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Summary. Let f be a nonnegative submartingale and S(f) denote its square function.
We show that for any A > 0,

NB(S(f) 2 X) < Z £l

and the constant 7/2 is the best possible. The inequality is strict provided || f||1 # O.

1. Introduction. Let (£2,F,P) be a probability space, filtered by
(Fn)oly, a nondecreasing sequence of sub-o-algebras of F. Assume f =
(fn)o, is an adapted sequence of integrable real-valued random variables.
The difference sequence df = (df, )52, of f is given by the equations dfy = fo
and df, = fn, — fu—1, n =1,2,.... We define the square function of f by

k=0

and write || f|l, = sup,, || fnllp for p > 1.

In the present paper we deal with weak type inequalities for the square

function. As shown by Burkholder [2], if f is a martingale or nonnegative
submartingale, then

(1.1) AP(S(f) = A) <3|l
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Cox |5] showed that the best constant in the above inequality for real-valued
martingales f equals /e (it is worth mentioning that in the earlier paper [1]
Bollobas conjectures that this is the right choice). The purpose of this note
is to determine the optimal constant in (1.1) under the assumption that f
is a nonnegative submartingale.

THEOREM 1. If f is a nonnegative submartingale, then for any A > 0,
T
(12) AB(S(/) 2 X) < 3 Il

and the constant w/2 is the best possible. Furthermore, the inequality is strict
unless || f]|1 = 0.

A few words about the organization of the paper. The proof of the in-
equality (1.2) is based on Burkholder’s method, which translates the problem
of proving a given (sub-)martingale inequality to the problem of finding a
certain special function (for the description of the method, see e.g. [4] or [6]).
We construct the function and thus establish (1.2) in Section 2. In the last
section we show that the constant /2 cannot be replaced by a smaller one
and that (1.2) is strict in all nontrivial cases.

2. The proof of the inequality (1.2). Let us start with the following
auxiliary result.

LEMMA 1. For any z € (0,1) and d > —x such that (v +d)? + d* < 1
we have

V1—22— \/1 (x 4+ d)? — d? z+d

+ arcsin x — arcsin

— <0
x+d V1—d? —

Proof. Denote the left hand side of (2.1) by F(z,d). If we fix d and
differentiate with respect to x, we obtain

(2.1)

d(z +d)
V1—a?
—2d(z +d)
=y1—-2?2-2d(x+d)—V1—22— ———-,
v (z +d) Winer
which is nonnegative, due to the concavity of the function t — +/t. Therefore
the inequality F(z,d) < 0 will be established once we have shown that

F(—d+,d) < 0 for d < 0 and F(0+,d) < 0 for d > 0. Suppose first that
d < 0. Then

Fy(z,d)(z+d)?=+/1—(z+d)?—d>—1—22+

1 1
\/1—32_\/1—d2>d8<0'

F(~d+,d) =

d , s
N + arcsin(—d) = (S) <
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If d =0, then F(x,d) =0 for any x. Finally, if d > 0, then

1—+V1—2d? .
(2.2) F(0+,d) = ——— —arcsin Wiy
V1—-2s2 -1

d
:§(1_$2)(1+ 1_2;2) ds < 0.

The proof is complete. m

The crucial role in this paper is played by the functions U,V : [0, 00) X
[0,00) — R, given by

1—«/1—3:2—y2—:parcsinL if 22 +92 < 1,
U(z,y) = 1—y?
1 —72/2 if 22 492 > 1,

and V(x,y) = I{y>1y — mx/2.
The key properties of these functions are listed in the lemma below.

LEMMA 2. The functions U, V have the following properties.
(i) U is of class C' on (0,00) x (0, 00).
(ii) For any z,y > 0, we have
(2.3) Us(z,y) <0

(if x = 0, then we understand U,(0,y) as the limit Uy(0+,y)).
(iii) For any z,y > 0,

(2.4) Ulz,y) = V(x,y)
and
(2.5) U(z,y) <1—mz/2.
(iv) For any z,y > 0 and d > —x we have
(2.6) Uz +d,Vy?+d?) <U(z,y) + Ug(z,y)d
(again, if x = 0, then the partial derivative is understood as the
limit).
(v) For any z > 0,
(2.7) U(z,z) <0.

Furthermore, the inequality is strict if x > 0.

Proof. (i) A direct computation shows that

x
—arcsin ————— if 22 +9% < 1,
(2.8) Us(z,y) = V1-y?

—7/2 if 22 492 > 1,
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and
yvi=-z—y* o 5
== if 1
Uy(z,y) = 1— 2 ety <t
0 if 22 492 > 1.

Now it can be easily verified that both derivatives are continuous on (0, co) x
(0, 00).

(ii) This follows immediately from the formula for U, above.

