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Summary. We give an alternative proof of simultaneous linearization re
ently shown byT. Ueda, whi
h 
onne
ts the S
hröder equation and the Abel equation analyti
ally. Infa
t, we generalize Ueda's original result so that we may apply it to the paraboli
 �xedpoints with multiple petals. As an appli
ation, we show a 
ontinuity result on linearizing
oordinates in 
omplex dynami
s.1. Introdu
tion. Let us start with a worked out example to explainthe motivation to 
onsider the simultaneous linearization theorem.Cauli�owers. In the family of quadrati
 maps, the simplest paraboli
�xed point is given by g(w) = w + w2 (whose Julia set is 
alled the 
auli-�ower). Now we 
onsider its perturbation of the form f(w) = λw + w2 with
λ ր 1. A

ording to [Mi, �8 and �10℄, we have the following fa
t:Proposition 1.1 (Königs and Fatou 
oordinates). Let Kf and Kg bethe �lled Julia sets of f and g. Then we have the following :(1) There exists a unique holomorphi
 bran
hed 
overing map φf :K◦

f →Csatisfying the S
hröder equation φf (f(w)) = λφf (w) and φf (0) =
φf (−λ/2) − 1 = 0. The map φf is univalent near w = 0.(2) There exists a unique holomorphi
 bran
hed 
overing map φg :K◦

g →Csatisfying the Abel equation φg(g(w)) = φg(w)+1 and φg(−1/2) = 0.The map φg is univalent on a disk |w + r| < r with small r > 0.Note that −λ/2 and −1/2 are the 
riti
al points of f and g respe
tively.2000 Mathemati
s Subje
t Classi�
ation: 37F99, 30D05.Key words and phrases: simultaneous linearization, polylogarithm, paraboli
 �xedpoint. [43℄ 
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Observation. Set w̃ = φf (w). Now the proposition above asserts thatthe a
tion of f |K◦

f
is semi
onjugate to w̃ 7→ λw̃ by φf . Consider the Möbiusmap

W = Sf (w̃) = λ(w̃ − 1)/(λ − 1)w̃that sends {0, 1, λ} to {∞, 0, 1} respe
tively. By taking 
onjugation by Sf ,the a
tion of w̃ 7→ λw̃ is viewed as W 7→ W/λ + 1. Set W = Φf (w) :=
Sf ◦ φf (w). Now we have

Φf (f(w)) = Φf (w)/λ + 1 and Φf (−λ/2) = 0.On the other hand, by setting W = Φg(w) := φg(w), we 
an view the a
tionof g|K◦

g
as W 7→ W + 1. Thus we have

Φg(g(w)) = Φg(w) + 1 and Φg(−1/2) = 0.If λ tends to 1, that is, f → g, the semi
onjugate a
tion in W -
oordinate
onverges uniformly on 
ompa
t sets. Now it would be natural for Φf to tendto Φg. However, as one 
an see by referring to the proof of the propositionin [Mi, �8 and �10℄, φf and φg are given in 
ompletely di�erent ways, andthus we 
annot 
on
lude the 
onvergen
e Φf → Φg a priori.

Fig. 1. Semi
onjugation inside the �lled Julia sets of 
auli�owersBut there is another eviden
e that supports this observation. Figure 1shows the equipotential 
urves of φf and φg in the �lled Julia sets. We 
an�nd similar patterns and it seems that one 
onverges to the other. A
tually,we have the following:
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Theorem 1.2. For any 
ompa
t set E ⊂ K◦

g ,(1) E ⊂ K◦
f for all f ≈ g;(2) Φf → Φg uniformly on E as f → g.Here f ≈ g means that f is su�
iently 
lose to g, equivalently, λ issu�
iently 
lose to 1. (See [Ka, Theorem 5.5℄ for a more general version ofthis proposition.) The proof of this theorem is given in Se
tion 5, by usingthe simultaneous linearization theorem.2. Simultaneous linearization. In this se
tion we state the simultane-ous linearization theorem. We �rst generalize the 
auli�ower setting above:Perturbation of paraboli
s. Let f be an analyti
 map de�ned on a neigh-borhood of 0 in Ĉ whi
h is tangent to identity at 0. That is, f near 0 is ofthe form

