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Summary. We show how to reduce the assumptions in consistency strength used to prove
several theorems on universal indestructibility.

In [3], the first author and Hamkins introduced the concept of univer-
sal indestructibility and established several theorems concerning this notion,
most prominently the relative consistency of universal indestructibility for
both supercompactness and strong compactness. In [1], the first author ex-
tended this work and showed the relative consistency of two strongly com-
pact cardinals with universal indestructibility for both supercompactness
and strong compactness. All of these results were proven using a high-jump
cardinal, a very strong notion reflected by almost hugeness.

The purpose of this paper is to reduce the consistency strength used
to prove each of these theorems from a high-jump cardinal to something
reflected by this notion which we will call a cardinal Woodin for supercom-
pactness. Specifically, we prove the following two theorems.

THEOREM 1. Universal indestructibility for supercompactness in the pres-
ence of a supercompact cardinal is consistent relative to the existence of a
cardinal Woodin for supercompactness.
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THEOREM 2. Universal indestructibility for either supercompactness or
strong compactness in the presence of two strongly compact cardinals is con-
sistent relative to the existence of a cardinal Woodin for supercompactness.

As we will also indicate without proving explicitly, other theorems from
[3] are consistent relative to the existence of a cardinal Woodin for super-
compactness.

Before continuing, we take this opportunity to remind readers of some
of the relevant definitions. We say that wuniversal indestructibility for su-
percompactness holds in a model V' for ZFC if every V-supercompact and
partially supercompact (including measurable) cardinal § has its degree of
supercompactness fully Laver indestructible [7] under J-directed closed forc-
ing. Analogously, universal indestructibility for strong compactness holds in
a model V for ZFC if every V-strongly compact and partially strongly com-
pact (including measurable) cardinal ¢ has its degree of strong compactness
fully indestructible under J-directed closed forcing. We recall from [3] that
the cardinal k is a high-jump cardinal if there is an elementary embedding
j : V — M having critical point % such that for some § we have M? C M
and j(f)(k) < 0 for every function f : kK — k. As Lemma 2 of [3] indicates,
if x is almost huge, then k is the xth high-jump cardinal.

Our key new concept is that of a cardinal k being Woodin for supercom-
pactness. This will hold if for every f : kK — k with f(«) a cardinal, there
is some 6 < k with f”§ C ¢ and an elementary embedding j : V — M
having critical point § generated by a supercompact ultrafilter having rank
below « such that M7(H©) C M. Our terminology comes from the usual def-
inition of a Woodin cardinal. Since by its definition, a cardinal Woodin for
supercompactness is also a Woodin cardinal, it follows that if £ is Woodin for
supercompactness, then x is both regular and a limit of measurable cardinals
(and as Lemma 1.3 will show, much more). In addition, essentially the same
proof used with Woodin cardinals shows that the least cardinal Woodin for
supercompactness is not weakly compact.

The following lemma is central to establishing our results.

LEMMA 1.1. If K is a high-jump cardinal, then k carries a normal mea-
sure concentrating on A = {0 < k| § is Woodin for supercompactness}.

Proof. Our proof is reminiscent of the usual proof that a superstrong car-
dinal has a normal measure concentrating on Woodin cardinals (see Proposi-
tion 26.12 of [6]). Suppose j : V' — M is an elementary embedding witnessing
that « is a high-jump cardinal, with 6 such that M? C M and j(f)(x) < 6
for every f : k — k. Fix f : Kk — K such that f(«) is a cardinal, and let
A =j(f)(k). Take U and U’ as the X\ supercompactness measure and normal
measure over x derived from j, i.e., X € U iff (j(a) | a« < A) € j(X), and
Y e’ iff k € j(Y). Then both U and U’ are elements of M. In addition,
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fori:V — Ult(V,U) and k : M — Ult(M,U) = M*, the closure properties
of M imply that i(f)(k) = k(f)(x). Now, for £ : Ult(V,U) — M the factor
embedding, i.e., the elementary embedding such that £ o7 = j, we know
that [\ = id. Also, by the definitions of £ and A, £(i(f)(k)) = j(f)(k) = A.
Further, if i(f)(k) < A, there must be some v < A (namely i(f)(x)) such
that ¢(v) = A\. However, since ¢[\ = id, £(v) = v. This means that i(f)(x) =
A = j(f)(k) = kE(f)(k). And, because cp(j) = kK, M F “f : Kk — Kk and
J(f) = j(k) — j(k) are functions which agree below k”. By elementar-
ity, M* £ “k(f) and k(j(f)) agree below k(k)”, which immediately yields
E(f)(k) = Ek(j(f))(x). Putting all of the preceding together allows us to in-
fer that M E “j(f) : j(k) — j(k), 7(f)"k C Kk, and there is a 6 < j(k)
(namely x) and an elementary embedding k : M — M™ with critical point
k generated by a supercompact ultrafilter having rank below j(x) such that
(MAREUD®) — (a\kD®) A By reflection, V E “There is a § < &
and an elementary embedding k* : V' — N with critical point ¢ generated
by a supercompact ultrafilter having rank below x such that f”d C § and
NE(E@) C N”. Hence, V E “k is Woodin for supercompactness”, so since
MY C M, M E “k is Woodin for supercompactness” as well. Consequently,
k € j(A), which means A € U’. This completes the proof of Lemma 1.1. m

