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Summary. We consider a dynamic frictionless contact problem for a viscoelastic material
with damage. The contact is modeled with normal compliance condition. The adhesion
of the contact surfaces is considered and is modeled with a surface variable, the bonding
field, whose evolution is described by a first order differential equation. We establish a
variational formulation for the problem and prove the existence and uniqueness of the
solution. The proofs are based on the theory of evolution equations with monotone opera-
tors, a classical existence and uniqueness result for parabolic inequalities, and fixed point
arguments.

1. Introduction. The adhesive contact between bodies, when a glue
is added to keep the surfaces from relative motion, is receiving increasing
attention in the mathematical literature. Analysis of models for adhesive
contact can be found in [2, 3, 4, 6, 12, 14, 19], and recently in the monograph
[20]. The novelty in all the above papers is the introduction of a surface
internal variable, the bonding field, denoted in this paper by β; it describes
the pointwise fractional density of active bonds on the contact surface, and
is sometimes referred to as the intensity of adhesion. Following [7, 8], the
bonding field satisfies 0 ≤ β ≤ 1; when β = 1 at a point of the con-
tact surface, the adhesion is complete and all the bonds are active; when
β = 0 all the bonds are inactive, severed, and there is no adhesion; when
0 < β < 1 the adhesion is partial and only a fraction β of the bonds is
active. We refer the reader to the extensive bibliography on the subject in
[15, 17, 18].
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The subject of damage is extremely important in design engineering,
since it affects directly the useful life of the designed structure or compo-
nent. There exists a very large engineering literature on it. Models taking
into account the influence of the internal damage of the material on the con-
tact process have been investigated mathematically. General novel models
for damage were derived in [9, 10] from the virtual power principle. Math-
ematical analysis of one-dimensional problems can be found in [11]. In all
these papers the damage of the material is described by a damage func-
tion α, restricted to have values between zero and one. When α = 1 there is
no damage in the material, when α = 0 the material is completely damaged,
when 0 < α < 1 there is partial damage and the system has a reduced load
carrying capacity. Contact problems with damage have been investigated in
[13, 16, 20].

In this paper, the inclusion describing the evolution of the damage field
is

α̇ − k∆α + ∂ϕK(α) ∋ φ(ε(u), α),

where K denotes the set of admissible damage functions defined by

K = {ξ ∈ H1(Ω) | 0 ≤ ξ ≤ 1 a.e. in Ω},

k is a positive coefficient, ∂ϕK represents the subdifferential of the indicator
function of the set K and φ is a given constitutive function which describes
the sources of the damage in the system. A general viscoelastic constitutive
law with damage is given by

σ = A(ε(u̇)) + G(ε(u), α),

where A is a nonlinear viscosity function, G is a nonlinear elasticity function
which depends on the internal state variable describing the damage of the
material caused by elastic deformations, and the dot represents the time
derivative, i.e., u̇ = ∂u/∂t and ü = ∂2u/∂t2. The essence of this paper
is to couple a viscoelastic problem with damage and a frictionless contact
problem with adhesion. We study a dynamic problem of frictionless adhesive
contact. We model the material behavior with a viscoelastic constitutive law
with damage and the contact with normal compliance with adhesion. We
derive a variational formulation and prove the existence and uniqueness of
a weak solution.

The paper is organized as follows. In Section 2 we introduce the notation
and give some preliminaries. In Section 3 we present the mechanical problem,
list the assumptions on the data, give the variational formulation of the
problem and state our main existence and uniqueness result, Theorem 3.1. In
Section 4 we give the proof of Theorem 3.1 based on the theory of evolution
equations with monotone operators, a fixed point argument and a classical
existence and uniqueness result for parabolic inequalities.
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2. Notation and preliminaries. In this short section, we present the
notation we shall use and some preliminary material. For more details, we
refer the reader to [5].

We denote by Sd the space of second order symmetric tensors on R
d

(d = 2, 3), while (·) and | · | represent the inner product and Euclidean norm
on Sd and R

d, respectively. Let Ω ⊂ R
d be a bounded domain with a regular

boundary Γ and let ν denote the unit outer normal on Γ. We shall use the
notation

H = L2(Ω)d = {u = (ui) | ui ∈ L2(Ω)},

H = {σ = (σij) | σij = σji ∈ L2(Ω)},

H1 = {u = (ui) ∈ H | ε(u) ∈ H},

H1 = {σ ∈ H | Div σ ∈ H},

where ε : H1 → H and Div : H1 → H are the deformation and divergence
operators, respectively, defined by

ε(u) = (εij(u)), εij(u) =
1

2
(ui,j + uj,i), Div σ = (σij, j).

Here and below, the indices i and j run from 1 to d, the summation conven-
tion over repeated indices is assumed, and the index that follows a comma
indicates a partial derivative with respect to the corresponding component
of the independent variable.

The spaces H, H, H1 and H1 are real Hilbert spaces endowed with the
canonical inner products given by

(u,v)H =
\
Ω

uivi dx ∀u,v ∈ H,

(σ, τ )H =
\
Ω

σijτ ij dx ∀σ, τ ∈ H,

(u,v)H1 = (u,v)H + (ε(u), ε(v))H ∀u,v ∈ H1,

(σ, τ )H1 = (σ, τ )H + (Div σ, Div τ )H ∀σ, τ ∈ H1.

The associated norms on the spaces H, H, H1 and H1 are denoted by | · |H ,
| · |H, | · |H1 and | · |H1 .