(iii) Clearly, it suffices to show the inequalities on the set {(z,y) : z,y > 0,
22 + 92 < 1}. By (2.8) we have, for (x,y) in this set,

0
630<U(:U,y)—|—72rx> :72T—au1rcsinlac_y2 > 0.

Hence

and
T T

(iv) The inequality is easy if 22 + y? > 1: indeed, we have
T
the latter estimate being a consequence of (2.5). Suppose then that 22 + 3>

< 1.If (x +d)%? + (/92 + d?)? < 1, then the inequality (2.6) takes the form
z+d

/1_y2_d2
< \/1—x2—y2—(x+d)arcsinL.
V1—1y?

The first observation is that we may assume that y = 0: indeed, if this is
not the case, divide both sides by /1 — y? and substitute z := z/y/1 — 2,

d := d/y/1—y?. The second step is to note that, by continuity, we may
assume = + d > 0. Then the desired estimate is precisely (2.1). The only

remaining case is that 22 +y? < 1 and (z +d)? + (/2 + d2)? > 1; then the
inequality (2.6) is equivalent to

\/1—x2—y2+(x+d)(7r—arcsin$2> —1>0.
2 1/1—y

It is clear that it suffices to prove it for the least possible d, i.e., satisfying
d >0 and (z +d)? + (v/y? + d2)?> = 1. However, then the estimate follows

from continuity and the case 22 +y? < 1, (z+d)?+ (/32 + d?)? < 1 already
considered.

— /1= (z+d)?—y2—d?— (z+ d) arcsin
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(v) This is a consequence of (iv): let z = y = 0 to obtain U(d,d) <
U(0,0) + Uy (0+,0)d = U(0,0) = 0. Furthermore, for d > 0 the inequality is
strict: this is precisely (2.2). =

Now we are ready to prove the main estimate of the paper.

Proof of (1.2). Let f be any nonnegative submartingale. By homogeneity,
it suffices to show (1.2) for A = 1 only. First we will show that the process

(U(fn, Sn(f)))o, is a supermartingale. To this end, fix n > 1 and observe
that, by (2.6),

< U(fn—ly n—l(f)) + Ux(fn—la n—l(f))dfn

Both sides are integrable: indeed, one easily checks that |U(z,y)| < K+nz/2
for some absolute constant K; furthermore, U, (x,y) is bounded, in view of
(2.8). Therefore, applying the conditional expectation with respect to F,_1
and using (2.3) together with the submartingale property yields

E[U(fnv Sn(f)) ‘ fn—l] < U(fn—h Sn—l(f>) + Uﬂc(fn—la Sn—l(f))E(dfn ‘ fn—l)
<U(fn-1,Sn-1(f))-

Combined with (2.4), this will imply the inequality (1.2) for the submartin-

gales f of finite length (that is, satisfying P(df,, = dfp,4+1 = --- =0) =1 for

some n). Namely, for any n =0,1,2,..., we write

(29)  B(Su(f) 2 1) = 5 Efo = EV(fu, Su(f)

< EU(fna Sn(f)) < EU(fO, SO(f)) <0,
where in the last passage we have used the equality fo = So(f) and the
inequality (2.7). The final step is to let n — oo: for any € > 0, we have, by
(2.9) applied to the submartingale f/(1 — ¢),

(2.10) P(S(f) = 1) < lim P(Sn(f) >1-¢)
< lim ——— 2(1_ 5 Efy < 2( 3 [ae

Now let € — 0 to complete the proof. m

3. Strictness and sharpness

3.1. Strictness. Suppose | f|l1 > 0 and observe that if this is the case,
then with no loss of generality we may assume that P(fy > 0) > 0. Arguing
as in (2.9) and (2.10), we obtain

B(S(f) = 1) < ZIf | +EU (fo, So(F)).

It suffices to note that since fo = So(f) almost surely, it follows that
EU(fo,So(f)) <0, by Lemma 2(v). This yields the claim.
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3.2. Sharpness. Throughout this subsection we assume that the under-
lying probability space is the interval [0, 1] equipped with its Borel subsets
and Lebesgue’s measure. We will show that the constant is optimal even if we
restrict ourselves to the submartingales f satisfying S(f) > 1 almost surely.
One could show this by giving appropriate examples; however, we take the
opportunity here to provide a different proof.

Recall that the process f is called simple if it is of finite length (hence its
limit fo, exists almost surely) and for any n the variable f,, takes only a finite
number of values. For any (x,y), let Z(x,y) be the class of all nonnegative
simple submartingales f for which fy = x and y? — 22 + S?(f) > 1 almost
surely. Here the filtration is no longer fixed—it may be different for different
submartingales.