Having completed the proof of Lemma 1.1, we now turn our attention to
the proof of Theorem 1. We proceed in analogy to the proof of Theorem 5
given in [3], using the same definition for our forcing conditions as found
there. Suppose V F “ZFC + k is Woodin for supercompactness”. We define
a reverse Easton iteration having length « which does nontrivial forcing
only at those stages § < x which are measurable cardinals in V. If at such
a ¢, some condition p € Ps forces that § is <7 supercompact in Vs for v
the next measurable cardinal above § and the <~ supercompactness of § is
indestructible under §-directed closed forcing having rank less than x, then

we stop the construction and use as our final model (ny)v%, assuming we
have forced above p. Otherwise, we continue the iteration. In this case, there
is some minimal « <  such that the o supercompactness of § is destroyed
by some d-directed closed partial ordering Q of rank below k. By the work
of [3], we may assume that forcing with Q leaves no measurable cardinals in
the half-open interval (a, |Q|]. We then let P51 = Ps Q, where Q is a term
for such a QQ of smallest possible rank.

By the same arguments as in [3], if there is a stage of forcing § < k at

which we can stop the construction and use (V,y)v% as our final model, then
we have obtained a model for universal indestructibility for supercompact-
ness containing a supercompact cardinal. Thus, it suffices to show that this
is indeed what occurs. If this is not the case, then let f : kK — k be defined
inductively by f(J) = 0 if ¢ is not a measurable cardinal, but for § a mea-
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surable cardinal, f(d) is the least inaccessible cardinal above max(a, (3,7),
where VFs = “y is the least measurable cardinal above & and « is the small-
est degree of supercompactness of § below + that can be destroyed by some
d-directed closed forcing Q which leaves no measurable cardinals in the half-
open interval (o, |Q|]”, and [ is the smallest rank below x of such a Q. By
the fact x is Woodin for supercompactness, let § < s be such that f”5 C §
and there is an elementary embedding j : V' — M having critical point 0
with MJ(NO) C M. Write j(Ps) = Ps * Qs * R. By the definition of f, the
closure properties of M, and the fact that j(k) > k (in actuality, j(k) = k),
we then see that in both Vs and MPs, forcing with Qs destroys the o super-
compactness of §, where « is minimal below the least measurable cardinal
above & (which is the same in both V¥é and M%), forcing with Qg leaves no
measurable cardinals in the half-open interval («a,|Qs|], and Qs has smallest
possible rank below x = j(x). However, as in the proof of Theorem 5 of [3],
the usual reverse Easton arguments show that if Gg is V-generic over Pg,
G is V[Gp]-generic over Qs, and G3 is V[Go][G1]-generic over R, then j lifts
in V[Go|[G1][G2] to j : V[Go] — M[Go][G1]|G2]. We may then find a master
condition ¢ for "G in V[Go|[G1][G2] with respect to the partial ordering
J(Qys), take G3 as a V[Go|[G1][G2]-generic object containing ¢, and working
in V[Go] [Gl][GQ][Gg], lift ] further tOj : V[G()] [Gl] — M[Go] [Gl][GQHGg]
As usual, U given by X € U iff (j(8) | B < ) € j(X) is a supercompactness
measure over (Ps(a))”1%l] which is present in V[Go][G1][G2][Gs]. How-
ever, by the closure properties of R j(Qs) in both M[Gy][G1] and V[Go)[G1],
U € V[Gy][G1]. This contradicts that forcing with Qs over VFé destroys the
« supercompactness of § and therefore completes the proof of Theorem 1. »

Theorems 7 and 8 from [3], in which models for universal indestructibility
for strong compactness and universal indestructibility for strongness are con-
structed, also remain valid when forcing with the same partial orderings as in
[3], using a cardinal Woodin for supercompactness and the method of proof
given in Theorem 1 above. In addition, Theorem 6 of [3], where a model for
universal indestructibility for supercompactness is constructed in which ev-
ery Ramsey and weakly compact cardinal also satisfies the appropriate form
of universal indestructibility, can be proven as well using a cardinal Woodin
for supercompactness and the same partial ordering as in [3|. All of these
models contain either a supercompact, strongly compact, or strong cardinal.

