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tion in Consisten
y Strength forUniversal Indestru
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Summary. We show how to redu
e the assumptions in 
onsisten
y strength used to proveseveral theorems on universal indestru
tibility.In [3℄, the �rst author and Hamkins introdu
ed the 
on
ept of univer-sal indestru
tibility and established several theorems 
on
erning this notion,most prominently the relative 
onsisten
y of universal indestru
tibility forboth super
ompa
tness and strong 
ompa
tness. In [1℄, the �rst author ex-tended this work and showed the relative 
onsisten
y of two strongly 
om-pa
t 
ardinals with universal indestru
tibility for both super
ompa
tnessand strong 
ompa
tness. All of these results were proven using a high-jump
ardinal, a very strong notion re�e
ted by almost hugeness.The purpose of this paper is to redu
e the 
onsisten
y strength usedto prove ea
h of these theorems from a high-jump 
ardinal to somethingre�e
ted by this notion whi
h we will 
all a 
ardinal Woodin for super
om-pa
tness. Spe
i�
ally, we prove the following two theorems.Theorem 1. Universal indestru
tibility for super
ompa
tness in the pres-en
e of a super
ompa
t 
ardinal is 
onsistent relative to the existen
e of a
ardinal Woodin for super
ompa
tness.
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Theorem 2. Universal indestru
tibility for either super
ompa
tness orstrong 
ompa
tness in the presen
e of two strongly 
ompa
t 
ardinals is 
on-sistent relative to the existen
e of a 
ardinal Woodin for super
ompa
tness.As we will also indi
ate without proving expli
itly, other theorems from[3℄ are 
onsistent relative to the existen
e of a 
ardinal Woodin for super-
ompa
tness.Before 
ontinuing, we take this opportunity to remind readers of someof the relevant de�nitions. We say that universal indestru
tibility for su-per
ompa
tness holds in a model V for ZFC if every V -super
ompa
t andpartially super
ompa
t (in
luding measurable) 
ardinal δ has its degree ofsuper
ompa
tness fully Laver indestru
tible [7℄ under δ-dire
ted 
losed for
-ing. Analogously, universal indestru
tibility for strong 
ompa
tness holds ina model V for ZFC if every V -strongly 
ompa
t and partially strongly 
om-pa
t (in
luding measurable) 
ardinal δ has its degree of strong 
ompa
tnessfully indestru
tible under δ-dire
ted 
losed for
ing. We re
all from [3℄ thatthe 
ardinal κ is a high-jump 
ardinal if there is an elementary embedding

