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Summary. Considering symmetric wavelet sets consisting of four intervals, a class of
non-MSF non-MRA wavelets for L?(R) and dilation 2 is obtained. In addition, we obtain
a family of non-MSF non-MRA H?2-wavelets which includes the one given by Behera [Bull.
Polish Acad. Sci. Math. 52 (2004), 169-178].

1. Introduction. In [4], Dai and Larson called a measurable subset W
of the real line a wavelet set if the characteristic function xw of W is equal
to v/2m times the modulus of the Fourier transform 1) for some orthonormal
wavelet ¢ on L?(R). A function 1 in L?(R) whose successive dilates by a
scalar d and all integral translates form an orthonormal basis for L?(R) is
called an orthonormal wavelet for L?>(R). An orthonormal wavelet whose
Fourier transform has the support of smallest possible measure is called a
minimally supported frequency (MSF) wavelet. In fact, an MSF wavelet 1)
is a wavelet which is associated with a wavelet set W in the sense that the
support of ¢ is W [1, 4-10]. One of the earliest wavelets, namely Shannon
wavelet for dilation 2, has W = [—27, —x] U [, 27] as its wavelet set, which
is a union of two disjoint intervals of R. Wavelet sets in R which are unions
of two disjoint intervals and also those which are unions of three disjoint
intervals have been characterized by Ha, Kang, Lee and Seo [6]. In addition,
they characterized those wavelet sets which are symmetric with respect to
the origin and consist of four intervals. These are precisely K, = K- U KT,
where
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or 22r+1
(1) K& = [27‘“—1 7'[‘,7T:| U [2’%, 2r+1_17r]’ K, =-K},
and r is a positive integer. Further, they considered H2-wavelet sets [1, 2,
6, 9] and characterized those H?-wavelet sets which have just one interval
and also those with two intervals. Indeed, H?-wavelet sets consisting of two
intervals are given by

2(k +1) 2k 2rtl (k4 1)
2 Ky = ’ U ) )
2) * [2r+1—1” 27’—1”] [27"—17r or il — |

where r € Nand 1 <k <2(2" —1).

Bownik and Speegle [3] characterized those dilations which admit non-
MSF wavelets considering higher dimensional wavelets. Exploiting the struc-
ture of H2-wavelet sets having two intervals, Behera [2] constructed a family
of non-MSF Hardy wavelets for H2(R) which, in addition, turns out to be
a family of non-MRA Hardy wavelets for H?(R) due to Theorem 4.2, estab-
lished in this paper.

With the help of symmetric wavelet sets consisting of four intervals, we
provide a class of non-MSF non-MRA wavelets for L?(R) and dilation 2 in
Section 3. Also, considering H?-wavelet sets with two intervals for r € N and
k=2'—1,1<1<r, we provide a family of non-MSF non-MRA H?2-wavelets
and dilation 2 in Section 4, which includes the one given by Behera.

2. Prerequisites. A pair ({Vj}jez, ) consisting of a family {V;} ez
of closed subspaces of L?(R) together with a function ¢ € Vj is called a
multiresolution analysis (MRA) if it satisfies the following conditions:

(a) Vj C Vjpq forall j € Z,
b) f € V;if and only if f(2(:)) € Vj41 for all j € Z,
) Njez Vi = {0},

c
d) Ujez V; = L*(R),
e) {¢(-—k):k € Z} is an orthonormal basis for Vj.

(
(
(
(

The function ¢ is called a scaling function for the given MRA. An MRA
determines a function v lying in the orthogonal complement of V; in Vi
which is an orthonormal wavelet for L?(R). Such a 1 is called an MRA
wavelet arising from the MRA ({V}};ez, ¢). The scaling function gives rise
to a 2m-periodic function, known as the low-pass filter corresponding to ¢,
which satisfies

V() = 42 mo(€/2+ 1) B(£/2)  for ace. £ € R.

A multiresolution analysis for H2(R) and H>-MRA wavelets can be de-
scribed similarly.
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For an orthonormal wavelet 1, the formula

=3 (2 (€ + 2km)))?

j=1keZ
defines the dimension function D, for 1p. We use the following characteriza-
tion which works for both MRA wavelets and H2.-MRA wavelets [9].

RESULT 2.1. A wavelet 1 € L*(R) (resp. ¢ € H%(R)) is an MRA (resp.
H2-MRA) wavelet iff Dy(€) =1 for almost every & € R.

Also, we use the following known characterization of orthonormal wavelets
for L?(R) and H?(R) (see [9]).
RESULT 2.2. A function € L*(R) (resp. ¢» € H?(R)) is an orthonormal
wavelet (resp. H%-wavelet) iff
O loll=1,
(ii) p(€) = Xjez W(2E)1? = xr(€) (resp. Xg+(§)) for a.c. § €R,

(iii) tq(€) = Y,50®(29€)(21(€ + 2qm)) = O for a.e. € € R and for
q €27+ 1.