Let HΓ = H1/2(Γ )d and let γ : H1 → HΓ be the trace map. For every
element v ∈ H1, we also write v for the trace γv of v on Γ , and we denote
by vν and vτ the normal and tangential components of v on Γ given by

(2.1) vν = v.ν, vτ = v − vνν.

Similarly, for a regular (say C1) tensor field σ : Ω → Sd we define its normal
and tangential components by

(2.2) σν = (σν).ν, στ = σν − σνν.
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We recall that the following Green’s formula holds:

(2.3) (σ, ε(v))H + (Div σ,v)H =
\
Γ

σν.v da ∀v ∈ H1.

Finally, for any real Hilbert space X, we use the classical notation for
the spaces Lp(0, T ; X) and W k,p(0, T ; X), where 1 ≤ p ≤ ∞ and k ≥ 1. We
denote by C(0, T ; X) and C1(0, T ; X) the spaces of continuous and continu-
ously differentiable functions from [0, T ] to X, respectively, with the norms

|f |C(0,T ;X) = max
t∈[0,T ]

|f(t)|X ,

|f |C1(0,T ;X) = max
t∈[0,T ]

|f(t)|X + max
t∈[0,T ]

|ḟ(t)|X .

Moreover, for a real number r, we use r+ to represent its positive part, that
is, r+ = max{0, r}. Finally, for the convenience of the reader, we recall the
following version of the classical theorem of Cauchy–Lipschitz (see, e.g., [21,
p. 60]).

Theorem 2.1. Assume that (X, |·|X) is a real Banach space and T > 0.
Let F (t, ·) : X → X be an operator defined a.e. on (0, T ) satisfying the

following conditions:

• There exists LF > 0 such that

|F (t, x) − F (t, y)|X ≤ LF |x − y|X ∀x, y ∈ X,

a.e. t ∈ (0, T ).
• There exists p ≥ 1 such that t 7→ F (t, x) ∈ Lp(0, T ; X) for all x ∈ X.

Then for any x0 ∈ X, there exists a unique function x ∈ W 1,p(0, T ; X) such

that
ẋ(t) = F (t, x(t)), a.e. t ∈ (0, T ),

x(0) = x0.

Theorem 2.1 will be used in Section 4 to prove the unique solvability of
the intermediate problem involving the bonding field.

Moreover, if X1 and X2 are real Hilbert spaces then X1×X2 denotes the
product Hilbert space endowed with the canonical inner product (·, ·)X1×X2 .

3. Problem statement. We consider a viscoelastic body which occu-
pies the domain Ω ⊂ R

d with the boundary Γ divided into three disjoint
measurable parts Γ1, Γ2 and Γ3 such that meas(Γ1) > 0. The time inter-
val of interest is [0, T ] where T > 0. The body is clamped on Γ1 and so
the displacement field vanishes there. A volume force of density f0 acts in
Ω × (0, T ) and surface tractions of density f2 act on Γ2 × (0, T ). We as-
sume that the body is in adhesive frictionless contact with an obstacle, the
so called foundation, over the potential contact surface Γ3. Moreover, the
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process is dynamic, and thus the inertial terms are included in the equa-
tion of motion. We use a viscoelastic constitutive law with damage to model
the material’s behavior and an ordinary differential equation to describe the
evolution of the bonding field. The mechanical formulation of the frictionless
problem with normal compliance is as follows.

Problem P. Find a displacement field u : Ω× [0, T ] → R
d, a stress field

σ : Ω × [0, T ] → Sd, a damage field α : Ω × [0, T ] → R and a bonding field

β : Γ3 × [0, T ] → R such that

σ = Aε(u̇) + G(ε(u), α) in Ω × (0, T ),(3.1)

α̇ − k∆α + ∂ϕK(α) ∋ φ(ε(u), α),(3.2)

̺ü = Div σ + f0 in Ω × (0, T ),(3.3)

u = 0 on Γ1 × (0, T ),(3.4)

σν = f2 on Γ2 × (0, T ),(3.5)

−σν = pν(uν) − γνβ2Rν(uν) on Γ3 × (0, T ),(3.6)

−στ = pτ (β)Rτ (uτ ) on Γ3 × (0, T ),(3.7)

β̇ = −(β(γν(Rν(uν))
2 + γτ |Rτ (uτ )|

2) − εa)+ on Γ3 × (0, T ),(3.8)

∂α

∂ν
= 0 on Γ × (0, T ),(3.9)

u(0) = u0, u̇(0) = v0, α(0) = α0 in Ω,(3.10)

β(0) = β0 on Γ3.(3.11)

The relation (3.1) represents the nonlinear viscoelastic constitutive law
with damage; the evolution of the damage field is governed by the inclusion
(3.2), where φ is the mechanical source of the damage growth, assumed to
be a rather general function of the strains and damage itself, and ∂ϕK is the
subdifferential of the indicator function of the admissible damage functions
set K. (3.3) represents the equation of motion where ̺ denotes the material
mass density; (3.4) and (3.5) are the displacement and traction boundary
conditions, respectively. Condition (3.6) represents the normal compliance
conditions with adhesion where γν is a given adhesion coefficient and pν is
a given positive function which will be described below. In this condition
the interpenetrability between the body and the foundation is allowed, that
is, uν can be positive on Γ3. The contribution of the adhesive traction to
the normal traction is represented by the term γνβ2Rν(uν), the adhesive
traction is tensile and is proportional, with coefficient γν , to the square of
the intensity of adhesion and to the normal displacement, but only as long
as it does not exceed the bond length L. The maximal tensile traction is
γνL. Rν is the truncation operator defined by
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Rν(s) =







L if s < −L,

−s if −L ≤ s ≤ 0,

0 if s > 0.

