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Summary. We give an alternative proof of simultaneous linearization recently shown by
T. Ueda, which connects the Schroder equation and the Abel equation analytically. In
fact, we generalize Ueda’s original result so that we may apply it to the parabolic fixed
points with multiple petals. As an application, we show a continuity result on linearizing
coordinates in complex dynamics.

1. Introduction. Let us start with a worked out example to explain
the motivation to consider the simultaneous linearization theorem.

Cauliflowers. In the family of quadratic maps, the simplest parabolic
fixed point is given by g(w) = w + w? (whose Julia set is called the cauli-
flower). Now we consider its perturbation of the form f(w) = Aw + w? with
A /" 1. According to [Mi, §8 and §10], we have the following fact:

PRrROPOSITION 1.1 (Kénigs and Fatou coordinates). Let Ky and K, be
the filled Julia sets of f and g. Then we have the following:

(1) There exists a unique holomorphic branched covering map ¢y : K]? —C
satisfying the Schroder equation ¢¢(f(w)) = Apy(w) and ¢§(0) =
¢5(—=A/2) —1=0. The map ¢y is univalent near w = 0.

(2) There ezists a unique holomorphic branched covering map ¢ : K;—C
satisfying the Abel equation ¢¢(g(w)) = ¢g(w)+1 and ¢py(—1/2) = 0.
The map ¢4 is univalent on a disk |w + r| < r with small r > 0.

Note that —\/2 and —1/2 are the critical points of f and g respectively.
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OBSERVATION. Set w = ¢¢(w). Now the proposition above asserts that
the action of f| K¢ is semiconjugate to w — Aw by ¢;. Consider the Mo6bius
map

W =S¢(w)=ANw-1)/(A=-1)w
that sends {0,1, A} to {00, 0,1} respectively. By taking conjugation by Sy,
the action of w — Aw is viewed as W +— W/A + 1. Set W = &f(w) :=
Sfo¢s(w). Now we have

@f(f(w)):@f(w)/)\—l-l and @f(—)\/2):0.

On the other hand, by setting W = &,4(w) := ¢4(w), we can view the action
of g|lks as W — W + 1. Thus we have

Dy(g9(w)) =Pg(w)+1 and P4(—1/2) = 0.

If X tends to 1, that is, f — g, the semiconjugate action in W-coordinate
converges uniformly on compact sets. Now it would be natural for & to tend
to @4. However, as one can see by referring to the proof of the proposition
in [Mi, §8 and §10], ¢y and ¢, are given in completely different ways, and
thus we cannot conclude the convergence ¢y — @, a priori.

W W/A+1 Wi— W41

Fig. 1. Semiconjugation inside the filled Julia sets of cauliflowers

But there is another evidence that supports this observation. Figure 1
shows the equipotential curves of ¢y and ¢, in the filled Julia sets. We can
find similar patterns and it seems that one converges to the other. Actually,
we have the following;:
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THEOREM 1.2. For any compact set E C K,

(1) EC K3 for all f =~ g;
(2) @5 — D4 uniformly on E as f — g.

Here f ~ g means that f is sufficiently close to g, equivalently, A\ is
sufficiently close to 1. (See [Ka, Theorem 5.5] for a more general version of
this proposition.) The proof of this theorem is given in Section 5, by using
the simultaneous linearization theorem.

2. Simultaneous linearization. In this section we state the simultane-
ous linearization theorem. We first generalize the cauliflower setting above:

Perturbation of parabolics. Let f be an analytic map defined on a neigh-
borhood of 0 in C which is tangent to identity at 0. That is, f near 0 is of
the form

flw)=w+ Aw™H 4 O(wm“)

where A # 0 and m € N. By making a linear coordinate change w — AY/™w,
we may assume that A = 1. In the theory of complex dynamics such germs
appear when we consider iteration of local dynamics near parabolic periodic
points, and play very important roles. (See [Mi, §10] and [Sh] for example.)
Now we consider a perturbation f. — f of the form

fe(w) = Acw(1l +w™ + O(wm+1))

with 4. — 1 as ¢ — 0. By taking branched coordinate changes z =
— A7 /(mw™) and setting 7. := A_™, we have

fe(z) =Tz+1+ O(|Z|_1/m)
— fo(2) = 24+ 14 O(|z| ™)

uniformly near w = oo on the Riemann sphere C. The simultaneous lin-
earization theorem will give partially linearizing coordinates of f. that de-
pend continuously on € when 7. — 1 non-tangentially to the unit circle.
Let us formalize non-tangential access to 1 in the complex plane: After
C. McMullen, for a variable 7 € C converging to 1, we say 7 — 1 radially
(or more precisely, a-radially) if |arg(T —1)| < « for some fixed a € [0,7/2).