3. Non-MSF non-MRA wavelets for L?(R). We write K,” = It U
JF, r € N, where

N or L 92r+1
— T
I = [2r+1_17r,7r} and J, [2 2T+1_17r].

Recall that I = —It, J- = —J}, and K, = J_ UI_ UL U J . First, we
have
LeEMMA 3.1. Under the above notation, for r,m € N, the following hold:
(a) 27™IF + 2" C JF,
(b) 27™I- — 2" C J,,
(c) 2 mlI+ﬂ2 mI+—@
(d) 2=™I- n2-(m- UI* =0,
(e) IJr + 2T+m7r - 2mfr
(f) I- —2rtmp c2m]j-.

Proof. This is straightforward.

From the characterization of wavelet sets stated below [4, 9], Lemma 3.3
can be easily obtained.

RESULT 3.2. A measurable set W C R is a wavelet set if and only if

(i) R= UneZ(W + 2nm) a.e.,
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(i) R =,cn(2"W) a.e.,
where U denotes disjoint union.

LEMMA 3.3. Define 7 : R — [0,27) by 7(x) = = + 2pw, where p is an
integer depending on x. Then:

(a) 7(E) = 71(F + 2kn) for any k € Z and E a measurable set in R,
(b) for any disjoint measurable sets E and F in R contained in a wavelet

set W, T(E)N7(F) = (.
THEOREM 3.4. For (r,m) € N x N, the function 1, ,, defined by

ran(€)
1/vV2 dfeerfumifu@ Lt +2rn)ul;
u2=mI-u (2 ™I —2"'m),
=4 —1/vV2 ifée(IF+2tmayu (I — 27,
i fEE (I — (2T +2m) Uy — (27 — 2')),
0 otherwise,
is a non-MSF non-MRA wavelet for L*(R).

Proof. By Lemma 3.1, it is easily seen that the sets used to define Jr,m(ﬁ )
are pairwise disjoint. To illustrate, we have 27 I~ N (21 —2"7w) = () by
Lemma 3.1(b) and (d). Now, we employ Result 2.2 to show that ), ,, is a
non-MSF wavelet for L?(R).

(i) Since
||7/)r,m||% = S |¢r,m(§)|2df
R
1 1 1 1 1 1 _
:2<1+2m+2m+1>|I;F|+2<1+W+W+1>|IT y

1 1
+ - _ I+ — I~
P 15| = g 1 = o 117
= LI+ L[+ 7+ 1| = 2,
it follows that [[1y |2 = 1.
(i) Since p(2§) = p(§) for a.e. £ € R, it suffices to show that p(§) = 1

on K,. If £ € It then by the definition of ¥, 2J¢ € supp Yr,m if and only
if j =0 or —m. Hence

6(6) = [ ©)F + [Bram (02 = (é) ; <¢1§> 1

Write
JEr=JF =@ ™+ 2" ) u (27 + 27 ).

T
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If €€ JF— (27 +277), then 27¢ € supp Jr,m if and only if j = 0. Hence

p(f) = ‘{p\r,m(g)ﬁ =1
If £ € 27™[F 4 277, then 27¢ € supp ﬁrm if and only if 7 = 0 or m. Hence

0(6) = G € + [Fpm(276)? = (\g) . (\‘é) 1

If £ € I7, then 2/¢ € supp {p\r,m if and only if j = 0 or —m. Hence

0(6) = G € + |G (2 ") = (;5)2 ; (é)g 1
Write

Jo=J -2 —-2"n)u 27" —2"7).
If €€ J- — (277 —2"m), then 2/¢ € supp ﬁr,m if and only if j = 0. Hence

p(&) = [rm (&) =1.
If £ €27™[- — 277, then 2/¢ € supp @,m if and only if 7 = 0 or m. Hence

0(6) = B € + B (@) = (%) ; (;;) 1

(iii) In view of t_4(&) = t4(& — 2¢gm), we will show that £,(£) = 0 a.e.,
where ¢ is a positive odd integer. The term Jr,m(ij) 121\T7m(2j (& +2qm)) is
nonzero when both 27¢ and 27(¢ + 2¢r) lie in the support of szn. From the
definition of v, ,, and Lemma 3.3, we observe that this is possible if either
2qg=2""1 or 27g = 27t™1 Since ¢ is odd, either j =r —1 and ¢ =1, or
j=r+m-—-1landg=1.Incase j=7r—1and g =1, for £ > 0, we have
29¢ € 27™[F so that 27(€ + 2qm) € 27™[F + 2"7 and hence 277™¢ € [F

r o

and 277™(¢ + 2qmr) € IF + 2"T™x. Thus

o= () () (B) D) =

For ¢ < 0, we have 2/¢ € 2 ™[~ — 2", so that 27(£ + 2¢qmw) € 271, and
hence 27t™M¢ € [- — 27 ™My and 277 (¢ + 2¢7) € 7. Thus

wo-(5)() - (D))

When j =7+ m — 1 and ¢ = 1, we prove that t,(£) = 0 along similar lines.

