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Summary. By using the skew product definition of a Markov chain we obtain the fol-
lowing results:

(a) Every k-step Markov chain is a quasi-Markovian process.

(b) Every piecewise linear map with a Markovian partition defines a Markov chain for
every absolutely continuous invariant measure.

(c) Satisfying the Chapman—Kolmogorov equation is not sufficient for a process to be
quasi-Markovian.

0. Introduction. Consider a stationary Markov chain with finite state
space, i.e., a probability space ({2, P), a sequence of (X)), random vari-
ables X, : 2 — {1,..., s} a probability vector p'= (p1,...,ps), a stochastic
matrix 11 = (p;j)sxs such that pII = ' and

P(Xn+1 :]|X0:Zo,,Xn:Zn):P(Xn+1 :]’X :in):pinj.

To apply ergodic theory here, we need a sequence representation of the pro-
cess. Therefore we assume that 2 = {1,...,s}", N ={0,1,2,...}, P is the
measure given by

P(w:wo =10,...,Wn = in) = DigPigir * * * Pin_1in
and o is the 1-sided shift on {2, (ow); = w;+1. Finally, we get the measure
preserving dynamical system ({2, A, P, o, «), where A is the o-algebra gen-
erated by the cylinder sets {w : w;; = j1,...,wi, = jn} and a = {A;}7_,,
where 4; = {w : wp = i}, i = 1,...,s. The process (X])22, given by
X (w) =i & o"(w) € A; is a Markov chain with the same distribution
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as (Xp)52o. The above process is denoted by (o, ) and called a Markov
process.

For our aims we will use more general notations. Let (X, A,m, f,a)
be a measure preserving dynamical system where (X, .4, m) is a probabil-
ity Lebesgue space and additionally f is a positively nonsingular map (i.e.
m(A) = 0 = m(f(A)) = 0), and a = {A4;};_; is a generating partition,
ie. V2o f'a = A. We denote by (f,a) the process (X,)2°, such that
Xn(x) =1 < f"(x) € A;. For our aims it is convenient to use an equiva-
lent definition of Bernoulli and Markov processes (see [4]). To this end let
us consider another Lebesgue probability space (Y, B,q) and let {T;}7 ; be
a family of positively and negatively nonsingular maps of Y into Y (7; is
negatively nonsingular if ¢(B) = 0 = ¢(T;"'B) = 0). The process (f, ) and
the family {7;}7_, define the skew product map

(1) T(fE,y) = (f(x)’Ta(m)(y))v
where a : X — {1,...,s} is determined by a(z) =i < = € A;. Let E(f, a)
be the class of functions g such that there exists a Lebesgue probability space
(Y, B, q) and a family of positively and negatively nonsingular maps {7;};_,
such that g is the density of an absolutely continuous invariant measure
(a.c.i.m.) under the skew product as in (1).

We also denote by @ the field of unions of elements of «.

DEFINITION 1. The process (f, a) is

(i) a Bernoulli process if for every g € E(f,«), g is measurable with
respect to B,

(ii) a Markov process if for every g € E(f,a), g is measurable with
respect to & x B.

Reduction of the condition in (ii) allows us to introduce quasi-Markovian
processes.

DEFINITION 2. We say that (f,«) is a quasi-Markovian process (q.m.p.)
if for every g € E(f, «) the set {g > 0} belongs to a x B.

Some generalizations of Definition 2 and its applications can be found in
[1, 2]. By using Definitions 1 and 2 we obtain the following facts.

THEOREM 1. If a has the Markov property (i.e. f(a) C @) and if
(fm, \/?:_01 ‘o) is a ¢.m.p. for some n with respect to m then (f,«) is also
a q.m.p.

THEOREM 2. If X = [0,1], f is piecewise linear, o has the Markov prop-
erty and f|A; is linear for i = 1,...,s then (f,«) is a Markov process for
every f-invariant probability measure which is absolutely continuous with re-
spect to the Lebesgue measure.
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Let (X,,)02, be a stationary process with s states. Moreover, let m be the

measure on {1,...,s}" determined by the finite-dimensional distributions
of (Xn)5Zy-
DEFINITION 3. We say that (X)) is a k-step Markov chain if
m(wpt1 =7 |wo =10, .., wn =1ip)
= m(wn+1 =J |wn—k’+l = lp—ft1y-- - Wn = Zn)

A 1-step Markov chain is a Markov chain. As a corollary to Theorem 1
we get

THEOREM 1'. If a stationary process (X,)32 is a k-step Markov chain
for some k > 1 then it is a g.m.p.

