inverse $X^{-1} \in \mathcal{L}(H_n)$ is sought. Choosing an M such that $\sigma(M) \subset \mathbb{C}_-$, it is then proved that

$$A - (X^{-1}\Xi)C = X^{-1}MX, \quad \sigma(X^{-1}MX) = \sigma(M) \subset \mathbb{C}_{-},$$

⁽¹⁾ In the case where we can choose N=1, our result exactly coincides with the standard pole assignment theory in [7] (see our Proposition 2.3).

the left-hand side of which means a desired perturbed operator. The procedure of its derivation is, however, rather complicated, and the choice of the ξ_k is unclear. In fact, X^{-1} might not exist for some ξ_k .

Our new approach is rather different. Let us characterize the operator A in (1.4). There is a set of eigenpairs $\{-\lambda_i, \varphi_{ij}\}$ with the following properties:

(i)
$$\sigma(A) = \{-\lambda_i; 1 \le i \le n' \ (\le n)\}, \ \lambda_i \ne \lambda_j \text{ for } i \ne j; \text{ and } i \ne j$$

(ii)
$$A\varphi_{ij} = -\lambda_i \varphi_{ij} + \sum_{k < j} \alpha^i_{jk} \varphi_{ik}, \ 1 \le i \le n', \ 1 \le j \le m_i.$$

Let $P_{-\lambda_i}$ be the projector in H_n corresponding to the eigenvalue $-\lambda_i$. Then we see that $P_{-\lambda_i}u = \sum_{j=1}^{m_i} u_{ij}\varphi_{ij}$ for $u \in H_n$. The restriction of A onto the invariant subspace $P_{-\lambda_i}H_n$ is, in the basis $\{\varphi_{i1}, \ldots, \varphi_{im_i}\}$, represented by the $m_i \times m_i$ upper triangular matrix $-\Lambda_i$, where

$$\Lambda_i|_{(j,k)} = \begin{cases} -\alpha_{kj}^i, & j < k, \\ \lambda_i, & j = k, \\ 0, & j > k. \end{cases}$$

If we set $\Lambda_i = \lambda_i + N_i$, the matrix N_i is nilpotent, that is, $N_i^{m_i} = 0$. The minimum integer n such that $\ker N_i^n = \ker N_i^{n+1}$, denoted as l_i , is called the ascent of $-\lambda_i - A$. It is well known that the ascent l_i coincides with the order of the pole $-\lambda_i$ of the resolvent $(\lambda - A)^{-1}$. The Laurent expansion of $(\lambda - A)^{-1}$ in a neighborhood of the pole $-\lambda_i \in \sigma(A)$ is expressed as

(1.5)
$$(\lambda - A)^{-1} = \sum_{j=1}^{l_i} \frac{K_{-j}}{(\lambda + \lambda_i)^j} + \sum_{j=0}^{\infty} (\lambda + \lambda_i)^j K_j, \text{ where}$$

$$l_i \le m_i, \quad K_j = \frac{1}{2\pi i} \int_{|\zeta + \lambda_i| = \delta} \frac{(\zeta - A)^{-1}}{(\zeta + \lambda_i)^{j+1}} d\zeta, \quad j = 0, \pm 1, \pm 2, \dots$$

Note that $K_{-1} = P_{-\lambda_i}$. The set $\{\varphi_{ij}; 1 \leq i \leq n', 1 \leq j \leq m_i\}$ forms a basis for H_n . Each $x \in H_n$ is uniquely expressed as $x = \sum_{i,j} x_{ij} \varphi_{ij}$. Let T be a bijection, defined as $Tx = (x_{11} \ x_{12} \ \dots \ x_{n'm_{n'}})^{\mathrm{T}}$. Then A is identified with the upper triangular matrix $-\Lambda$;

(1.6)
$$TAT^{-1} = -\Lambda = -\operatorname{diag}(\Lambda_1 \ldots \Lambda_{n'}).$$

We turn to the operator M in (1.4). Let η_{ij} , $1 \leq i \leq n$, $1 \leq j \leq \ell_i$, be an orthonormal basis for H_s . Then necessarily $s = \sum_{i=1}^n \ell_i \geq n$. Every vector $v \in H_s$ is expressed as $v = \sum_{i=1}^n \sum_{j=1}^{\ell_i} v_{ij} \eta_{ij}$, where $v_{ij} = \langle v, \eta_{ij} \rangle_s$. Let $\{\mu_i\}_{1=1}^n$ be a set of positive numbers such that $0 < \mu_1 < \dots < \mu_n$, and set

(1.7)
$$Mv = -\sum_{i=1}^{n} \sum_{j=1}^{\ell_i} \mu_i v_{ij} \eta_{ij}$$
 for $v = \sum_{i=1}^{n} \sum_{j=1}^{\ell_i} v_{ij} \eta_{ij}$, $v_{ij} = \langle v, \eta_{ij} \rangle_s$.