f(w) = w + Awm+1 + O(wm+2)where A 6= 0 and m ∈ N. By making a linear 
oordinate 
hange w 7→ A1/mw,we may assume that A = 1. In the theory of 
omplex dynami
s su
h germsappear when we 
onsider iteration of lo
al dynami
s near paraboli
 periodi
points, and play very important roles. (See [Mi, �10℄ and [Sh℄ for example.)Now we 
onsider a perturbation fε → f of the form
fε(w) = Λεw(1 + wm + O(wm+1))with Λε → 1 as ε → 0. By taking bran
hed 
oordinate 
hanges z =

−Λm
ε /(mwm) and setting τε := Λ−m

ε , we have
fε(z) = τεz + 1 + O(|z|−1/m)

→ f0(z) = z + 1 + O(|z|−1/m)uniformly near w = ∞ on the Riemann sphere Ĉ. The simultaneous lin-earization theorem will give partially linearizing 
oordinates of fε that de-pend 
ontinuously on ε when τε → 1 non-tangentially to the unit 
ir
le.Let us formalize non-tangential a

ess to 1 in the 
omplex plane: AfterC. M
Mullen, for a variable τ ∈ C 
onverging to 1, we say τ → 1 radially(or more pre
isely, α-radially) if |arg(τ −1)| ≤ α for some �xed α ∈ [0, π/2).Ueda's modulus. Consider a 
ontinuous family {τε} of 
omplex numberswith ε ∈ [0, 1] su
h that |τε| ≥ 1 and τε → 1 α-radially as ε → 0. Forsimpli
ity we assume that τε = 1 i� ε = 0. Set ℓε(z) := τεz + 1, whi
h is anisomorphism of the Riemann sphere Ĉ. If ε > 0, then bε := 1/(1 − τε) is arepelling �xed point of ℓε with ℓε(z) − bε = τε(z − bε). Thus the fun
tion
Nε(z) := |z − bε| − |bε|
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has the uniform in
rease property

N(ℓε(z)) = |τε|N(z) +
|τε| − 1

|τε − 1|
≥ |τε|N(z) + cos α.Similarly, if ε = 0, the fun
tion

N0(z) := sup {Re(eiθz) : |θ| < α}also has the 
orresponding property
N0(ℓ0(z)) ≥ N0(z) + cosα.In both 
ases, set

Vε(R) := {z ∈ C : Nε(z) ≥ R}for R > 0. One 
an 
he
k that Nε(z) ≤ |z| and
Vε(R) ⊂ B(R) := {z ∈ C : |z| ≥ R} for all ε ∈ [0, 1].We will establish:Theorem 2.1 (Simultaneous linearization). Let {fε : ε ∈ [0, 1]} be afamily of holomorphi
 maps on B(R) su
h that as ε → 0 we have the uniform
onvergen
e on 
ompa
t sets of the form

fε(z) = τεz + 1 + O(1/|z|σ)

→ f0(z) = z + 1 + O(1/|z|σ)for some σ ∈ (0, 1] and τε → 1 α-radially. If R ≫ 0, then:(1) For any ε ∈ [0, 1] there exists a holomorphi
 map uε : Vε(R) → Csu
h that
uε(fε(z)) = τεuε(z) + 1.(2) For any 
ompa
t set K 
ontained in Vε(R) for all ε ∈ [0, 1], uε → u0uniformly on K.This theorem is a mild generalization of Ueda's theorem in [Ue1℄ thatdeals with the 
ase of σ = 1. (See also [Ue2℄.) This plays a 
ru
ial role toshow the 
ontinuity of tessellation of the �lled Julia set for hyperboli
 andparaboli
 quadrati
 maps. See [Ka℄. C. M
Mullen showed that there existquasi
onformal linearizations with mu
h wider domain of de�nition. In fa
t,

τε → 1 may be tangent to the unit 
ir
le (horo
y
li
 in his terminology). See[M
, �8℄.Remark on the domain of 
onvergen
e. We 
an take su
h a 
ompa
tsubset K as above in
Π(R) := C − {eθiz : Re z < R, |θ| ≤ α}