Here L > 0 is the characteristic length of the bond, beyond which it does
not offer any additional traction. The contact condition (3.6) was used in
various papers (see e.g. [2, 3, 18, 20]). Condition (3.7) represents the adhesive
contact condition on the tangential plane, in which pτ is a given function
and Rτ is the truncation operator given by

Rτ (v) =

{

v if |v| ≤ L,

Lv/|v| if |v| > L.

This condition shows that the shear on the contact surface depends on the
bonding field and on the tangential displacement, but only as long as it
does not exceed the bond length L. The frictional tangential traction is
assumed to be much smaller than the adhesive one and is therefore omitted.
The introduction of the operator Rν , together with the operator Rτ defined
above, is motivated by mathematical arguments but it is not restrictive from
the physical point of view, since no restriction on the size of the parameter
L is made in what follows.

Next, (3.8) is an ordinary differential equation which describes the evo-
lution of the bonding field and it was already used in [2]; see also [17, 18] for
more details. Here, besides γν , two new adhesion coefficients are involved,
γτ and εa. Notice that in this model once debonding occurs, bonding cannot
be reestablished, since (3.8) implies β̇ ≤ 0. (3.9) is a homogeneous Neumann
boundary condition where ∂α/∂ν represents the normal derivative of α. In
(3.10), we consider the initial conditions where u0 is the initial displacement,
v0 the initial velocity and α0 the initial damage. Finally, (3.11) is the initial
condition, in which β0 denotes the initial bonding.

To obtain the variational formulation of the problem (3.1)–(3.11), we
introduce for the bonding field the set

Z = {θ : [0, T ] → L2(Γ3) | 0 ≤ θ(t) ≤ 1 ∀t ∈ [0, T ], a.e. on Γ3},

and for the displacement field we need the closed subspace of H1 defined by

V = {v ∈ H1 | v = 0 on Γ1}.

Since meas(Γ1) > 0, Korn’s inequality holds and there exists a constant
Ck > 0 which depends only on Ω and Γ1 such that

|ε(v)|H ≥ Ck|v|H1 ∀v ∈ V.

On V we consider the inner product and the associated norm given by

(u,v)V = (ε(u), ε(v))H, |v|V = |ε(v)|H ∀u,v ∈ V.

It follows from Korn’s inequality that | · |H1 and | · |V are equivalent norms on
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V and therefore (V, | · |V ) is a real Hilbert space. Moreover, by the Sobolev
trace theorem there exists a constant C0, depending only on Ω, Γ1 and Γ3,
such that

(3.12) |v|L2(Γ3)d ≤ C0|v|V ∀v ∈ V.

In the study of the mechanical problem (3.1)–(3.11), we make the fol-
lowing assumptions. The viscosity operator A : Ω × Sd → Sd satisfies

(3.13) (a) There exists a constant LA > 0 such that

|A(x, ξ1) −A(x, ξ2)| ≤ LA|ξ1 − ξ2| ∀ξ1, ξ2 ∈ Sd, a.e. x ∈ Ω.

(b) There exists mA > 0 such that

(A(x, ξ1) −A(x, ξ2)).(ξ1 − ξ2)

≥ mA|ξ1 − ξ2|
2 ∀ξ1, ξ2 ∈ Sd, a.e. x ∈ Ω.

(c) The mapping x 7→ A(x, ξ) is Lebesgue measurable on Ω for any
ξ ∈ Sd.

(d) The mapping x 7→ A(x,0) is in H.

The elasticity operator G : Ω × Sd × R → Sd satisfies

(3.14) (a) There exists a constant LG > 0 such that

|G(x, ξ1, α1) − G(x, ξ2, α2)| ≤ LG(|ξ1 − ξ2| + |α1 − α2|)

∀ξ1, ξ2 ∈ Sd, ∀α1, α2 ∈ R, a.e. x ∈ Ω.

(b) For any ξ ∈ Sd and α ∈ R,x 7→ G(x, ξ, α) is Lebesgue measurable
on Ω.

(c) The mapping x 7→ G(x,0,0) is in H.

The damage source function φ : Ω × Sd × R → R satisfies

(3.15) (a) There exists a constant Lφ > 0 such that

|φ(x, ξ1, α1) − φ(x, ξ2, α2)| ≤ Lφ(|ξ1 − ξ2| + |α1 − α2|)

∀ξ1, ξ2 ∈ Sd, ∀α1, α2 ∈ R, a.e. x ∈ Ω.

(b) For any ξ∈Sd and α ∈ R,x 7→ φ(x, ξ, α) is Lebesgue measurable
on Ω.

(c) The mapping x 7→ φ(x,0,0) ∈ L2(Ω).

The normal compliance function pν : Γ3 × R → R+ satisfies

(3.16) (a) There exists a constant Lν > 0 such that

|pν(x, r1) − pν(x, r2)| ≤ Lν |r1 − r2| ∀r1, r2 ∈ R, a.e. x ∈ Γ3.

(b) The mapping x 7→ pν(x, r) is measurable on Γ3, for any r ∈ R.
(c) pν(x, r) = 0 for all r ≤ 0, a.e. x ∈ Γ3.