It is apparent that (i) $\sigma(M) = \{-\mu_i\}_{i=1}^n$; and (ii) $(\mu_i + M)\eta_{ij} = 0, 1 \le i \le n$, $1 \le j \le \ell_i$. The operator M is self-adjoint, and negative-definite,

$$\langle Mv, v \rangle_s = -\sum_{i=1}^n \sum_{j=1}^{n_i} \mu_i |v_{ij}|^2 \le -\mu_1 ||v||_s^2.$$

Let $Q_{-\mu_i}$ be the projector in H_s corresponding to the eigenvalue $-\mu_i \in \sigma(M)$, say $Q_{-\mu_i}v = \sum_{j=1}^{\ell_i} v_{ij}\eta_{ij}$ for $v = \sum_{i,j} v_{ij}\eta_{ij}$. We put an additional condition on M in (1.7):

(1.8)
$$\sigma(A) \cap \sigma(M) = \emptyset.$$

Assuming (1.8), we derive our first result. Since the proof is carried out in exactly the same manner as in [5], it is omitted.

PROPOSITION 1.1. Suppose that the condition (1.8) is satisfied. Then the Sylvester equation (1.4) admits a unique operator solution $X \in \mathcal{L}(H_n; H_s)$. The solution X is expressed as

$$Xu = \frac{-1}{2\pi i} \int_{\Gamma} (\lambda - M)^{-1} \Xi C(\lambda - A)^{-1} u \, d\lambda = -\sum_{\lambda \in \sigma(M)} Q_{\lambda} \Xi C(\lambda - A)^{-1} u$$
$$= \sum_{i=1}^{n} Q_{-\mu_{i}} \Xi C(\mu_{i} + A)^{-1} u,$$

where Γ denotes a Jordan contour encircling $\sigma(M)$ in its inside, with $\sigma(A)$ outside Γ . The above first expression is the so called Rosenblum formula [1].

Our main results are stated as Theorem 2.1 and Lemma 2.2 in the next section, where a more explicit and concrete expression than ever before of a set of stabilizing actuators b_k in (1.2) is obtained. As we see in the next section, an advantage of considering the operator $X \in \mathcal{L}(H_n; H_s)$ with $s \geq n$ is that the bounded inverse $(X^*X)^{-1}$ is ensured under a reasonable assumption on the operator Ξ . A numerical example is also given. Finally, Proposition 2.3 is stated, where our feedback scheme exactly coincides with the standard pole assignment theory [7] in the case where we can choose N = 1.

2. Main results. We assume that $\sigma(A) \cap \mathbb{C}_+ \neq \emptyset$, so that the semi-group e^{tA} , $t \geq 0$, is unstable. We construct suitable actuators $b_k \in H_n$ in (1.2) such that $e^{t(A+BC)}$ has a preassigned decay rate, say $-\mu_1$ (see (1.7)). The operator $(C \ CA \ \dots \ CA^{n-1})^{\mathrm{T}}$ belongs to $\mathscr{L}(H_n; \mathbb{C}^{nN})$. Recall that the observability condition on the pair (C,A) is that it is injective, in other words, $\ker(C \ CA \ \dots \ CA^{n-1})^{\mathrm{T}} = \{0\}$. Throughout the section, the condition (1.8) is assumed in the Sylvester equation (1.4). Then we obtain one of the main results:

Theorem 2.1. Assume that

(2.1)
$$\ker (C \ CA \dots CA^{n-1})^{\mathrm{T}} = \{0\}, \\ \ker Q_{-\mu_i} \Xi = \{0\}, \quad 1 \le i \le n.$$

Then $\ker X = \{0\}.$

Proof. Let Xu = 0. In view of Proposition 1.1, we see that

$$Q_{-\mu_i} \Xi C(\mu_i + A)^{-1} u = 0, \quad 1 \le i \le n.$$

Since $\ker Q_{-\mu_i}\Xi = \{0\}, 1 \le i \le n$, by (2.1), we obtain

(2.2)
$$C(\mu_i + A)^{-1}u = 0, \quad 1 \le i \le n, \quad \text{or} \\ \langle (\mu_i + A)^{-1}u, c_k \rangle_n = 0, \quad 1 \le k \le N, \ 1 \le i \le n.$$

Set $f_k(\lambda; u) = \langle (\lambda + A)^{-1}u, c_k \rangle_n$. By recalling that $T(\lambda - A)^{-1}T^{-1} = (\lambda + \Lambda)^{-1}$ (see (1.6)), $f_k(\lambda; u)$ is rewritten as $\langle (\lambda + \Lambda)^{-1}Tu, (T^{-1})^*c_k \rangle_{\mathbb{C}^n}$. Each element of the $n \times n$ matrix $(\lambda + \Lambda)^{-1}$ is a rational function of λ ; its denominator is a polynomial of order n, and the numerator at most of order n-1. This means that each $f_k(\lambda; u)$ is a rational function of λ , the denominator of which is a polynomial of order n, and the numerator of order n-1. Since the numerator of f_k has at least n distinct zeros μ_i , $1 \le i \le n$, by (2.2), we conclude that

$$f_k(\lambda; u) = \langle (\lambda + A)^{-1} u, c_k \rangle_n = 0, \quad -\lambda \in \rho(A), \ 1 \le k \le N.$$