In order to prove Theorem 2, we need the following lemma, which is the
analogue of Lemma 1.1 of [1]. It shows that the results of [8] are true for
cardinals Woodin for supercompactness.

LEMMA 1.2. Suppose V F “ZFC + k is Woodin for supercompactness +
P is a partial ordering such that |P| < x”. Then VF E “k is Woodin for
supercompactness”.
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Proof. Suppose p € P and f are such that p I+ “f : kK — Kk is a function
with f(a) a cardinal”. Define in V a function g by g(a) = |P|" if a < |P|,
and g(a) = The least inaccessible cardinal above sup({ < k | For some ¢
extending p, ¢ IF “f(a) = #’}) if a > |P|. Since |P| < k and & is a regular
limit of measurable cardinals, g is a well-defined function whose values are
always cardinals. It is then the case that p IF “For every a < &, f(a) < g(a)”.
By the definitions of ¢ and Woodin for supercompactness, there is some
0 < K, 6 > |P| and elementary embedding j : V' — M having critical point
6 such that ¢”§ C § and M7@©) C M. By the results of [8], since [P| < 6,
jliftsin VP to j : VB — MI®) Then p IF “There is § < x and an elementary
embedding j : V¥ — MI®) having critical point § such that f”6 C & and

(Mj(P))j(f)(é) C M7®)”, This completes the proof of Lemma 1.2. u

We are just about ready to begin the proof of Theorem 2. Before doing
so, however, we prove the following lemma.

LEMMA 1.3. If k is Woodin for supercompactness, then {0 < k| 0 is <k
supercompact} is unbounded in k.

Proof. Assume towards a contradiction that {§ < x | J is <k super-
compact} is bounded in . Let therefore oy be such that for every a > «y, 0,
is the least cardinal below k with the property that « is not 8, supercompact.
Define f : @ — a by f(a) = af if a < ag, and f(a) = The least inaccessible
cardinal above 6, if a > ag. By the fact x is Woodin for supercompactness,
we may find § < k, § > af, and an elementary embedding j : V — M
with critical point & such that f”6 C § and M7 C M. By the closure
properties of M and the definition of f, it then immediately follows that §
is 65 supercompact in both V and M, a contradiction. This completes the
proof of Lemma 1.3. =

We are now ready to prove Theorem 2. Suppose once again that V F
“ZFC + k is Woodin for supercompactness”. By Lemma 1.3, let § < x be
the smallest cardinal such that V F “§ is <k supercompact”’. Force with
the partial ordering P of Theorem 1 of [2| defined with respect to . By the
results of [2], V¥ E “§ is the least measurable cardinal, § is <r strongly
compact, and the <k strong compactness of § is indestructible under forc-
ing with J-directed closed partial orderings having rank below x”. Since P
may be defined so that |P| = § < &, by Lemma 1.2, V¥ F “k is Woodin for
supercompactness”. If we then let Q be the partial ordering of either Theo-
rem 5 or Theorem 6 of [3] (both of which force universal indestructibility for
supercompactness) or Theorem 7 of [3] (which forces universal indestructibil-
ity for strong compactness), with the first nontrivial stage of forcing taking
place at or above the least weakly compact cardinal in VF above 4, then
the arguments given in the proof of Theorem 1 of this paper show that the
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construction of Q terminates at some stage v < k. Let o < k, o > 7, be the
least weakly compact cardinal above v in VP*Q By the same arguments as

in [1], (VG)VP*Q is our model for either universal indestructibility for strong
compactness or universal indestructibility for supercompactness (depending
upon the exact definition of Q) containing two strongly compact cardinals.
This completes the proof of Theorem 2. =

Since our constructions require implicit applications of Hamkins’ Gap
Forcing Theorem of [4] and [5], our proofs are going to require at the mini-
mum as a hypothesis a supercompact limit of supercompact cardinals. Read-
ers are urged to consult [3] for the explicit details. The exact consistency
strength of universal indestructibility as discussed in this paper therefore
remains unknown.

Added in proof (March 2007). It is possible to reduce the consistency strength of

the assumptions used to establish Theorems 1 and 2 still further. Details can be found in
our forthcoming paper “An Equiconsistency for Universal Indestructibility”.
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