The tangential contact function pτ : Γ3 × R → R+ satisfies
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(3.17) (a) There exists a constant Lτ > 0 such that

|pτ (x, d1) − pτ (x, d2)| ≤ Lτ |d1 − d2| ∀d1, d2 ∈ R, a.e. x ∈ Γ3.

(b) There exists Mτ > 0 such that |pτ (x, d)| ≤ Mτ for all d ∈ R, a.e.
x ∈ Γ3.

(c) The mapping x 7→ pτ (x, d) is measurable on Γ3, for any d ∈ R.
(d) The mapping x 7→ pτ (x, 0) ∈ L2(Γ3).

We suppose that the mass density satisfies

(3.18) ̺ ∈ L∞(Ω), there exists ̺∗ > 0 such that ̺(x) ≥ ̺∗, a.e. x ∈ Ω.

The adhesion coefficient and the limit bound satisfy

(3.19) γν , γτ , εa ∈ L∞(Γ3), γν ≥ 0, γτ ≥ 0, εa ≥ 0.

We also suppose that the body forces and surface traction have the regularity

(3.20) f0 ∈ L2(0, T ; H), f2 ∈ L2(0, T ; L2(Γ2)
d).

Finally, we assume that the initial data satisfy the following conditions:

u0 ∈ V, v0 ∈ L2(Ω)d,(3.21)

α0 ∈ K,(3.22)

β0 ∈ L2(Γ3), 0 ≤ β0 ≤ 1, a.e. on Γ3.(3.23)

We define the bilinear form a : H1(Ω) × H1(Ω) → R by

(3.24) a(ξ, ϕ) = k
\
Ω

∇ξ.∇ϕ dx.

We will use a modified inner product on H = L2(Ω)d, given by

((u,v))H = (̺u,v)H ∀u,v ∈ H,

that is, weighted with ̺, and we let ‖ · ‖H be the associated norm, i.e.,

‖v‖H = (̺v,v)
1/2
H ∀v ∈ H.

It follows from assumptions (3.18) that ‖ · ‖H and | · |H are equivalent norms
on H, and also the inclusion mapping of (V, |·|V ) into (H, ‖·‖H) is continuous
and dense. We denote by V ′ the dual of V. Identifying H with its dual, we
can write the Gelfand triple

V ⊂ H ⊂ V ′.

We use the notation (·, ·)V ′×V to represent the duality pairing between V ′

and V ; we have

(u,v)V ′×V = ((u,v))H ∀u ∈ H, ∀v ∈ V.

Finally, we denote by | · |V ′ the norm on V ′. Assumptions (3.20) allow us,
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for a.e. t ∈ (0, T ), to define f(t) ∈ V ′ by

(3.25) (f(t),v)V ′×V =
\
Ω

f0(t).v dx +
\

Γ2

f2(t).v da ∀v ∈ V,

and

(3.26) f ∈ L2(0, T ; V ′).

The adhesion functional j : L∞(Γ3) × V × V → R is defined by

j(β,u,v) =
\

Γ3

pν(uν)vν da(3.27)

+
\

Γ3

(−γνβ2Rν(uν)vν + pτ (β)Rτ (uτ ).vτ ) da.

Keeping in mind (3.16) and (3.17), we observe that the integrals in (3.27) are
well defined. Using standard arguments based on Green’s formula (2.3) we
can derive the following variational formulation of the frictionless problem
with normal compliance (3.1)–(3.11):

Problem PV. Find a displacement field u : [0, T ] → V , a stress field

σ : [0, T ] → H, a damage field α : [0, T ] → H1(Ω) and a bonding field

β : [0, T ] → L∞(Γ3) such that

σ (t) = Aε(u̇(t)) + G(ε(u(t)), α(t)), a.e. t ∈ (0, T ),(3.28)

α(t) ∈ K for all t ∈ [0, T ],(3.29)

(α̇(t), ξ − α(t))L2(Ω) + a(α(t), ξ − α(t))

≥ (φ(ε(u(t)), α(t)), ξ − α(t))L2(Ω) ∀ξ ∈ K,

(ü(t),v)V ′×V + (σ(t), ε(v))H + j(β(t),u(t),v)(3.30)

= (f(t),v)V ′×V ∀v ∈ V, ∀t ∈ [0, T ],

β̇(t) = −(β(t)(γν(Rν(uν(t)))
2 + γτ |R τ (uτ (t))|2) − εa)+(3.31)

a.e. t ∈ (0, T ),

u(0) = u0, u̇(0) = v0, α(0) = α0, β(0) = β0.(3.32)

We notice that the variational problem PV is formulated in terms of the
displacement, stress field, damage field and bonding field. The existence of a
unique solution of problem PV is stated and proved in the next section. To
this end, we consider the following remark which is used in different places
of the paper.

Remark 3.1. We note that, in problem P and in problem PV , we do not
need to impose explicitly the restriction 0 ≤ β ≤ 1. Indeed, equations (3.31)
guarantee that β(x, t) ≤ β0(x), and therefore assumption (3.23) shows that
β(x, t) ≤ 1 for t ≥ 0, a.e. x ∈ Γ3. On the other hand, if β(x, t0) = 0 at
time t0, then it follows from (3.31) that β̇(x, t) = 0 for all t ≥ t0, and
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therefore β(x, t) = 0 for all t ≥ t0, a.e. x ∈ Γ3. We conclude that 0 ≤
β(x, t) ≤ 1 for all t ∈ [0, T ], a.e. x ∈ Γ3.