Let $c \in \rho(A)$, and set $A_c = c - A$. In view of the identity

$$(\lambda + A)^{-1} = A_c(\lambda + A)^{-1}A_c^{-1} = -A_c^{-1} + (\lambda + c)(\lambda + A)^{-1}A_c^{-1},$$

let us introduce a series of rational functions $f_k^l(\lambda; u), l = 0, 1, \dots$, as

$$f_k^0(\lambda; u) = f_k(\lambda; u), \qquad f_k^{l+1}(\lambda; u) = \frac{f_k^l(\lambda; u)}{\lambda + c}, \qquad l = 0, 1, \dots$$

It is easily seen that

$$(2.3) f_k^l(\lambda; u) = \langle (\lambda + A)^{-1} A_c^{-l} u, c_k \rangle_n - \sum_{i=1}^l \frac{1}{(\lambda + c)^i} \langle A_c^{-(l+1-i)} u, c_k \rangle_n,$$

and

$$f_k^l(\lambda;u)=0, \quad \ \lambda \in -\rho(A) \setminus \{-c\}, \ 1 \leq k \leq N, \ l \geq 0.$$

In view of the Laurent expansion (1.5) of $(\lambda - A)^{-1}$ in a neighborhood of $-\lambda_i$, we obtain

$$0 = f_k(\lambda; u)$$

$$= -\sum_{j=1}^{l_i} \frac{\langle K_{-j}u, c_k \rangle_n}{(-\lambda + \lambda_i)^j} - \sum_{j=0}^{\infty} (-\lambda + \lambda_i)^j \langle K_j u, c_k \rangle_n, \quad 1 \le k \le N,$$

in a neighborhood of λ_i . Calculation of the residue of $f_k(\lambda; u)$ at λ_i implies that

(2.4)
$$\langle K_{-1}u, c_k \rangle_n = \langle P_{-\lambda_i}u, c_k \rangle_n = 0, \quad 1 \le i \le n', \ 1 \le k \le N, \quad \text{or}$$
$$CP_{-\lambda_i}u = 0, \quad 1 \le i \le n'.$$

As for $f_k^l(\lambda; u)$, $l \ge 1$, we have a similar expression in a neighborhood of λ_i ,

$$f_k^l(\lambda; u) = -\sum_{j=1}^{l_i} \frac{\langle K_{-j} A_c^{-l} u, c_k \rangle_n}{(-\lambda + \lambda_i)^j} - \sum_{j=0}^{\infty} (-\lambda + \lambda_i)^j \langle K_j A_c^{-l} u, c_k \rangle_n$$
$$-\sum_{i=1}^l \frac{1}{(\lambda + c)^i} \langle A_c^{-(l+1-i)} u, c_k \rangle_n = 0$$

by (2.3). Note that $K_{-1}A_c^{-l}u = P_{-\lambda_i}A_c^{-l}u = A_c^{-l}P_{-\lambda_i}u$. Calculation of the residue of $f_k^l(\lambda; u)$ at λ_i similarly implies that

$$\langle K_{-1}A_c^{-l}u, c_k \rangle_n = \langle A_c^{-l}P_{-\lambda_i}u, c_k \rangle_n = 0, \quad 1 \le i \le n', \ 1 \le k \le N, \quad \text{or}$$
$$CA_c^{-l}P_{-\lambda_i}u = 0, \quad 1 \le i \le n', \ l \ge 1.$$

Combining these with the above relation (2.4), we see that

(2.5)
$$(C CA_c^{-1} \dots CA_c^{-(n-1)})^{\mathrm{T}} P_{-\lambda_i} u = 0, \quad 1 \le i \le n'.$$

It is clear that $\ker (C \ CA \ \dots \ CA^{n-1})^{\mathrm{T}} = \ker (C \ CA_c \ \dots \ CA_c^{n-1})^{\mathrm{T}}$, where $A_c = c - A$. Thus, by the first condition of (2.1), it is easily seen that

$$\ker (C \ CA_c^{-1} \ \dots \ CA_c^{-(n-1)})^{\mathrm{T}} = \ker (C \ CA \ \dots \ CA^{n-1})^{\mathrm{T}} = \{0\}.$$

Thus, (2.5) immediately implies that $P_{-\lambda_i}u=0$ for $1 \leq i \leq n'$, and finally that u=0.