Ueda’s modulus. Consider a continuous family {7.} of complex numbers
with € € [0,1] such that |7.| > 1 and 7. — 1 a-radially as ¢ — 0. For
simplicity we assume that 7. = 1 iff ¢ = 0. Set ¢.(z) := 7.2 + 1, which is an
isomorphism of the Riemann sphere C. If ¢ > 0, then b, := 1 /(1 —17)1is a
repelling fixed point of ¢ with ¢.(2) — b. = 7-(z — b:). Thus the function

Ne(2) = |z = be| — |be]
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has the uniform increase property
|7e| — 1
|7e — 1]

N(le(2)) = |7e|N(2) + > || N(z) + cos a.

Similarly, if € = 0, the function
No(z) == sup {Re(e?2) : |0] < a}
also has the corresponding property
No(£y(2)) > No(z) + cos a.
In both cases, set
Vo(R) :={2 € C: N.(2) > R}
for R > 0. One can check that N.(z) < |z| and
V.(R) CB(R):={2z€C:|z| >R} forallee]|0,1].
We will establish:
THEOREM 2.1 (Simultaneous linearization). Let {f.:ec € [0,1]} be a

family of holomorphic maps on B(R) such that as e — 0 we have the uniform
convergence on compact sets of the form

fe(z2) =2+ 14+ 0(1/]2]7)
— fo(z) = 2+ 1+ O(1/[2]7)
for some o € (0,1] and 7. — 1 a-radially. If R > 0, then:
(1) For any e € [0,1] there exists a holomorphic map u. : Vo.(R) — C
such that
ue(fe(2)) = Teue(2) + 1.
(2) For any compact set K contained in V.(R) for alle € [0, 1], us — wup
uniformly on K.

This theorem is a mild generalization of Ueda’s theorem in [Uel] that
deals with the case of o = 1. (See also [Ue2].) This plays a crucial role to
show the continuity of tessellation of the filled Julia set for hyperbolic and
parabolic quadratic maps. See [Ka]. C. McMullen showed that there exist
quasiconformal linearizations with much wider domain of definition. In fact,

7. — 1 may be tangent to the unit circle (horocyclic in his terminology). See
[Mc, §8].

Remark on the domain of convergence. We can take such a compact
subset K as above in

II(R):=C—{e"z:Rez <R, |0 <a}
={2€C:Re(z — R') > |z — R|sina},

which is a closed sector at z = R’ = R/cos« > 0. In fact, for any R > 0 and
e € [0,1], II(R) is contained in V.(R). One can check this as follows. The
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complement of V. (R) is contained in {e’z : Rez < R, 6 = arg(—b.)}. Since
larg(—be)| < a, we have the claim.

In the next section we give a proof of Theorem 2.1 that is also an alter-
native proof of Ueda’s simultaneous linearization when ¢ = 1. His original
proof given in [Uel] uses a technical difference equation which makes the
proof beautiful and the statement a little more detailed. Here we present a
simplified proof based on the argument of [Mi, Lemma 10.10] (its idea can
be traced back at least to Leau’s work on the Abel equation [L]) and an
estimate on polylogarithm functions given in Section 4.

3. Proof of the theorem. Let us start with a couple of lemmas. Set
0 := (cosar)/2 > 0. We first check:

LEMMA 3.1. If R > 0, there exists M > 0 such that |f-(z) — (1.2 +1)| <
M/|z|7 on B(R) and N:(f:(z)) > Nz(z) + 6 on V.(R) for any € € [0,1].

Proof. The first inequality and the existence of M are obvious. By re-
placing R by a larger one, we have |f.(z) — (1.2 +1)| < M/R° < 6 on B(R).
Then

Ne(fe(2)) =2 Ne(le(z)) =6 2 Ne(2) + 0. m

Let us fix such an R > 0. Then the lemma above implies that f.(V.(R))
C V.(R). Moreover, since N(z) < |z|, we have

(3.1) £2(2)] = Ne(f2(2)) = Ne(2) +né = R+ nd — oc.

Thus V.(R) is contained in the basin of infinity and uniformly attracted
to oo in the spherical metric of C. In particular, this convergence to oo is
uniform on II(R) for any e.

Next we show a key lemma for the theorem:

LEMMA 3.2. There exists C > 0 such that for any € € [0,1] and 21, 22 €
B(2S) with S > R, we have

fe(z2) = fe(21) -
29 — 21 ¢l = §lto”

Proof. Set g-(z) := fo(2) — (7ez + 1). For any z € B(2S) and w €
D(z,S) := {w:|w—2z| < S}, we have |w| > S. This implies |g-(w)| <
M/|w|” < M/S? and thus g. maps D(z,.S) into D(0, M /S?). By the Cauchy
integral formula (or the Schwarz lemma), it follows that |g.(z)| < (M/S?)/S
= M/S' on B(29).