j : V → M having 
riti
al point κ su
h that for some θ we have Mθ ⊆ Mand j(f)(κ) < θ for every fun
tion f : κ → κ. As Lemma 2 of [3℄ indi
ates,if κ is almost huge, then κ is the κth high-jump 
ardinal.Our key new 
on
ept is that of a 
ardinal κ being Woodin for super
om-pa
tness. This will hold if for every f : κ → κ with f(α) a 
ardinal, thereis some δ < κ with f ′′δ ⊆ δ and an elementary embedding j : V → Mhaving 
riti
al point δ generated by a super
ompa
t ultra�lter having rankbelow κ su
h that M j(f)(δ) ⊆ M . Our terminology 
omes from the usual def-inition of a Woodin 
ardinal. Sin
e by its de�nition, a 
ardinal Woodin forsuper
ompa
tness is also a Woodin 
ardinal, it follows that if κ is Woodin forsuper
ompa
tness, then κ is both regular and a limit of measurable 
ardinals(and as Lemma 1.3 will show, mu
h more). In addition, essentially the sameproof used with Woodin 
ardinals shows that the least 
ardinal Woodin forsuper
ompa
tness is not weakly 
ompa
t.The following lemma is 
entral to establishing our results.Lemma 1.1. If κ is a high-jump 
ardinal , then κ 
arries a normal mea-sure 
on
entrating on A = {δ < κ | δ is Woodin for super
ompa
tness}.Proof. Our proof is reminis
ent of the usual proof that a superstrong 
ar-dinal has a normal measure 
on
entrating on Woodin 
ardinals (see Proposi-tion 26.12 of [6℄). Suppose j : V → M is an elementary embedding witnessingthat κ is a high-jump 
ardinal, with θ su
h that Mθ ⊆ M and j(f)(κ) < θfor every f : κ → κ. Fix f : κ → κ su
h that f(α) is a 
ardinal, and let
λ = j(f)(κ). Take U and U ′ as the λ super
ompa
tness measure and normalmeasure over κ derived from j, i.e., X ∈ U i� 〈j(α) | α < λ〉 ∈ j(X), and
Y ∈ U ′ i� κ ∈ j(Y ). Then both U and U ′ are elements of M . In addition,
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for i : V → Ult(V,U) and k : M → Ult(M,U) = M∗, the 
losure propertiesof M imply that i(f)(κ) = k(f)(κ). Now, for ℓ : Ult(V,U) → M the fa
torembedding, i.e., the elementary embedding su
h that ℓ ◦ i = j, we knowthat ℓ↾λ = id. Also, by the de�nitions of ℓ and λ, ℓ(i(f)(κ)) = j(f)(κ) = λ.Further, if i(f)(κ) < λ, there must be some ν < λ (namely i(f)(κ)) su
hthat ℓ(ν) = λ. However, sin
e ℓ↾λ = id, ℓ(ν) = ν. This means that i(f)(κ) =
λ = j(f)(κ) = k(f)(κ). And, be
ause cp(j) = κ, M � “f : κ → κ and
j(f) : j(κ) → j(κ) are fun
tions whi
h agree below κ�. By elementar-ity, M∗ � “k(f) and k(j(f)) agree below k(κ)�, whi
h immediately yields
k(f)(κ) = k(j(f))(κ). Putting all of the pre
eding together allows us to in-fer that M � “j(f) : j(κ) → j(κ), j(f)′′κ ⊆ κ, and there is a δ < j(κ)(namely κ) and an elementary embedding k : M → M∗ with 
riti
al point
κ generated by a super
ompa
t ultra�lter having rank below j(κ) su
h that
(M∗)k(j(f))(κ) = (M∗)k(f)(κ) ⊆ M∗�. By re�e
tion, V � “There is a δ < κand an elementary embedding k∗ : V → N with 
riti
al point δ generatedby a super
ompa
t ultra�lter having rank below κ su
h that f ′′δ ⊆ δ and
Nk∗(f)(δ) ⊆ N �. Hen
e, V � “κ is Woodin for super
ompa
tness�, so sin
e
Mθ ⊆ M , M � “κ is Woodin for super
ompa
tness� as well. Consequently,
κ ∈ j(A), whi
h means A ∈ U ′. This 
ompletes the proof of Lemma 1.1.Having 
ompleted the proof of Lemma 1.1, we now turn our attention tothe proof of Theorem 1. We pro
eed in analogy to the proof of Theorem 5given in [3℄, using the same de�nition for our for
ing 
onditions as foundthere. Suppose V � “ZFC + κ is Woodin for super
ompa
tness�. We de�nea reverse Easton iteration having length κ whi
h does nontrivial for
ingonly at those stages δ < κ whi
h are measurable 
ardinals in V . If at su
ha δ, some 
ondition p ∈ Pδ for
es that δ is <γ super
ompa
t in V Pδ for γthe next measurable 
ardinal above δ and the <γ super
ompa
tness of δ isindestru
tible under δ-dire
ted 
losed for
ing having rank less than κ, thenwe stop the 
onstru
tion and use as our �nal model (Vγ)V Pδ , assuming wehave for
ed above p. Otherwise, we 
ontinue the iteration. In this 
ase, thereis some minimal α < γ su
h that the α super
ompa
tness of δ is destroyedby some δ-dire
ted 
losed partial ordering Q of rank below κ. By the workof [3℄, we may assume that for
ing with Q leaves no measurable 
ardinals inthe half-open interval (α, |Q|]. We then let Pδ+1 = Pδ ∗ Q̇, where Q̇ is a termfor su
h a Q of smallest possible rank.By the same arguments as in [3℄, if there is a stage of for
ing δ < κ atwhi
h we 
an stop the 
onstru
tion and use (Vγ)V Pδ as our �nal model, thenwe have obtained a model for universal indestru
tibility for super
ompa
t-ness 
ontaining a super
ompa
t 
ardinal. Thus, it su�
es to show that thisis indeed what o

urs. If this is not the 
ase, then let f : κ → κ be de�nedindu
tively by f(δ) = 0 if δ is not a measurable 
ardinal, but for δ a mea-