The main result in this section is the following existence and uniqueness
result.

Theorem 3.1. Assume that (3.13)–(3.23) hold. Then problem PV has

a unique solution (u, σ,α, β) which satisfies

u ∈ H1(0, T ; V ) ∩ C1(0, T ; H), ü ∈ L2(0, T ; V ′),(3.33)

σ ∈ L2(0, T ;H), Divσ ∈ L2(0, T ; V ′),(3.34)

α ∈ W 1,2(0, T ; L2(Ω)) ∩ L2(0, T ; H1(Ω)),(3.35)

β ∈ W 1,∞(0, T ; L2(Γ3)) ∩ Z.(3.36)

A quadruplet (u, σ, α, β) which satisfies (3.28)–(3.32) is called a weak

solution to the compliance contact problem P. We conclude that under the
stated assumptions, problem (3.1)–(3.11) has a unique weak solution satis-
fying (3.33)–(3.36). The proof of Theorem 3.1 will be carried out in several
steps and is based on the theory of evolution equations with monotone op-
erators, a fixed point argument and a classical existence and uniqueness
result for parabolic inequalities. To this end, we assume in the following
that (3.13)–(3.23) hold. Below, C denotes a generic positive constant which
may depend on Ω, Γ1, Γ2, Γ3,A, G, φ, pν , pτ , γν , γτ , L and T but does not
depend on t nor on the rest of the input data, and whose value may change
from place to place. Moreover, for the sake of simplicity, we suppress, in
what follows, the explicit dependence of various functions on x ∈ Ω ∪ Γ .
The proof of Theorem 3.1 will be provided in the next section.

4. Existence and uniqueness result. Let η ∈ L2(0, T ; V ′) be given.
In the first step we consider the following variational problem.

Problem PVη. Find a displacement field uη : [0, T ] → V such that

(4.1) (üη(t),v)V ′×V + (Aε(u̇η(t)), ε(v))H + (η(t),v)V ′×V

= (f(t),v)V ′×V ∀v ∈ V, a.e. t ∈ (0, T ),

(4.2) uη(0) = u0, u̇η(0) = v0.

To solve problem PVη, we apply an abstract existence and uniqueness
result which we now recall for the convenience of the reader. Let V and
H denote real Hilbert spaces such that V is dense in H and the inclusion
map is continuous, H is identified with its dual and with a subspace of V ′,
i.e., V ⊂ H ⊂ V ′; we say that these inclusions define a Gelfand triple. The
notations | · |V , | · |V ′ and (·, ·)V ′×V represent the norms on V and on V ′

and the duality pairing between them, respectively. The following abstract
result may be found in [20, p. 48].
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Theorem 4.1. Let V, H be as above, and let A : V → V ′ be a hemicon-

tinuous and monotone operator which satisfies

(Av,v)V ′×V ≥ ω|v|2V + λ ∀v ∈ V,(4.3)

|Av|V ′ ≤ C(|v|V + 1) ∀v ∈ V,(4.4)

for some constants ω > 0, C > 0 and λ ∈ R. Then, given u0 ∈ H and

f ∈ L2(0, T ; V ′), there exists a unique function u which satisfies

u ∈ L2(0, T ; V ′) ∩ C(0, T ; H), u̇ ∈ L2(0, T ; V ′),

u̇(t) + Au(t) = f(t), a.e. t ∈ (0, T ), u(0) = u0.

We apply it to problem PVη.

Lemma 4.2. There exists a unique solution to problem PVη and it has

the regularity expressed in (3.33).

Proof. We define the operator A : V → V ′ by

(4.5) (Au,v)V ′×V = (Aε(u), ε(v))H ∀u,v ∈ V.

It follows from (4.5) and (3.13)(a) that

(4.6) |Au− Av|V ′ ≤ LA|u− v|V ∀u,v ∈ V,

which shows that A : V → V ′ is continuous, and so hemicontinuous. Now,
by (4.5) and (3.13)(b), we find

(4.7) (Au− Av,u − v)V ′×V ≥ mA|u− v|2V ∀u,v ∈ V,

i.e., A : V → V ′ is a monotone operator. Choosing v = 0V in (4.7) we
obtain

(Au,u)V ′×V ≥ mA|u|
2
V − |A0V |V ′ |u|V

≥
1

2
mA|u|

2
V −

1

2mA

|A0V |
2
V ′ ∀u ∈ V.

Thus, A satisfies condition (4.3) with ω = mA/2 and λ = −|A0V |
2
V ′/2mA.

Next, by (4.6) we deduce that

|Au|V ′ ≤ LA|u|V + |A0V |V ′ ∀u ∈ V.

This inequality implies that A satisfies condition (4.4). Finally, we recall
that by (3.26) and (3.21) we have f − η ∈ L2(0, T ; V ′) and v0 ∈ H.

It now follows from Theorem 4.1 that there exists a unique function vη

which satisfies

vη ∈ L2(0, T ; V ) ∩ C(0, T ; H), v̇η ∈ L2(0, T ; V ′),(4.8)

v̇η(t) + Avη(t) + η(t) = f(t), a.e. t ∈ (0, T ),(4.9)

vη(0) = v0.(4.10)

Let uη : [0, T ] → V be defined by



28 M. Selmani and L. Selmani

(4.11) uη(t) =

t\
0

vη(s) ds + u0 ∀t ∈ [0, T ].