By Theorem 2.1, there is a positive constant such that

$$||Xu||_s \ge \text{const } ||u||_n, \quad \forall u \in H_n.$$

The derivation of the above positive lower bound of $||Xu||_s$ is due to a specific nature of finite-dimensional spaces. The operator $X^*X \in \mathcal{L}(H_n)$ is self-adjoint, and positive-definite. In fact, by the relation

const
$$||u||_n^2 \le ||Xu||_s^2 = \langle Xu, Xu \rangle_s = \langle X^*Xu, u \rangle_n \le ||X^*Xu||_n ||u||_n$$
,

we see that $||X^*Xu||_n \ge \text{const } ||u||_n$. Thus the bounded inverse $(X^*X)^{-1} \in \mathcal{L}(H_n)$ exists. We go back to the Sylvester equation (1.4). Setting $X^*X = \mathcal{L}(H_n)$ and $X^*MX = \mathcal{M} \in \mathcal{L}(H_n)$, we obtain the relation

$$A - (X^*X)^{-1}X^*MX = (X^*X)^{-1}X^*\Xi C, \text{ or}$$

$$A - \sum_{k=1}^{N} \langle \cdot, c_k \rangle_n \mathcal{X}^{-1}X^*\xi_k = \mathcal{X}^{-1}\mathcal{M}.$$

Both operators $\mathscr X$ and $\mathscr M$ are self-adjoint, but $\mathscr X^{-1}\mathscr M$ is not. The following assertion is the second of our main results, and leads to a stabilization result:

LEMMA 2.2. Assume that (2.1) is satisfied. Then $\sigma(\mathcal{X}^{-1}\mathcal{M})$ is contained in \mathbb{R}^1_- . Actually,

$$(2.6) -\lambda_* = \max \sigma(\mathscr{X}^{-1}\mathscr{M}) \le -\mu_1.$$

In addition, there is no generalized eigenspace for any $\lambda \in \sigma(\mathcal{X}^{-1}\mathcal{M})$.

Remark. By Lemma 2.2, we obtain a decay estimate

(2.7)
$$\|\exp t(A - (X^*X)^{-1}X^*\Xi C)\|_n = \|\exp t(\mathscr{X}^{-1}\mathscr{M})\|_n < \operatorname{const} e^{-\mu_1 t}, \quad t > 0.$$

In fact, the last assertion of the lemma ensures that no algebraic growth in time arises in the semigroup, regarding the greatest eigenvalue. Thus, the set of actuators $b_k = -(X^*X)^{-1}X^*\xi_k$, $1 \le k \le N$, in other words, $B = -(X^*X)^{-1}X^*\Xi$, explicitly gives the desired set of actuators in (1.2).

Proof of Lemma 2.2. Since \mathscr{X} is positive-definite, we can find a non-unique bijection $\mathscr{U} \in \mathscr{L}(H_n)$ such that

$$\mathscr{X} = X^*X = \mathscr{U}^*\mathscr{U},$$

the so called Cholesky factorization. Define $\mathscr{M}' = (\mathscr{U}^*)^{-1} \mathscr{M} \mathscr{U}^{-1} = (\mathscr{U}^{-1})^* \mathscr{M} \mathscr{U}^{-1}$. Then $\mathscr{M}' \in \mathscr{L}(H_n)$ is a self-adjoint operator, enjoying some properties similar to those of $\mathscr{X}^{-1} \mathscr{M}$. In fact, let $\lambda \in \sigma(\mathscr{X}^{-1} \mathscr{M})$, or $(\lambda \mathscr{X} - \mathscr{M})u = 0$ for some $u \neq 0$. Then, since

$$0 = (\lambda \mathcal{U}^* \mathcal{U} - \mathcal{M}) u = \mathcal{U}^* (\lambda - (\mathcal{U}^*)^{-1} \mathcal{M} \mathcal{U}^{-1}) \mathcal{U} u$$

= $\mathcal{U}^* (\lambda - \mathcal{M}') \mathcal{U} u = 0$,

we see that λ belongs to $\sigma(\mathcal{M}')$. The converse relation is also correct, which means that

$$\sigma(\mathscr{X}^{-1}\mathscr{M}) = \sigma(\mathscr{M}') \subset \mathbb{R}^1.$$

Inequality (2.6) is achieved by applying the well known min-max principle to \mathcal{M}' , or more directly by the following observation: Let $\lambda \in \sigma(\mathcal{X}^{-1}\mathcal{M})$, and $(\lambda \mathcal{X} - \mathcal{M})u = 0$ for some $u \neq 0$. Then

$$\lambda \|Xu\|_s^2 = \lambda \langle \mathcal{X}u, u \rangle_n = \langle \mathcal{M}u, u \rangle_n = \langle MXu, Xu \rangle_s \le -\mu_1 \|Xu\|_s^2,$$

from which (2.6) immediately follows, since $Xu \neq 0$.