Let [z1, z9] denote the oriented line segment from z; to zo. If [21, 29] is
contained in B(2S5), the inequality easily follows from

M
9:(2) —ge(0)l = | | gl2)dz| < [ Igh(a)l 1zl < ozl — =

[#1,22] [#1,22]
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with C' := M. Otherwise we have to take a roundabout way to get the
estimate. Consider a circle with diameter [z1, z2]. Then [z1, 22| divides the
circle into two semicircles, and at least one of them is contained in B(2S5);
denote it by {z1,22}. Then

9:22) — o)l = | § @)z < § gl < orp a2
{z1,22} {z1,22}

and the lemma holds with C':= Mn/2 (> M) for any z;, 22 € B(25). »
Proof of Theorem 2.1. Set z, := fI'(z) for z € V.(2R). Note that |z,| >

N:(zn) > 2R+ nd by (3.1). Now we fix a € V.(2R) and define ¢, = ¢y, :
V:(2R) — C (n > 0) by

For example, one can take such an a in IT(2R) independently of €. Then
Pn+1(2) _ |Zntl T Ontl ‘ _ i ] fe(zn) — felan) .
(bn(z) Ta(zn - an) Zn — Gn °

B |7e
We apply Lemma 3.2 with 25 = 2R + nd. Since z,,a, € V.(2S) C B(2S),
we have

d’n-}—l(z) _ ' < c < c’

on(2) = (R +né/2)1He = (n+ 1)1+o’

where ¢/ = 219C/§*° and we may assume R > /2. Now set P :=
[I.>:(1+ C'/n't9). Since |¢pni1(2)/dn(2)] <14+ C'/(n+ 1)1 we have

_ | on(2) ¢1(2)
on(2)] = | 2| S o] < Pl =l
Hence
¢n (Z) C'P
b2 (2) = ()] = |22 1' W) < Ty o=l
This implies that ¢. = ¢o + (¢1 — ¢o) + - -+ = lim ¢, converges uniformly

on compact subsets of V.(2R) and for all € € [0, 1]. The univalence of ¢. is
shown in the same way as [Mi, Lemma 10.10].
Next we claim that ¢.(fz(z)) = 7-¢<(z) + B: with B. — 1 as ¢ — 0. One
can easily check that ¢, (f-(2)) = Te¢nt1(2) + By, where
B, — an+1n— an _ (72 —nl)an n 1+ gi(an).
7_5 7-5 7_5
When 7. = 1, B,, tends to 1 since

M M M

< < < .
9=(@n)l < 15 S BR ey = oy 0
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When |7.| > 1, the last term of the formula for B,, above tends to 0. For
n > 1, we have

n n—1

T, 1
an = 1ra + TE — 7t ZTE"_l_kgs(ak).
¢ k=0

Thus

1
Te=Dan _ (. _ 1)<a+ g:(@) +Zg€(a’“)> T

Te

By the inequality on |g:(ay)| above, we have

g5 M ‘Ts — 1‘ M 1 . 1
r—1) <% 1— — | Li, | —
Z k+1 = 7] Z ka|7. = 251+a ] lo 7]

where we have used the 1nequahty

Rem. =1 || —1

-1 <
7 = cosaa 20

that comes from the radial convergence. By Proposition 4.1 in the next
section, B,, converges to some B.. More precisely, if we set |7.| = e, then
7. —1 = O(L) and one can check that B, = 14+ O(L?/(1+9)),

Finally, u-(z) := ¢-(z)/B- gives the desired holomorphic map (with R
in the statement replaced by 2R). =

REMARKS.

e When o = 1, we have

gg M 1
E E I —
k+1 - (5\7’ \ k]T \k =5 og< \7'5\)

and this implies that B. = 1 + O(L|log L|) if we set |7.| = . This is
consistent with the result in [Uel].

e By this proof, if {f.(z)} analytically depends on ¢, then so do {B.}
and {u.(z)} for fixed a in II(2R).

e It is not difficult to check that u.(z) = 2(B-!+0(1)) as z — oo within
Ve(R). (It is well-known that if fy(z) = 24+ 14 ag/z + --- then the
Fatou coordinate is of the form ug(z) = z — aglog z + O(1). See [Sh].)

4. An estimate on polylogarithm functions. We define the polylog-
arithm function of exponent s € C by

o0

Lig(2) := —.
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This function makes sense when |z| < 1 and 0 := Res > 0 and it is a
holomorphic function of z. In particular, if Res > 1 the function tends to
¢(s) as z — 1 within the unit disk. In the following we consider the behavior
of Lis(#) as z — 1 within the unit disk when 0 < ¢ < 1. We claim:

PROPOSITION 4.1. Suppose 0 < Res =0 <1 and z — 1 with |z| < 1.
Set € := 1 — |z|. Then there exists a uniform constant C' independent of s

such that
|Lis(2)| < Ce~V/+0)

as z — 1. In particular,
|(z — 1) Lis(2)] < Ce?/0+9) — 0
as z — 1 — 0 along the real axis.