It follows from (4.5) and (4.8)–(4.11) that uη is a solution of the variational
problem PVη and it has the regularity expressed in (3.33). This concludes
the proof of the existence part of Lemma 4.2. The uniqueness of the so-
lution follows from the uniqueness of the solution to problem (4.9)–(4.10),
guaranteed by Theorem 4.1.

In the second step, we use the displacement field uη obtained in Lemma
4.2 and consider the following initial-value problem.

Problem PVβ . Find the adhesion field βη : [0, T ] → L2(Γ3) such that

(4.12) β̇η(t) = −(βη(t)(γν(Rν(uην(t)))
2 + γτ |R τ (uητ (t))|

2) − εa)+,

a.e. t ∈ (0, T ),

(4.13) βη(0) = β0.

We have the following result.

Lemma 4.3. There exists a unique solution βη ∈ W 1,∞(0, T ; L2(Γ3))∩Z
to problem PVβ.

Proof. For simplicity we suppress the dependence of various functions on
Γ3, and note that the equalities and inequalities below are valid a.e. on Γ3.
Define Fη : [0, T ] × L2(Γ3) → L2(Γ3) by

(4.14) Fη(t, β) = −(β(γν(Rν(uην(t)))
2 + γτ |R τ (uητ (t))|2) − εa)+

for all t ∈ [0, T ] and β ∈ L2(Γ3). It follows from the properties of the trunca-
tion operator Rν and Rτ that Fη is Lipschitz continuous with respect to the
second variable, uniformly in time. Moreover, for all β ∈ L2(Γ3), the map-
ping t 7→ Fη(t, β) belongs to L∞(0, T ; L2(Γ3)). Thus using a version of the
Cauchy–Lipschitz theorem given in Theorem 2.1 we deduce that there exists
a unique function βη ∈ W 1,∞(0, T ; L2(Γ3)) which is a solution to problem
PVβ. Also, the arguments used in Remark 3.1 show that 0 ≤ βη(t) ≤ 1 for
all t ∈ [0, T ], a.e. on Γ3. Therefore, βη ∈ Z by the definition of Z, which
concludes the proof.

In the third step, we let θ ∈ L2(0, T ; L2(Ω)) be given and consider the
following variational problem for the damage field.

Problem PVθ. Find a damage field αθ : [0, T ] → H1(Ω) such that

(4.15)
αθ(t) ∈ K,

(α̇θ(t), ξ − αθ(t))L2(Ω) + a(αθ(t), ξ − αθ(t))

≥ (θ(t), ξ − αθ(t))L2(Ω) ∀ξ ∈ K, a.e. t ∈ (0, T ),

(4.16) αθ(0) = α0.
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To solve PVθ, we recall the following standard result for parabolic vari-
ational inequalities (see, e.g., [1, p. 124]).

Theorem 4.4. Let V ⊂ H ⊂ V ′ be a Gelfand triple. Let K be a

nonempty , closed and convex set of V. Assume that a(·, ·) : V × V → R

is a continuous and symmetric bilinear form such that for some constants

ζ > 0 and c0,

a(v, v) + c0|v|
2
H ≥ ζ|v|2V ∀v ∈ V.

Then, for every u0 ∈ K and f ∈ L2(0, T ; H), there exists a unique function

u ∈ H1(0, T ; H)∩L2(0, T ; V ) such that u(0) = u0, u(t) ∈ K for all t ∈ [0, T ],
and for almost all t ∈ (0, T ),

(u̇(t), v − u(t))V ′×V + a(u(t), v − u(t)) ≥ (f(t), v − u(t))H ∀v ∈ K.

We apply this theorem to problem PVθ.

Lemma 4.5. Problem PVθ has a unique solution αθ such that

(4.17) αθ ∈ H1(0, T ; L2(Ω)) ∩ L2(0, T ; H1(Ω)).

Proof. The inclusion of (H1(Ω), |·|H1(Ω)) into (L2(Ω), |·|L2(Ω)) is contin-

uous and its range is dense. We denote by (H1(Ω))′ the dual space of H1(Ω)
and, identifying the dual of L2(Ω) with itself, we can write the Gelfand triple

H1(Ω) ⊂ L2(Ω) ⊂ (H1(Ω))′.

We use the notation (·, ·)(H1(Ω))′×H1(Ω) for the duality pairing between

(H1(Ω))′ and H1(Ω). We have

(α, ξ)(H1(Ω))′×H1(Ω) = (α, ξ)L2(Ω) ∀α ∈ L2(Ω), ξ ∈ H1(Ω),

and we note that K is a closed convex set in H1(Ω). Then, using the defi-
nition (3.24) of the bilinear form a, and the fact that α0 ∈ K in (3.22), it
is easy to see that Lemma 4.5 is a straightforward consequence of Theorem
4.4.

Finally, as a consequence of these results and using the properties of the
operator G, the functional j, and the function φ, for t ∈ [0, T ], we consider
the element

(4.18) Λ(η, θ)(t) = (Λ1(η, θ)(t), Λ2(η, θ)(t)) ∈ V ′ × L2(Ω),

defined by the equalities

(4.19) (Λ1(η, θ)(t),v)V ′×V = (G(ε(uη(t)), αθ(t)), ε(v))H+j(βη(t),uη(t),v)

∀v ∈ V,

(4.20) Λ2(η, θ)(t) = φ(ε(uη(t)), αθ(t)).