Next let us show that there is no generalized eigenspace for $\lambda \in \sigma(\mathcal{X}^{-1}\mathcal{M})$. Let $(\lambda - \mathcal{X}^{-1}\mathcal{M})^2 u = 0$ for some $u \neq 0$. Setting v = 0

 $(\lambda - \mathcal{X}^{-1}\mathcal{M})u$, we calculate

$$0 = \mathcal{X}(\lambda - \mathcal{X}^{-1}\mathcal{M})^2 u = (\lambda \mathcal{X} - \mathcal{M})v$$

= $(\lambda \mathcal{U}^* \mathcal{U} - \mathcal{M})v = \mathcal{U}^*(\lambda - (\mathcal{U}^*)^{-1}\mathcal{M}\mathcal{U}^{-1})\mathcal{U}v$
= $\mathcal{U}^*(\lambda - \mathcal{M}')w = 0$, $w = \mathcal{U}v$,

or $(\lambda - \mathcal{M}')w = 0$. On the other hand, since

$$w = \mathcal{U}v = \mathcal{U}(\lambda - \mathcal{X}^{-1}\mathcal{M})u = \mathcal{U}(\lambda - \mathcal{U}^{-1}(\mathcal{U}^*)^{-1}\mathcal{M})u$$
$$= (\lambda - (\mathcal{U}^*)^{-1}\mathcal{M}\mathcal{U}^{-1})\mathcal{U}u = (\lambda - \mathcal{M}')\mathcal{U}u,$$

we see that

$$0 = (\lambda - \mathcal{M}')w = (\lambda - \mathcal{M}')^2 \mathcal{U}u, \quad \mathcal{U}u \neq 0.$$

But \mathcal{M}' is self-adjoint, so that there is no generalized eigenspace for $\lambda \in \sigma(\mathcal{M}')$. Thus, $\mathcal{U}u$ turns out to be an eigenvector of \mathcal{M}' for λ , and

$$0 = \mathcal{U}^*(\lambda - \mathcal{M}')\mathcal{U}u = \mathcal{U}^*(\lambda - (\mathcal{U}^*)^{-1}\mathcal{M}\mathcal{U}^{-1})\mathcal{U}u$$
$$= (\lambda \mathcal{U}^*\mathcal{U} - \mathcal{M})u = (\lambda \mathcal{X} - \mathcal{M})u.$$

This means that u is an eigenvector of $\mathscr{X}^{-1}\mathscr{M}$ for λ .

The following example shows that $\lambda_* = -\max \sigma(\mathcal{X}^{-1}\mathcal{M})$ does not generally coincide with the prescribed μ_1 .

EXAMPLE. Let n=3, and set $H_3=\mathbb{C}^3$, so that A is a 3×3 matrix. Let $A=-\operatorname{diag}\,(a\ a\ b)$, where $a,b\leq 0$ and $a\neq b$. Since $n=3,\ n'=2,\ m_1=2,$ and $m_2=1$, we choose $N=2,\ s=6,\ H_6=\mathbb{C}^6,$ and $\ell_1=\ell_2=\ell_3=2.$ As for the operator $C\in\mathscr{L}(\mathbb{C}^3;\mathbb{C}^2)$, let us consider the case, for example, where $c_1=(1\ 0\ 1)^{\mathrm{T}}$ and $c_2=(0\ 1\ 0)^{\mathrm{T}}$. The operator C is a 2×3 matrix given by $\binom{1\ 0\ 1}{0\ 1\ 0}$. The pair (C,A) is then observable, and the first condition of (2.1) is satisfied.

To consider the Sylvester equation (1.4), let $\{\eta_{ij}; 1 \leq i \leq 3, j = 1, 2\}$ be a standard basis for \mathbb{C}^6 such that $\eta_{11} = (1\ 0\ 0\ \dots\ 0)^{\mathrm{T}}, \ \eta_{12} = (0\ 1\ 0\ \dots\ 0)^{\mathrm{T}}, \ \eta_{21} = (0\ 0\ 1\ \dots\ 0)^{\mathrm{T}}, \dots$, and $\eta_{32} = (0\ \dots\ 0\ 1)^{\mathrm{T}}$. Set $M = -\operatorname{diag}(\mu_1\ \mu_1\ \mu_2\ \mu_2\ \mu_3\ \mu_3)$ for $0 < \mu_1 < \mu_2 < \mu_3$. In the operator Ξ given by $\Xi u = u_1\xi_1 + u_2\xi_2$ for $(u_1\ u_2)^{\mathrm{T}} \in \mathbb{C}^2$, set $\xi_1 = (1\ 0\ 1\ 0\ 1\ 0)^{\mathrm{T}}$ and $\xi_2 = (0\ 1\ 0\ 1\ 0\ 1)^{\mathrm{T}}$. Then we see that $\ker Q_{-\mu_i}\Xi = \{0\}, \ 1 \leq i \leq 3,$ and the second condition of (2.1) is satisfied. The unique solution $X \in \mathscr{L}(\mathbb{C}^3;\mathbb{C}^6)$ to the Sylvester equation (1.4) is a 6×3 matrix described as $(u = (u_{11}\ u_{12}\ u_{21})^{\mathrm{T}} \in \mathbb{C}^3)$