Concerning Theorem 2 let us remark that if f is not piecewise linear but
piecewise monotonic then (f, «) is not a Markov process in general. However,
in many cases it turns out to be a q.m.p., for example if f is a Lasota—Yorke
or Misiurewicz map ([4]). Let us turn to Theorem 1’. If we replace the Markov
chain conditions by the Chapman—Kolmogorov equation (for the definition
see below) then we may fall outside the class of quasi-Markovian processes
(see Section 3).

DEFINITION 4. We say that a process (f, «) satisfies the C-K-equation if
m(f "A;|A;) = (I")y; fori,j=1,...,sand n € N.
Here II;; = m(f'A; | A;) fori,j =1,...,s.

1. Proof of Theorem 1. We will use the skew product description of
processes. Let us consider the skew product map

T(x,y) = (f(2), Ta@) ()

where a : X — « is determined by a(z) = A < x € A. Here {Ta}acq is
a family of positively and negatively nonsingular maps of Y into Y. Let v
be a T-invariant measure absolutely continuous with respect to m x ¢q. The
measure v is also T"-invariant. Here

where b: X — 0 = \/?;01 f~ e is defined similarly to a. Here
Tg(y) =Ta, 0---0Ta,(y) for B=A1nf 1 (A)N---nf"1(4,).

Therefore,

{%>0}:UBXD3

Bep
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if (f™,m, ) is a q.m.p. by Definition 2. From

(U BxDs) = J BxDs

Beg Bepg
we get
U BxDp=J f(B)xTs(Dp) = | ] AxCa.
Bep Beg Aca

Here we use f"(B) € a for B € 3. Therefore (f,m,«) is a q.m.p.

2. Proof of Theorem 2. Consider the skew product map

T(.ﬁ(},y) = (f(x)vTa(:c) (y))
as in (1). Let P be the Frobenius—Perron (F-P) operator for T, i.e.
| Gdxxq) =|P(G)drxq)
T-"E E
for E € Ax B and G € Li(\ x q). Here X is the Lebesgue measure. By the
definition of 7" we have

Zaz )Lj(an(@)Ph(y)  for w € Ly(N),h € Li(q),

where f; = |AZ-, a; = 1/ f](z) for z € A; and P; denotes the F-P operator for
T;,i=1,...,s. Let u be f-invariant, u < A. Moreover, let v be T-invariant
and v < p x ¢. Then also v < A x ¢ and therefore for G = dv/d(\ x q)
we obtain P"G = G forn =1,2,.... Let A;, 4, = Ay N f1(A4;,)N--N
f~(=1(A; ). Thus, as f(a) C a

P(lAil---inh) = aillA leh

geerin

P™( Ay M ZlAh

By using approximation arguments as in [5] we conclude that

s
G= Z 1A¢gi-
i=1

By repeating a similar reasoning for x4 and the F-P operator for f we get

Consequently,

s

d
ﬁ = ZCilAr

=1

dv. dv d(px q)\ B > ‘
Tw - g lioey) - 2 Lad

Therefore (f,«) is a Markov process with respect to u. m

Hence,
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Let us remark that Theorem 3 in [7] and Theorem 6.3 in [8] are special
cases of Theorem 2. Here the Markov property of (f, ) has been obtained
for some classes of piecewise linear transformations by using an explicit def-
inition of invariant measure.

3. C-K-process which is not a q.m.p. We recall the construction of
Courbage and Hamdan from [3|, using their notation. Let K = {0,...,k—1}
and 2 = KV = {w:w(i) € K,i=0,1,2,...}. We say that a probability
measure p on K"t is invariant if for any subsets Aq,..., A, of K,

(K x Ay x - x Ap) = u(Ap x -+ x A, X K).