We have the following result.
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Lemma 4.6. For (η, θ) ∈ L2(0, T ; V ′ × L2(Ω)), the function Λ(η, θ) :
[0, T ] → V ′ ×L2(Ω) is continuous, and there is a unique element (η∗, θ∗) ∈
L2(0, T ; V ′ × L2(Ω)) such that Λ(η∗, θ∗) = (η∗, θ∗).

Proof. Let (η, θ) ∈ L2(0, T ; V ′×L2(Ω)) and t1, t2 ∈ [0, T ]. Using (3.14),
(3.16), (3.17), the definition of Rν , Rτ and Remark 3.1, we have

(4.21) |Λ1(η,θ)(t1) − Λ1(η, θ)(t2)|V ′

≤ |G(ε(uη(t1)), αθ(t1)) − G(ε(uη(t2)), αθ(t2))|H

+ C|pν(uην(t1)) − pν(uην(t2))|L2(Γ3)

+ C|β2
η(t1)Rν(uην(t1)) − β2

η(t2)Rν(uην(t2))|L2(Γ3)

+ C|pτ (βη(t1))Rτ (uητ (t1)) − pτ (βη(t2))Rτ (uητ (t2))|L2(Γ3)

≤ C(|uη(t1) − uη(t2)|V + |αθ(t1) − αθ(t2)|L2(Ω) + |βη(t1) − βη(t2)|L2(Γ3)).

Recall that above uην and uητ
denote the normal and tangential components

of the function uη respectively. Next, due to the regularities of uη, αθ and
βη expressed in (3.33), (3.35) and (3.36), respectively, we deduce from (4.21)

that Λ1(η,θ) ∈ C(0, T ; V ′). By a similar argument, from (4.20) and (3.15)
it follows that

(4.22) |Λ2(η,θ)(t1) − Λ2(η, θ)(t2)|L2(Ω)

≤ C(|uη(t1) − uη(t2)|V + |αθ(t1) − αθ(t2)|L2(Ω)).

Therefore, Λ2(η,θ) ∈ C(0, T ; L2(Ω)) and Λ(η,θ) ∈ C(0, T ; V ′ × L2(Ω)). Let
now (η1, θ1), (η2, θ2) ∈ L2(0, T ; V ′ ×L2(Ω)). We use the notation uηi

= ui,
u̇ηi

= vηi
= vi, αθi

= αi and βηi
= βi for i = 1, 2. Arguments similar to

those used in the proof of (4.21) and (4.22) yield

(4.23) |Λ(η1, θ1)(t) − Λ(η2, θ2)(t)|
2
V ′×L2(Ω)

≤ C(|u1(t) − u2(t)|
2
V + |α1(t) − α2(t)|

2
L2(Ω) + |β1(t) − β2(t)|

2
L2(Γ3)

).

Since

ui(t) =

t\
0

vi(s) ds + u0, t ∈ [0, T ],

we have

(4.24) |u1(t) − u2(t)|
2
V ≤ C

t\
0

|v1(s) − v2(s)|
2
V ds ∀t ∈ [0, T ].

Moreover, from (4.1) we infer that a.e. on (0, T ),

(v̇1 − v̇2,v1 − v2)V ′×V + (Aε(v1) −Aε(v2), ε(v1 − v2))H

+ (η1 − η2,v1 − v2)V ′×V = 0.
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We integrate this equality with respect to time. We use the initial conditions
v1(0) = v2(0) = v0 and (3.13) to find that

mA

t\
0

|v1(s) − v2(s)|
2
V ds ≤ −

t\
0

(η1(s) − η2(s),v1(s) − v2(s))V ′×V ds

for all t ∈ [0, T ]. Then, using the inequality 2ab ≤ a2/γ + γb2 we obtain

(4.25)

t\
0

|v1(s) − v2(s)|
2
V ds ≤ C

t\
0

|η1(s) − η2(s)|
2
V ′ ds ∀t ∈ [0, T ].

On the other hand, from the Cauchy problem (4.12)–(4.13) we can write

βi(t) = β0 −

t\
0

(βi(s)(γν(Rν(uiν(s)))
2 + γτ |Rτ (uiτ (s))|

2) − εa)+ ds,

and then

|β1(t) − β2(t)|L2(Γ3)

≤ C

t\
0

|β1(s)(Rν(u1ν(s)))
2 − β2(s)(Rν(u2ν(s)))

2|L2(Γ3) ds

+ C

t\
0

|β1(s)|Rτ (u1τ (s))|
2 − β2(s)|Rτ (u2τ (s))|

2|L2(Γ3) ds.

Using the definition of Rν and Rτ and writing β1 = β1 − β2 + β2, we get

(4.26) |β1(t) − β2(t)|L2(Γ3)

≤ C
(

t\
0

|β1(s) − β2(s)|L2(Γ3) ds +

t\
0

|u1(s) − u2(s)|L2(Γ3)d ds
)

.

Next, we apply Gronwall’s inequality to deduce

|β1(t) − β2(t)|L2(Γ3) ≤ C

t\
0

|u1(s) − u2(s)|L2(Γ3)d ds,

and from (3.12) we obtain

(4.27) |β1(t) − β2(t)|
2
L2(Γ3) ≤ C

t\
0

|u1(s) − u2(s)|
2
V ds.