4 A. W. Apter and G. Sargsyan
surable 
ardinal, f(δ) is the least ina

essible 
ardinal above max(α, β, γ),where V Pδ � “γ is the least measurable 
ardinal above δ and α is the small-est degree of super
ompa
tness of δ below γ that 
an be destroyed by some
δ-dire
ted 
losed for
ing Q whi
h leaves no measurable 
ardinals in the half-open interval (α, |Q|]�, and β is the smallest rank below κ of su
h a Q. Bythe fa
t κ is Woodin for super
ompa
tness, let δ < κ be su
h that f ′′δ ⊆ δand there is an elementary embedding j : V → M having 
riti
al point δwith M j(f)(δ) ⊆ M . Write j(Pδ) = Pδ ∗ Q̇δ ∗ Ṙ. By the de�nition of f , the
losure properties of M , and the fa
t that j(κ) ≥ κ (in a
tuality, j(κ) = κ),we then see that in both V Pδ and MPδ , for
ing with Qδ destroys the α super-
ompa
tness of δ, where α is minimal below the least measurable 
ardinalabove δ (whi
h is the same in both V Pδ and MPδ), for
ing with Qδ leaves nomeasurable 
ardinals in the half-open interval (α, |Qδ|], and Qδ has smallestpossible rank below κ = j(κ). However, as in the proof of Theorem 5 of [3℄,the usual reverse Easton arguments show that if G0 is V -generi
 over Pδ,
G1 is V [G0]-generi
 over Qδ, and G2 is V [G0][G1]-generi
 over R, then j liftsin V [G0][G1][G2] to j : V [G0] → M [G0][G1][G2]. We may then �nd a master
ondition q for j′′G1 in V [G0][G1][G2] with respe
t to the partial ordering
j(Qδ), take G3 as a V [G0][G1][G2]-generi
 obje
t 
ontaining q, and workingin V [G0][G1][G2][G3], lift j further to j : V [G0][G1] → M [G0][G1][G2][G3].As usual, U given by X ∈ U i� 〈j(β) | β < α〉 ∈ j(X) is a super
ompa
tnessmeasure over (Pδ(α))V [G0][G1] whi
h is present in V [G0][G1][G2][G3]. How-ever, by the 
losure properties of R∗j(Q̇δ) in both M [G0][G1] and V [G0][G1],
U ∈ V [G0][G1]. This 
ontradi
ts that for
ing with Qδ over V Pδ destroys the
α super
ompa
tness of δ and therefore 
ompletes the proof of Theorem 1.Theorems 7 and 8 from [3℄, in whi
h models for universal indestru
tibilityfor strong 
ompa
tness and universal indestru
tibility for strongness are 
on-stru
ted, also remain valid when for
ing with the same partial orderings as in[3℄, using a 
ardinal Woodin for super
ompa
tness and the method of proofgiven in Theorem 1 above. In addition, Theorem 6 of [3℄, where a model foruniversal indestru
tibility for super
ompa
tness is 
onstru
ted in whi
h ev-ery Ramsey and weakly 
ompa
t 
ardinal also satis�es the appropriate formof universal indestru
tibility, 
an be proven as well using a 
ardinal Woodinfor super
ompa
tness and the same partial ordering as in [3℄. All of thesemodels 
ontain either a super
ompa
t, strongly 
ompa
t, or strong 
ardinal.In order to prove Theorem 2, we need the following lemma, whi
h is theanalogue of Lemma 1.1 of [1℄. It shows that the results of [8℄ are true for
ardinals Woodin for super
ompa
tness.Lemma 1.2. Suppose V � �ZFC + κ is Woodin for super
ompa
tness +
P is a partial ordering su
h that |P| < κ�. Then V P � �κ is Woodin forsuper
ompa
tness�.
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Proof. Suppose p ∈ P and ḟ are su
h that p 
 “ḟ : κ → κ is a fun
tionwith ḟ(α) a 
ardinal�. De�ne in V a fun
tion g by g(α) = |P|+ if α ≤ |P|,and g(α) = The least ina

essible 
ardinal above sup({β < κ | For some qextending p, q 
 “ḟ(α) = β�}) if α > |P|. Sin
e |P| < κ and κ is a regularlimit of measurable 
ardinals, g is a well-de�ned fun
tion whose values arealways 
ardinals. It is then the 
ase that p 
 “For every α < κ, ḟ(α) < g(α)�.By the de�nitions of g and Woodin for super
ompa
tness, there is some