Proof. Clearly |Lis(z)| < > |2/"/n? so it is enough to consider the

sum o

S::Znia)\"
n=1

where A := |z| = 1 — . Let S,, be the nth partial sum. By the Holder

inequality, we have
1\ & e\ 1/
< (X)) (2N)

k=1
for any p,q > 1 with 1/p+1/¢ = 1. Now set p := 1/oc + 1 > 2 (then
l1<qg=1+40 <2). Since op = 1+ 0 > 1, the first sum is uniformly
bounded:

L <1 [ de =1 L
D g St mmde =1+ =p
k=1 1
On the other hand, for the second sum, we still have 0 < A\? < 1 and thus

4 1 2
\Fa < -—(1 1)) < =
; <1 v qg(‘l—O())_qg

when ¢ < 1. Hence we have the following uniform bound:
1/q 1/p
S, < pl/p<3> <2 P -1/q
qe g/
One can easily check that 1 < zl/v < el/e = 1.44467. .. for z > 1. Thus
S < 261/85_1/q _ 261/86—1/(1+U)
when e < 1, and we have the desired estimate with C' = 2e¢/¢ < 3. The last
inequality of the statement follows from
[(z — 1) Lig(2)] < CelVa = Cel/p = ¢eo/(40),
(Indeed, |(z — 1) Lis(2)| = O(¢?/(1+9)) as 2z — 1 radially.) =
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5. Application: Proof of Theorem 1.2. As an application of Theo-
rem 2.1, we give a proof of Theorem 1.2. Though Theorem 1.2 only deals
with the simplest parabolic fixed point and its simplest perturbation, one
can easily extend the result to general parabolic cycles with multiple petals
and their “non-tangential” perturbations.

Proof of Theorem 1.2. Consider the general expression fy(w) = A\w + w?
with 0 < A < 1 (thus f; = ¢). By looking at the action of f\ in a new
coordinate z = x(w) = —A\2?/w, we have

xaofroxy'(z) =2z/A+1+0(1/z)

near oo. Now we can set 7. := 1/ = 1+4¢c and f; := X,\of)\oX;1 to have the
same setting as in Theorem 2.1. We view f and g as being parameterized by
A or e. (It is convenient to use both parameterizations.) Note that IT(R) =
{Rez > R} in this case. By the same argument as in Lemma 3.1, we can
check that Re f-(z) > Rez + 1/2 if z € II(R) and R > 0. In particular,
fe(II(R)) C II(R) for R > 0.

Let us show (1): For any compact E C K, s and small 7 > 0, there exists
N > 0such that gV (E) C P. = {|w + r| < r}. (For instance, one can deduce
this from the existence of the Fatou coordinate.) By uniform convergence, we
have fV(E) C P, for all f =~ g. To prove E C K3, it is enough to show that
f(Py) C P, for all f =~ g. Since xx(P,) = II(R) for some R > 0, we have
fe(II(R)) C II(R) independently of . This is equivalent to f\(P.) C P, in
a different coordinate. Thus we have (1).

Next let us check (2): Set @, := @; and $g := ®,4. Then D.(fr(w)) =
T7:P-(w) + 1. On the other hand, by simultaneous linearization, we have
uniform convergence u. — ug on IT(R) that satisfies u.(f-(2)) = Teus(2) + 1.
By setting ¥ (w) := ue o xx(w), we have ¥, — ¥y compact uniformly on P,
and ¥ (f(w)) = 7% (w) + 1.

We need to adjust the images of the critical orbits under @, and ¥.. Since
g"(—1/2) — 0 along the real axis, there is an M >> 0 such that g™ (—1/2) =:
ag € P,. By uniform convergence, we also have fM(—)\/2) =: a. € P, and
a: — ag as € — 0. Set b. := ¥.(a.) and ¢, := P.(a.) for all € > 0. Set also
(W) =7.W+1. Then c. =M (0) =M1 ... 4 r.+1landc. —wco=M
as ¢ — 0. When ¢ > 0, we choose an affine map 7} that fixes 1/(1 — 7.) and
sends b to c.. When € = 0, we define Ty to be the translation by by — cg.
Then one can check that 7. — Tj compact uniformly on the plane and
P, = T, o ¥, satisfies &, — P on any compact subset of P.. Moreover,
P, still satisfies P (fr(w)) = 7:P-(w) + 1 and the images of the critical orbit
under &, and 55 agree. Finally, by uniqueness of ¢; and ¢,, one can check
that &. = & on P,.
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Since

P(w) = LN 0 b0 fN(w) = LN 0 Bg 0 gN (w) = Bg(w)

uniformly on F, we have (2). m
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