$$Xu = \begin{pmatrix} \langle (\mu_1 + A)^{-1}u, c_1 \rangle \\ \frac{\langle (\mu_1 + A)^{-1}u, c_2 \rangle}{\langle (\mu_2 + A)^{-1}u, c_1 \rangle} \\ \frac{\langle (\mu_2 + A)^{-1}u, c_2 \rangle}{\langle (\mu_3 + A)^{-1}u, c_1 \rangle} \\ \langle (\mu_3 + A)^{-1}u, c_2 \rangle \end{pmatrix} = \begin{pmatrix} \frac{1}{\mu_1 - a} & 0 & \frac{1}{\mu_1 - a} \\ 0 & \frac{1}{\mu_1 - a} & 0 \\ \frac{1}{\mu_2 - a} & 0 & \frac{1}{\mu_2 - b} \\ 0 & \frac{1}{\mu_2 - a} & 0 \\ \frac{1}{\mu_3 - a} & 0 & \frac{1}{\mu_3 - b} \\ 0 & \frac{1}{\mu_3 - a} & 0 \end{pmatrix} \begin{pmatrix} u_{11} \\ u_{12} \\ u_{21} \end{pmatrix},$$

where $\langle \cdot, \cdot \rangle$ denotes the inner product in \mathbb{C}^3 . Setting, for computational convenience,

$$\alpha = \left(\frac{1}{\mu_1 - a} \frac{1}{\mu_2 - a} \frac{1}{\mu_3 - a}\right)^{\mathrm{T}}, \quad \beta = \left(\frac{1}{\mu_1 - b} \frac{1}{\mu_2 - b} \frac{1}{\mu_3 - b}\right)^{\mathrm{T}},$$

$$1 = (1 \ 1 \ 1)^{\mathrm{T}},$$

we see that

$$(X^*X)^{-1} = \frac{1}{\gamma} \begin{pmatrix} |\beta|^2 & 0 & -\langle \alpha, \beta \rangle \\ 0 & |\beta|^2 - \langle \alpha, \beta \rangle^2 / |\alpha|^2 & 0 \\ -\langle \alpha, \beta \rangle & 0 & |\alpha|^2 \end{pmatrix},$$

where $\gamma = |\alpha|^2 |\beta|^2 - \langle \alpha, \beta \rangle^2$. By noting that $X^* \xi_1 = (\langle \alpha, 1 \rangle \ 0 \ \langle \beta, 1 \rangle)^T$ and $X^* \xi_2 = (0 \ \langle \alpha, 1 \rangle \ 0)^T$, the matrix $A - (X^* X)^{-1} X^* \Xi C$ is concretely described as

 $-\operatorname{diag}(a\ a\ b)$

$$-\frac{1}{\gamma} \left(\begin{array}{c|c} |\beta|^2 \langle \alpha, 1 \rangle - \langle \alpha, \beta \rangle \langle \beta, 1 \rangle & 0 & |\beta|^2 \langle \alpha, 1 \rangle - \langle \alpha, \beta \rangle \langle \beta, 1 \rangle \\ \hline 0 & \langle \alpha, 1 \rangle (|\beta|^2 - \langle \alpha, \beta \rangle^2 / |\alpha|^2) & 0 \\ \hline |\alpha|^2 \langle \beta, 1 \rangle - \langle \alpha, \beta \rangle \langle \alpha, 1 \rangle & 0 & |\alpha|^2 \langle \beta, 1 \rangle - \langle \alpha, \beta \rangle \langle \alpha, 1 \rangle \end{array} \right).$$

It is apparent that one of the eigenvalues of this matrix is the (2,2)-element:

$$-a - \frac{\langle \alpha, 1 \rangle}{\gamma} \left(|\beta|^2 - \frac{\langle \alpha, \beta \rangle^2}{|\alpha|^2} \right) = -a - \frac{\langle \alpha, 1 \rangle}{|\alpha|^2},$$

and is certainly smaller than $-\mu_1$. Note that

$$0 < \lambda_* - \mu_1 \le \frac{1}{|\alpha|^2} \left(\frac{\mu_2 - \mu_1}{(\mu_2 - a)^2} + \frac{\mu_3 - \mu_1}{(\mu_3 - a)^2} \right) \to 0, \quad \mu_2, \mu_3 \to \infty.$$

The other eigenvalues are those of the matrix

$$(2.8) \qquad -\frac{1}{\gamma} \begin{pmatrix} |\beta|^2 \langle \alpha, 1 \rangle - \langle \alpha, \beta \rangle \langle \beta, 1 \rangle + \gamma a & |\beta|^2 \langle \alpha, 1 \rangle - \langle \alpha, \beta \rangle \langle \beta, 1 \rangle \\ |\alpha|^2 \langle \beta, 1 \rangle - \langle \alpha, \beta \rangle \langle \alpha, 1 \rangle & |\alpha|^2 \langle \beta, 1 \rangle - \langle \alpha, \beta \rangle \langle \alpha, 1 \rangle + \gamma b \end{pmatrix}.$$