Denote by Inv(K™1) the set of invariant measures. For p € Inv(K" 1) we
define the measure vy = ®(u) on {2 by

v({w € 2wy =x0,...,wpn = Tpn})
= w(To, -+, Tn) W Tpt1s - -y Tan | Tn) ﬂ(x(p—l)n+1’ s Tpn | T p—l)n)

forallp>1and xz = (xl) €K n+1 The measure v is oc™-invariant where
o is the 1-sided shift on 2. Now, we proceed to determine a suitable measure
p € Inv(K™ ). Let IT be a k x k stochastic strictly positive matrix and 7 be
a row probability vector which is invariant under II. By analyzing the proof
of [4, Theorem 3.1] we conclude that there exists a measure p € Inv(K"*1),
for some prime number n > 3, such that

(2) w(Ag X ---x Ay,) >0

for any Ag,..., A, C K. The above holds because II is strictly positive and
plgn = prr|gn (by conditions (3.4), (3.5) from [4]). Here pjr denotes the
(I1, ) Markovian measure. The measure

where v9 = @(p), is not (II,p) Markovian since p # pr|gn+1 (by [4,
(3.18)]). Moreover the process (o, v, P) satisfies the C-K-equation with IT,
ie. v(oc™"P;| P) = (II");; for n =1,2,..., by [4, (3.6)] and by the defini-
tion of v. Here P={weN:w0)= z} We will prove that (o.v, P) is not a
q.m.p. To this end we show that there exists a Borel invariant set ££ C {2 of
measure one such that (F, v, o) is positively nonsingular and v(c(P,NE)) =

for i =0,...,k — 1. Combining this with the ergodic properties of (o,v) we

get the desired conclusion. Let Py = \/}, ! =P, By the definition of vy and
by (2) we get

LEMMA 1. The process (6", c'vy) is a Markov chain with vector q:

—

Qzg,....2n—1) — ,Uf(x07 ey mn—i)ﬂ('fn—i—}—la ey Ip—1 ‘ 'fn—i)
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and the strictly positive matric W :

W(ﬂ?o7~~7$n71)7(y07m,yn71)
= (Y05 - s Yn—i | Tn—is -+ s Tn1) 1 (Yn—it 15 - -+, Yn—1 | Yn—i),
fori=2,...,n
The case i = 1 is considered in [3]. Here Giu. .2, 1) = (0, -, Tn-1)
and
Wiat,n-1)(Wootin—1) = H(Y0> -+ Yn—1] Tn-1)-
By [6, Chapter 10] there exists an invariant set 2’ C 2 with U(Q’ ) =
such that o|f2" is positive nonsingular. The Markov chains (o™, c'vy) are
ergodic, being aperiodic, for ¢ = 1,...,n. Therefore the supports of ‘1
are pairwise disjoint sets with respect to v. Hence there exists a Borel set
Ey C ' such that o™ (Ey) = Ey = o "(Ey), vo(Eo) = 1, the sets 0" Ey
are pairwise disjoint and o’vp(0*(Ep)) = 1 for i = 1,...,n. Set p; = o'y
and E; = 0'Ep, i =0,...,n— 1. Let £ = ngol E;. Then 0 'E = FE and
v(E)=1.
REMARK. (o,v) isnot totally ergodic as 0" (Ep) = Ep and v(Ep) = 1/n.
Obviously (o, v) is positively nonsingular on E.

LEMMA 2. The partition Pp = {P; N E} L of E is a Markovian gener-
ator for (o,v). Moreover, v(c(P;,NE)) =1 for 1=0,...,k—1

Proof. 1t suffices to show that v(c(P;NE))=1for j=0,...,k—1. By
the definition of v,

v(o(P;N E)) Zuz (Pj N Ei—1)).

By (2) and Lemma 1, p;(c” ([ml,...,xn_l,]] N E;)) = 1 for every block
[z1,...,2p—1]. Hence the inclusion

Jn_l([ml, RN xn_l,j] M EZ) C F)] N E(i+n—1)modn = Pj NE;_1

implies p;(o(P; N E;—1)) = 1. Hence pi(o(P;N Ej—1)) =1fori=1,...,n
This finishes the proof. =

THEOREM 3. The process (o, v, Pg) is not a q.m.p.

Proof. By the construction (o, v) is ergodic but not weakly mixing. The
previous observations imply o|E is positively nonsingular and P is a Marko-
vian generator for (o,v). Let P, denote the smallest field which contains
{o(P; N E)}*=}. By Lemma 2, P, = {0, 2}. Assume that (o,v,Pg) is a
g.m.p. Then, by [4, Lemma 2], all eigenfunctions of ¢ are P,-measurable,
which implies that (o,v) is weakly mixing. This contradicts our assump-
tion. =
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