Next, to show that ;. ,, is a non-MRA wavelet, we make use of Result
2.1. We will show that Dy, .. # 1 on an interval of the real line.



38 A. Vyas

In case r > 2, Dy, . > 2 on the interval 2-(™*V [+ where m € N.
Indeed,

Dy, 1, (€) = [thrim (21 + [hrym (26 +27m)[ + [9hr (27 €)?
+ ’{/;nm(2m+1§ + 2r+mﬂ_)|2

and hence the assertion follows by noting that 26 € 2=™[F 2(£+2-2"27) €
27MIF 4 2'w, 2mFLe € [F and 2mTL(€ 4+ 2. 27727) € IF + 27T, where
¢ e 2 (mtlrt

In case 7 = 1, Dy, > 5/2 on the interval [57/2,87/3] C L = J;" —
(27™I; + 27). Observe that

Dy, ()= DD i@ (€ +2km)2 =3 3 (1, (27 (€ + 2km)) 2

j=1kezZ j=1kez—
+ 3 [Dn@OP + 30 S [ (2 (€ + 2km))
Jj=1 j=1kez+

For k € Z~ and 57 > 1, we have

00 R . R 5
S0 [Dim@ (€ + 2k 2 [$1.m(22(E — 2m) =
J=1 keZ-
for & € [57/2,87/3] C L, since 2%(¢ — 27) € [27,87/3] = LU (271} + 27).
If k=0, then 2/¢ € supp 1 1, iff j = 0, and we have

0
S [m@O = 1.

j=—o00

Therefore, we obtain

Dy, () = DD [rm(2(E + 2km))* = [1,m(276) 2
j=1

j=1kezZ

0
=1- Y [hm@OP =0
j=—00
for € € [57/2,87/3] C L.
If k € ZT, then 27 (¢ + 2km) ¢ supp sz\l,m for all j > 1, and we have

o0

SN [rm (26 + 2km))P =0

Jj=1kez+
for £ € [5w/2,87/3] C L.
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4. Non-MSF non-MRA wavelets for the Hardy space H?(R).
Recall that H?-wavelet sets with dilation 2 consisting of two intervals are
given by (2) in the introduction. For r € Nand k =2/ — 1, 1 <1 < r, we
have the following H?-wavelet sets with two intervals:

2l+1 2(21 _ 1) 2T+l(2l _ 1) 2r+l+2
o]

L _
. or —1 il

_ 7l l
r= g 1™ or 1 m| =1 UJ.

With the help of the following Lemma, we provide a class of non-MSF
non-MRA H2-wavelets which includes the one given by Behera.

LEMMA 4.1. Under the above notation, for r,m € N and an integer [
satisfying 1 <1 < r, the following hold:
(a) 27™IL 4 2Hlg C JL,
(b) 2=mItn2-(m=D1l — ¢
(c) Il 4 2Hmtlg com gl
Proof. This is straightforward.
THEOREM 4.2. For each (r,m) € N x N and an integer | satisfying 1 <
I <r, the function 1/1£=,m defined by
1/vV2 if certu2 mIlu (2 ™Il + 2 ),
—1/V/2 if € € IL 4+ 2tmtly
1 if £ (JL— (2 ™I+ 2 ),
0 otherwise,
is a non-MSF non-MRA wavelet for the Hardy space H*(R).
Proof. The proof that @bf,m is a non-MSF wavelet for H?(R) is similar

to the proof that 1., is a non-MSF wavelet for L?(R) in Theorem 3.4,
employing Result 2.2.

To show that L, is a non-MRA wavelet for H*(R), we use Result 2.1.
For r € N and an integer [ satisfying 1 <11 < r, Dy =2 on the interval

2=+ 1L where m € N. Indeed,
Dyi (&) 2 [}, 2617 + 1, (26 + 27 m) P + L, (27T

Vh (27 4 25 ) 2

DL (€) =

_|_

and hence the assertion follows by noting that 2¢ € 27™I! 2(£4-2-2/7 1) €
27mIl 4 ol g omHle ¢ L and 27 (¢ 4+ 2. 217 ) € Il 4 24 where
g2 (mthpt,
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