= {z ∈ C : Re(z − R′) ≥ |z − R′| sinα},whi
h is a 
losed se
tor at z = R′ = R/cos α > 0. In fa
t, for any R > 0 and
ε ∈ [0, 1], Π(R) is 
ontained in Vε(R). One 
an 
he
k this as follows. The



Simultaneous Linearization with a Polylog Estimate 47

omplement of Vε(R) is 
ontained in {eθiz : Re z < R, θ = arg(−bε)}. Sin
e
|arg(−bε)| ≤ α, we have the 
laim.In the next se
tion we give a proof of Theorem 2.1 that is also an alter-native proof of Ueda's simultaneous linearization when σ = 1. His originalproof given in [Ue1℄ uses a te
hni
al di�eren
e equation whi
h makes theproof beautiful and the statement a little more detailed. Here we present asimpli�ed proof based on the argument of [Mi, Lemma 10.10℄ (its idea 
anbe tra
ed ba
k at least to Leau's work on the Abel equation [L℄) and anestimate on polylogarithm fun
tions given in Se
tion 4.3. Proof of the theorem. Let us start with a 
ouple of lemmas. Set
δ := (cosα)/2 > 0. We �rst 
he
k:Lemma 3.1. If R ≫ 0, there exists M > 0 su
h that |fε(z)−(τεz+1)| ≤
M/|z|σ on B(R) and Nε(fε(z)) ≥ Nε(z) + δ on Vε(R) for any ε ∈ [0, 1].Proof. The �rst inequality and the existen
e of M are obvious. By re-pla
ing R by a larger one, we have |fε(z)− (τεz +1)| ≤ M/Rσ < δ on B(R).Then

Nε(fε(z)) ≥ Nε(ℓε(z)) − δ ≥ Nε(z) + δ.Let us �x su
h an R ≫ 0. Then the lemma above implies that fε(Vε(R))
⊂ Vε(R). Moreover, sin
e Nε(z) ≤ |z|, we have(3.1) |fn

ε (z)| ≥ Nε(f
n
ε (z)) ≥ Nε(z) + nδ ≥ R + nδ → ∞.Thus Vε(R) is 
ontained in the basin of in�nity and uniformly attra
tedto ∞ in the spheri
al metri
 of Ĉ. In parti
ular, this 
onvergen
e to ∞ isuniform on Π(R) for any ε.Next we show a key lemma for the theorem:Lemma 3.2. There exists C > 0 su
h that for any ε ∈ [0, 1] and z1, z2 ∈

B(2S) with S > R, we have
∣∣∣∣
fε(z2) − fε(z1)

z2 − z1
− τε

∣∣∣∣ ≤
C

S1+σ
.Proof. Set gε(z) := fε(z) − (τεz + 1). For any z ∈ B(2S) and w ∈

D(z, S) := {w : |w − z| < S}, we have |w| > S. This implies |gε(w)| ≤
M/|w|σ < M/Sσ and thus gε maps D(z, S) into D(0, M/Sσ). By the Cau
hyintegral formula (or the S
hwarz lemma), it follows that |g′ε(z)| ≤ (M/Sσ)/S
= M/S1+σ on B(2S).Let [z1, z2] denote the oriented line segment from z1 to z2. If [z1, z2] is
ontained in B(2S), the inequality easily follows from

|gε(z2) − gε(z1)| =
∣∣∣
\

[z1,z2]

g′ε(z) dz
∣∣∣ ≤

\
[z1,z2]

|g′ε(z)| |dz| ≤
M

S1+σ
|z2 − z1|
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with C := M . Otherwise we have to take a roundabout way to get theestimate. Consider a 
ir
le with diameter [z1, z2]. Then [z1, z2] divides the
ir
le into two semi
ir
les, and at least one of them is 
ontained in B(2S);denote it by {z1, z2}. Then
|gε(z2) − gε(z1)| =