From (4.15) we deduce that

(α̇1 − α̇2, α1 − α2)L2(Ω) + a(α1 − α2, α1 − α2)

≤ (θ1 − θ2, α1 − α2)L2(Ω), a.e. t ∈ (0, T ).

Integrating this inequality with respect to time, using the initial conditions
α1(0) = α2(0) = α0 and the inequality a(α1 − α2, α1 − α2) ≥ 0 we find

1

2
|α1(t) − α2(t)|

2
L2(Ω) ≤

t\
0

(θ1(s) − θ2(s), α1(s) − α2(s))L2(Ω) ds,
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which implies that

|α1(t) − α2(t)|
2
L2(Ω) ≤

t\
0

|θ1(s) − θ2(s)|
2
L2(Ω) ds +

t\
0

|α1(s) − α2(s)|
2
L2(Ω) ds.

This inequality combined with Gronwall’s inequality leads to

(4.28) |α1(t) − α2(t)|
2
L2(Ω) ≤ C

t\
0

|θ1(s) − θ2(s)|
2
L2(Ω) ds ∀t ∈ [0, T ].

We substitute (4.27) in (4.23) and we use (4.24) to obtain

|Λ(η1, θ1)(t) − Λ(η2, θ2)(t)|
2
V ′×L2(Ω)

≤ C
(

|u1(t) − u2(t)|
2
V +

t\
0

|u1(s) − u2(s)|
2
V ds + |α1(t) − α2(t)|

2
L2(Ω)

)

≤ C
(

t\
0

|v1(s) − v2(s)|
2
V ds + |α1(t) − α2(t)|

2
L2(Ω)

)

.

It now follows from the above and the estimates (4.25) and (4.28) that

|Λ(η1, θ1)(t) − Λ(η2, θ2)(t) |
2
V ′×L2(Ω)

≤ C

t\
0

|(η1, θ1)(s) − (η2, θ2)(s)|
2
V ′×L2(Ω) ds.

Reiterating this inequality m times leads to

|Λm(η1, θ1) − Λm(η2, θ2)|
2
L2(0,T ;V ′×L2(Ω))

≤
CmTm

m!
|(η1, θ1) − (η2, θ2)|

2
L2(0,T ;V ′×L2(Ω)).

Thus, for m sufficiently large, Λm is a contraction on the Banach space
L2(0, T ; V ′ × L2(Ω)), and so Λ has a unique fixed point.

Now, we have all the ingredients needed to prove Theorem 3.1.

Proof. Existence. Let (η∗, θ∗) ∈ L2(0, T ; V ′×L2(Ω)) be the fixed point
of Λ given by (4.18). Denote by uη∗ the solution of problem PVη for η = η∗,
and let αθ∗ be the solution of problem PVθ for θ = θ∗. Let βη∗ be the so-
lution of problem PVβ for η = η∗. We denote by ση∗ the function given
by ση∗ = Aε(u̇η∗) + G(ε(uη∗), αθ∗). Using (4.19), (4.20) and keeping in
mind that Λ1(η∗, θ∗) = η∗, Λ2(η∗, θ∗) = θ∗, we find that the quadruplet
(uη∗ , ση∗ , αθ∗ , βη∗) is a solution of problem PV. This solution has the reg-
ularity expressed in (3.33)–(3.36): this follows from the regularities of the
solutions of problems PVη, PVθ and PVβ. Moreover, it follows from (3.33),
(3.13) and (3.14) that ση∗ ∈ L2(0, T ;H). Choosing now v = ±ϕ in (3.30),
where ϕ ∈ C∞

0 (Ω)d, and using (3.18) and (3.27) we find

̺ü(t) = Div σ(t) + f0(t), a.e. t ∈ (0, T ).
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Then assumptions (3.18) and (3.20), the regularity expressed in (3.33) and
the above equality imply that Div σ ∈L2(0, T ; V ′), which shows that σ sat-
isfies (3.34).

Uniqueness. Let (uη∗ , ση∗ ,αθ∗ , βη∗) be the solution of PV obtained above
and let (u, σ,α, β) be another solution which satisfies (3.33)–(3.36). We de-
note by η ∈ L2(0, T ; V ′) and θ ∈ L2(0, T ; L2(Ω)) the functions

(η(t),v)V ′×V = (G(ε(u(t)), α(t)), ε(v))H + j(β(t),u(t),v),(4.29)

θ(t) = φ(ε(u(t)), α(t)).(4.30)

Equalities (3.28), (3.30) and (4.29) with the initial condition u(0) = u0

imply that u is a solution of PVη, and since it follows from Lemma 4.2 that
this problem has a unique solution, denoted uη, we conclude that

(4.31) u = uη.

Next, (3.31), (4.31) and the initial condition β(0) = β0 imply that β is a
solution of problem PVβ; since Lemma 4.3 shows that the problem has a
unique solution, denoted βη, we obtain

(4.32) β = βη.

Equalities (3.29), (4.30) and the initial condition α(0) = α0 now imply that
α is a solution of problem PVθ; from Lemma 4.5 problem PVθ has a unique
solution, denoted αθ, and it follows that

(4.33) α = αθ.

Using (4.18) and (4.29)–(4.33), we conclude that Λ(η, θ) = (η, θ) and by
uniqueness of the fixed point of Λ it follows that

(4.34) η = η∗, θ = θ∗.

The uniqueness of the solution is now a consequence of (4.31)–(4.34) together
with the equality σ = Aε(u̇) + G(ε(u), α).
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