To see that these eigenvalues are generally smaller than $-\mu_1$, let us consider a numerical example: Let $(\mu_1 \ \mu_2 \ \mu_3) = (2\ 3\ 4), \ a = 0$, and b = -1. Then

$$\alpha = \left(\frac{1}{2} \ \frac{1}{3} \ \frac{1}{4}\right)^{T}, \quad \beta = \left(\frac{1}{3} \ \frac{1}{4} \ \frac{1}{5}\right)^{T}, \quad |\alpha|^{2} = \frac{61}{144}, \quad |\beta|^{2} = \frac{769}{3600},$$
$$\langle \alpha, \beta \rangle = \frac{3}{10}, \quad \langle \alpha, 1 \rangle = \frac{13}{12}, \quad \langle \beta, 1 \rangle = \frac{47}{60},$$
$$\gamma = |\alpha|^{2} |\beta|^{2} - \langle \alpha, \beta \rangle^{2} = \frac{253}{518400}.$$

One of the eigenvalues $-a - \langle \alpha, 1 \rangle / |\alpha|^2$ is $-156/61 < -2 (= -\mu_1)$. The matrix (2.8) is then

$$\frac{-1}{253} \begin{pmatrix} -1860 & -1860 \\ 3540 & 3287 \end{pmatrix},$$

the eigenvalues of which are denoted as ζ_1 and ζ_2 . Then $\zeta_2 < -156/61 < \zeta_1 < -2 = -\mu_1$, and thus $-\lambda_* = \zeta_1 < -\mu_1 = -2$.

We close this paper with the following remark: There is a case where λ_* coincides with μ_1 . Following [6], let us consider (1.2) in the space $H_n = \mathbb{C}^n$ (see (1.6)). All operators A, B, and C are then matrices of respective sizes. Let $\sigma(A)$ consist only of simple eigenvalues, so that $m_i = 1, 1 \le i \le n$, and n = n'. Thus we can choose N = 1, $\ell_i = 1, 1 \le i \le n$, and thus s = n. The operator in (2.7) is written as $A - (X^*X)^{-1}X^*\Xi C$, where $\Xi u = u\xi$ for $u \in \mathbb{C}^1$, and $C = \langle \cdot, c \rangle_n$, $c = (c_1 \dots c_n)^T \in \mathbb{C}^n$. The observability condition then turns out to be $c_i \ne 0, 1 \le i \le n$. Let us consider the Sylvester equation (1.4) in $H_s = \mathbb{C}^n$. By setting $\xi = (1 \ 1 \ \dots 1)^T \in \mathbb{C}^n$, the solution X to (1.4) is an $n \times n$ matrix, and has a bounded inverse:

$$X = \Phi \tilde{C}, \quad \text{where}$$

$$\Phi = \begin{pmatrix} \frac{1}{\mu_i - \lambda_j}; i \downarrow 1, \dots, n, \\ j \rightarrow 1, \dots, n \end{pmatrix} \quad \text{and} \quad \tilde{C} = \text{diag}(c_1 \dots c_n).$$

Thus, $A-(X^*X)^{-1}X^*\Xi C=A-X^{-1}\xi c^{\mathrm{T}}$. We have shown in [6] that, given a set $\{\mu_i\}_{1\leq i\leq n}$, there is a unique $h\in\mathbb{C}^n$ such that $\sigma(A-hc^{\mathrm{T}})=\{-\mu_i\}_{1\leq i\leq n}$, and that h is expressed as

$$h = \begin{pmatrix} h_1 \\ h_2 \\ h_3 \\ \vdots \\ h_n \end{pmatrix} = \frac{-1}{\Delta} \begin{pmatrix} \frac{1}{c_1} \Delta_1 f(\lambda_1) \\ -\frac{1}{c_2} \Delta_2 f(\lambda_2) \\ \frac{1}{c_3} \Delta_3 f(\lambda_3) \\ \vdots \\ (-1)^{n-1} \frac{1}{c_n} \Delta_n f(\lambda_n) \end{pmatrix}, \quad \text{where } f(\lambda) = \prod_{i=1}^n (\lambda - \mu_i),$$

$$\Delta = \prod_{1 \le i < j \le n} (\lambda_i - \lambda_j), \quad \Delta_k = \prod_{\substack{1 \le i < j \le n \\ i, j \ne k}} (\lambda_i - \lambda_j), \quad 1 \le k \le n.$$

PROPOSITION 2.3. Suppose in Lemma 2.2 that $\sigma(A)$ consists only of simple eigenvalues. Set $\xi = (1 \ 1 \ \dots \ 1)^T$ as above. Then $X^{-1}\xi = h$, and thus $\lambda_* = \mu_1$. In fact, $\sigma(A - (X^*X)^{-1}X^*\Xi C) = \{-\mu_i\}_{1 \le i \le n}$.