LEMMA 3. Let the function W : [0,00) x [0,00) — R be given by

Wiz,y) = inf Efy.
(2,9) et f

The function W has the following properties:
(i) For allxz >0,y € [0,1),

W(z,y) = V1-y>*W(z/\/1-y%0).

(3.1)
(ii) For all z,y,d > 0,
2)

(3.2 Wz +d, g2+ &) > W(z,y).

(iii) For all x,y > 0, a € (0,1) and any dy,ds > —x satisfying ady +
(1 - Oé)dg = 0,

(3.3) aW(w+d1, \/y? +d%> +(1- a)W(:v+d2, \/y? +d%) > Wi(x,y).

Proof. (i) Suppose f is a simple nonnegative submartingale. Then
f lies in Z(z,y) if and only if f' = f/y/1—y? belongs to the class
Z(z/\/1—192%0); indeed, fo = =z is equivalent to f) = x/y/1—y?, and
furthermore
v -2+ S (f) > 1

is equivalent to

1'2

1 — 2

+S8%(f) > 1.
This implies

W(z,y) = inf Efsy = inf Ev/1—y2f
fez(zy) freZ(x/y/1-y2,0)

VI WV 20,
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(ii) Suppose f € Z(xz+d, \/y? + d?) and consider a sequence f’ such that,
with probability 1, fy = z, df{ = d and df}, | = df,, for n = 1,2,.... Since
d > 0, f’ is a simple submartingale (with respect to its natural filtration)
and

V-t + SP(f) =+ P+ df P =P+ d = (@ d)? + SP(f) > L.
n=2
Hence f' € Z(x,y) and since f] = f,—1 for n =1,2,..., we have
W(x,y) < Eféo = Efoo.
As f € Z(z +d,\/y? + d?) was arbitrary, (3.2) follows.
(iii) We will use the so-called “splicing” argument; see e.g. [3| for details.
Let fM, £2) be two submartingales belonging to Z(x + di,\/y? + d?) and

Z(x + da2,\/y? + d3), respectively. Consider the process f such that (recall
that 2 = [0, 1))

fo=alpy, dfi =diljga) + d2la)
and, for w € (2,
dfn(w) = df')) (w/a) g o (@) + df? (@ = @) /(1 = @) T(a ()

for n = 2,3,.... It can be verified easily that f is a simple nonnegative
submartingale such that y? — 2% + S?(f)(w) equals

[v* +di — (2 + d1)* + S*(f V) (w/)]Tg o) («)
+[y* + d3 — (2 + d2)* + S*(fFP)((w — @)/ (1 = a)) Lo y(w) = L.

Thus f € Z(x,y). Moreover, by the construction, we have

foo(w) = [ (w/a) + [ ((w = a)/(1 - a)),

and since f(1), f(2) were arbitrary, the inequality (3.3) is satisfied. u
The lemma above is the tool to show that 7/2 in (1.2) is the best possible.

Sharpness of (1.2). In terms of the function W, the proof will be com-
plete if we show that W (0,0) < 2/7. Let N be a fixed (large) integer and
d=1/(N +1). By (3.2), applied to x = y = 0 and d = §, we have

(3.4) W(0,0) < W(4,0).
Now, forn € {1,..., N}, use (3.3) with x =nd, y = /nd, dy = —nd,d2 = ¢
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and o = 1/(n + 1) to obtain
21 242
W (nd, /i) < W(0, vVné? + n?s2) +nW((n+1)5,\/n+15)

n+1 n+1
_ V1 — nd? — n24? W(0,0) + nW((n+1)d,vn+1 5)’
n+1 n+1

where in the last passage we have exploited (3.1). This inequality yields

W(nd,id) _ W((n+ D ViT 1) V=P o
n n+1 ~ n(n+1) T

and combining this with (3.4), we get

W((N +1)5, VN +14) N V1= n2s2
N+1 w(©,0) Z )

(35)  W(0,0) <

Now we make two observations. First, we have W ((N + 1)d, VN +16) =
W (1,v/9) = 1. To see this, note that for any submartingale f € Z(1,/0) we
have Efy > Efy = 1, so W(1,v/§) > 1. On the other hand, the martingale
[ starting from 1 such that dfy = —Ijg1/2) + I[1/2,1] and df, = 0 for n > 2,
belongs to Z(1,v/§) and satisfies Ef,, = Efy = 1. The second observation is

that
N

1 1
2 nn+1) N+
—n(n+1) +
Therefore, (3.5) can be rewritten in the form

VvV1—n2§2-1

N
W(0,0) < 14+W(0,0)) 4 Sl 105
n=1

Now if we let N — oo (so § — 0), then the sum above converges to
Sé(\/ 1 —22—1)2=2dz = 1—7/2 and then the inequality becomes W (0,0) <
2/m. This completes the proof. m
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