δ < κ, δ > |P| and elementary embedding j : V → M having 
riti
al point
δ su
h that g′′δ ⊆ δ and M j(g)(δ) ⊆ M . By the results of [8℄, sin
e |P| < δ,
j lifts in V P to j : V P → M j(P). Then p 
 “There is δ < κ and an elementaryembedding j : V P → M j(P) having 
riti
al point δ su
h that ḟ ′′δ ⊆ δ and
(M j(P))

j(ḟ)(δ)
⊆ M j(P)�. This 
ompletes the proof of Lemma 1.2.We are just about ready to begin the proof of Theorem 2. Before doingso, however, we prove the following lemma.Lemma 1.3. If κ is Woodin for super
ompa
tness, then {δ < κ | δ is <κsuper
ompa
t} is unbounded in κ.Proof. Assume towards a 
ontradi
tion that {δ < κ | δ is <κ super-
ompa
t} is bounded in κ. Let therefore α0 be su
h that for every α ≥ α0, θαis the least 
ardinal below κ with the property that α is not θα super
ompa
t.De�ne f : α → α by f(α) = α+

0 if α < α0, and f(α) = The least ina

essible
ardinal above θα if α ≥ α0. By the fa
t κ is Woodin for super
ompa
tness,we may �nd δ < κ, δ > α+
0 , and an elementary embedding j : V → Mwith 
riti
al point δ su
h that f ′′δ ⊆ δ and M j(f)(δ) ⊆ M . By the 
losureproperties of M and the de�nition of f , it then immediately follows that δis θδ super
ompa
t in both V and M , a 
ontradi
tion. This 
ompletes theproof of Lemma 1.3.We are now ready to prove Theorem 2. Suppose on
e again that V �

“ZFC + κ is Woodin for super
ompa
tness�. By Lemma 1.3, let δ < κ bethe smallest 
ardinal su
h that V � “δ is <κ super
ompa
t�. For
e withthe partial ordering P of Theorem 1 of [2℄ de�ned with respe
t to δ. By theresults of [2℄, V P � “δ is the least measurable 
ardinal, δ is <κ strongly
ompa
t, and the <κ strong 
ompa
tness of δ is indestru
tible under for
-ing with δ-dire
ted 
losed partial orderings having rank below κ�. Sin
e Pmay be de�ned so that |P| = δ < κ, by Lemma 1.2, V P � �κ is Woodin forsuper
ompa
tness�. If we then let Q be the partial ordering of either Theo-rem 5 or Theorem 6 of [3℄ (both of whi
h for
e universal indestru
tibility forsuper
ompa
tness) or Theorem 7 of [3℄ (whi
h for
es universal indestru
tibil-ity for strong 
ompa
tness), with the �rst nontrivial stage of for
ing takingpla
e at or above the least weakly 
ompa
t 
ardinal in V P above δ, thenthe arguments given in the proof of Theorem 1 of this paper show that the
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onstru
tion of Q terminates at some stage γ < κ. Let σ < κ, σ > γ, be theleast weakly 
ompa
t 
ardinal above γ in V P∗Q̇. By the same arguments asin [1℄, (Vσ)V P∗Q̇ is our model for either universal indestru
tibility for strong
ompa
tness or universal indestru
tibility for super
ompa
tness (dependingupon the exa
t de�nition of Q) 
ontaining two strongly 
ompa
t 
ardinals.This 
ompletes the proof of Theorem 2.Sin
e our 
onstru
tions require impli
it appli
ations of Hamkins' GapFor
ing Theorem of [4℄ and [5℄, our proofs are going to require at the mini-mum as a hypothesis a super
ompa
t limit of super
ompa
t 
ardinals. Read-ers are urged to 
onsult [3℄ for the expli
it details. The exa
t 
onsisten
ystrength of universal indestru
tibility as dis
ussed in this paper thereforeremains unknown.Added in proof (Mar
h 2007). It is possible to redu
e the 
onsisten
y strength ofthe assumptions used to establish Theorems 1 and 2 still further. Details 
an be found inour forth
oming paper �An Equi
onsisten
y for Universal Indestru
tibility�.
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