Proof. The relation $X^{-1}\xi = h$ is rewritten as

$$-\Delta \begin{pmatrix} 1\\1\\1\\1\\\vdots\\1 \end{pmatrix} = \Phi \hat{C} \begin{pmatrix} \frac{1}{c_1} \Delta_1 f(\lambda_1)\\ -\frac{1}{c_2} \Delta_2 f(\lambda_2)\\ \frac{1}{c_3} \Delta_3 f(\lambda_3)\\ \vdots\\ (-1)^{n-1} \frac{1}{c_n} \Delta_n f(\lambda_n) \end{pmatrix} = \Phi \begin{pmatrix} \Delta_1 f(\lambda_1)\\ -\Delta_2 f(\lambda_2)\\ \Delta_3 f(\lambda_3)\\ \vdots\\ (-1)^{n-1} \Delta_n f(\lambda_n) \end{pmatrix}.$$

In other words, we show that

$$(2.9) \qquad -\sum_{j=1}^{n} \frac{(-1)^{j-1} \Delta_{j} f(\lambda_{j})}{\mu_{i} - \lambda_{j}}$$

$$= \sum_{j=1}^{n} (-1)^{j-1} \Delta_{j} \underbrace{\prod_{\substack{1 \leq \ell \leq n \\ \ell \neq i}} (\lambda_{j} - \mu_{\ell})} = \Delta, \quad 1 \leq i \leq n.$$

The left-hand side of (2.9), a polynomial of λ_i , $1 \leq i \leq n$, is in particular a polynomial of λ_1 of order n-1, and the coefficient of λ_1^{n-1} is $\Delta_1 = \prod_{1 \leq i < j \leq n} (\lambda_i - \lambda_j)$. For j < k, let us compare the jth and the kth terms. The following lemma is elementary:

LEMMA 2.4 ([6]). Let $1 \leq j < k \leq n$. In the product Δ_k , a polynomial of $\{\lambda_i\}_{i \neq k}$, set $\lambda_j = \lambda_k$. Then,

$$\Delta_k = (-1)^{k-1+j} \Delta_j.$$

In the left-hand side of (2.9), set $\lambda_j = \lambda_k$. Since the terms other than the jth and the kth contain the factor $\lambda_j - \lambda_k$, they become 0. The kth term is then

$$(-1)^{k-1} \Delta_k \prod_{\substack{1 \le \ell \le n \\ \ell \ne i}} (\lambda_k - \mu_\ell) = (-1)^{k-1} (-1)^{k-1-j} \Delta_j \prod_{\substack{1 \le \ell \le n \\ \ell \ne i}} (\lambda_k - \mu_\ell)$$
$$= -(-1)^{j-1} \Delta_j \prod_{\substack{1 \le \ell \le n \\ \ell \ne i}} (\lambda_j - \mu_\ell) = -(\text{the } j \text{th term}).$$

Thus the left-hand side of (2.9) has factors $\lambda_j - \lambda_k$, j < k, and is written as $c\Delta$. But $c\Delta$ is a polynomial of λ_1 of order n-1, and the coefficient of λ_1^{n-1} is $c\Delta_1$. This means that c=1, and the proof of relation (2.9) is now complete. \blacksquare

Acknowledgments. The author thanks the anonymous referee for helpful comments on the original manuscript. The revised version has become more readable.

References

- [1] R. Bhatia and P. Rosenthal, How and why to solve the operator equation AX XB = Y, Bull. London Math. Soc. 29 (1997), 1–21.
- [2] S. P. Bhattacharyya and E. de Souza, Pole assignment via Sylvester's equation, Systems Control Lett. 1 (1982), 261–263.
- [3] E. K. Chu, A pole-assignment algorithm for linear state feedback, Systems Control Lett. 7 (1986), 289–299.
- [4] K. Datta, The matrix equation XA BX = R and its applications, Linear Algebra Appl. 109 (1988), 91–105.
- T. Nambu, Alternative algebraic approach to stabilization for linear parabolic boundary control systems, Math. Control Signals Systems 26 (2014), 119–144.
- [6] T. Nambu, Algebraic multiplicities arising from static feedback control systems of parabolic type, Numer. Funct. Anal. Optim. (2014) (online).
- W. M. Wonham, On pole assignment in multi-input controllable linear systems, IEEE Trans. Automat. Control 12 (1967), 660–665.

Takao Nambu
Department of Applied Mathematics
Graduate School of System Informatics
Kobe University
Nada, Kobe 657-8501, Japan
E-mail: nambu@kobe-u.ac.jp

Received November 18, 2013; received in final form June 30, 2014 (7947)