∣∣∣
\

{z1,z2}

g′ε(z) dz
∣∣∣ ≤

\
{z1,z2}

|g′ε(z)| |dz| ≤
M

S1+σ
·
π

2
|z2 − z1|

and the lemma holds with C := Mπ/2 (> M) for any z1, z2 ∈ B(2S).Proof of Theorem 2.1. Set zn := fn
ε (z) for z ∈ Vε(2R). Note that |zn| ≥

Nε(zn) ≥ 2R + nδ by (3.1). Now we �x a ∈ Vε(2R) and de�ne φn,ε = φn :
Vε(2R) → C (n ≥ 0) by

φn(z) :=
zn − an

τn
ε

.For example, one 
an take su
h an a in Π(2R) independently of ε. Then
∣∣∣∣
φn+1(z)

φn(z)
− 1

∣∣∣∣ =

∣∣∣∣
zn+1 − an+1

τε(zn − an)
− 1

∣∣∣∣ =
1

|τε|
·

∣∣∣∣
fε(zn) − fε(an)

zn − an
− τε

∣∣∣∣.We apply Lemma 3.2 with 2S = 2R + nδ. Sin
e zn, an ∈ Vε(2S) ⊂ B(2S),we have ∣∣∣∣
φn+1(z)

φn(z)
− 1

∣∣∣∣ ≤
C

|τε|(R + nδ/2)1+σ
≤

C ′

(n + 1)1+σ
,where C ′ = 21+σC/δ1+σ and we may assume R > δ/2. Now set P :=∏

n≥1(1 + C ′/n1+σ). Sin
e |φn+1(z)/φn(z)| ≤ 1 + C ′/(n + 1)1+σ, we have
|φn(z)| =

∣∣∣∣
φn(z)

φn−1(z)

∣∣∣∣ · · ·
∣∣∣∣
φ1(z)

φ0(z)

∣∣∣∣ · |φ0(z)| ≤ P |z − a|.Hen
e
|φn+1(z) − φn(z)| =

∣∣∣∣
φn+1(z)

φn(z)
− 1

∣∣∣∣ · |φn(z)| ≤
C ′P

(n + 1)1+σ
· |z − a|.This implies that φε = φ0 + (φ1 − φ0) + · · · = limφn 
onverges uniformlyon 
ompa
t subsets of Vε(2R) and for all ε ∈ [0, 1]. The univalen
e of φε isshown in the same way as [Mi, Lemma 10.10℄.Next we 
laim that φε(fε(z)) = τεφε(z)+Bε with Bε → 1 as ε → 0. One
an easily 
he
k that φn(fε(z)) = τεφn+1(z) + Bn where

Bn =
an+1 − an

τn
ε

=
(τε − 1)an

τn
ε

+
1 + gε(an)

τn
ε

.When τε = 1, Bn tends to 1 sin
e
|gε(an)| ≤

M

|an|σ
≤

M

(2R + nδ)σ
≤

M

(nδ)σ
→ 0.
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When |τε| > 1, the last term of the formula for Bn above tends to 0. For
n ≥ 1, we have

an = τn
ε a +

τn
ε − 1

τε − 1
+

n−1∑

k=0

τn−1−k
ε gε(ak).Thus

(τε − 1)an

τn
ε

= (τε − 1)

(
a +

gε(a)

τε
+

n−1∑

k=1

gε(ak)

τk+1
ε

)
+ 1 −

1

τn
ε

.By the inequality on |gε(an)| above, we have
∣∣∣∣(τε−1)

n−1∑

k=1

gε(ak)

τk+1
ε

∣∣∣∣ ≤
M

δσ

|τε − 1|

|τε|

n−1∑

k=1

1

kσ|τε|k
≤

M

2δ1+σ

(
1−

1

|τε|

)
Liσ

(
1

|τε|

)

where we have used the inequality
|τε − 1| ≤

Re τε − 1

cosα
≤

|τε| − 1

2δthat 
omes from the radial 
onvergen
e. By Proposition 4.1 in the nextse
tion, Bn 
onverges to some Bε. More pre
isely, if we set |τε| = eL, then
τε − 1 = O(L) and one 
an 
he
k that Bε = 1 + O(Lσ/(1+σ)).Finally, uε(z) := φε(z)/Bε gives the desired holomorphi
 map (with Rin the statement repla
ed by 2R).
Remarks.

• When σ = 1, we have
∣∣∣∣
n−1∑

k=1

gε(ak)

τk+1
ε

∣∣∣∣ ≤
M

δ|τε|

n−1∑

k=1

1

k|τε|k
≤ −

M

δ
log

(
1 −

1

|τε|

)

and this implies that Bε = 1 + O(L|log L|) if we set |τε| = eL. This is
onsistent with the result in [Ue1℄.
• By this proof, if {fε(z)} analyti
ally depends on ε, then so do {Bε}and {uε(z)} for �xed a in Π(2R).
• It is not di�
ult to 
he
k that uε(z) = z(B−1

ε +o(1)) as z → ∞ within
Vε(R). (It is well-known that if f0(z) = z + 1 + a0/z + · · · then theFatou 
oordinate is of the form u0(z) = z − a0 log z + O(1). See [Sh℄.)4. An estimate on polylogarithm fun
tions. We de�ne the polylog-arithm fun
tion of exponent s ∈ C by

Lis(z) :=

∞∑

n=1

zn

ns
.
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This fun
tion makes sense when |z| < 1 and σ := Re s > 0 and it is aholomorphi
 fun
tion of z. In parti
ular, if Re s > 1 the fun
tion tends to
ζ(s) as z → 1 within the unit disk. In the following we 
onsider the behaviorof Lis(z) as z → 1 within the unit disk when 0 < σ ≤ 1. We 
laim:Proposition 4.1. Suppose 0 < Re s = σ ≤ 1 and z → 1 with |z| < 1.Set ε := 1 − |z|. Then there exists a uniform 
onstant C independent of ssu
h that

|Lis(z)| ≤ Cε−1/(1+σ)as z → 1. In parti
ular ,
|(z − 1) Lis(z)| ≤ Cεσ/(1+σ) → 0as z → 1 − 0 along the real axis.Proof. Clearly |Lis(z)| ≤

∑∞
n=1 |z|

n/nσ so it is enough to 
onsider thesum
S :=

∞∑

n=1

1

nσ
· λn

where λ := |z| = 1 − ε. Let Sn be the nth partial sum. By the Hölderinequality, we have
Sn ≤

( n∑

k=1

1

kσp

)1/p( n∑

k=1

λkq
)1/q

for any p, q > 1 with 1/p + 1/q = 1. Now set p := 1/σ + 1 ≥ 2 (then
1 < q = 1 + σ ≤ 2). Sin
e σp = 1 + σ > 1, the �rst sum is uniformlybounded: n∑

k=1

1

kσp
≤ 1 +

∞\
1

1

x1+σ
dx = 1 +

1

σ
= p.On the other hand, for the se
ond sum, we still have 0 < λq < 1 and thus

n∑

k=1

λkq ≤
λq

1 − λq
=

1

qε
(1 + o(1)) ≤

2

qεwhen ε ≪ 1. Hen
e we have the following uniform bound:
Sn ≤ p1/p

(
2

qε

)1/q

≤ 2
p1/p

q1/q
ε−1/q.One 
an easily 
he
k that 1 ≤ x1/x ≤ e1/e = 1.44467 . . . for x ≥ 1. Thus

S ≤ 2e1/eε−1/q = 2e1/eε−1/(1+σ)when ε ≪ 1, and we have the desired estimate with C = 2e1/e < 3. The lastinequality of the statement follows from
|(z − 1) Lis(z)| ≤ Cε1−1/q = Cε1/p = Cεσ/(1+σ).(Indeed, |(z − 1) Lis(z)| = O(εσ/(1+σ)) as z → 1 radially.)
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5. Appli
ation: Proof of Theorem 1.2. As an appli
ation of Theo-rem 2.1, we give a proof of Theorem 1.2. Though Theorem 1.2 only dealswith the simplest paraboli
 �xed point and its simplest perturbation, one
an easily extend the result to general paraboli
 
y
les with multiple petalsand their �non-tangential� perturbations.Proof of Theorem 1.2. Consider the general expression fλ(w) = λw +w2with 0 < λ ≤ 1 (thus f1 = g). By looking at the a
tion of fλ in a new
oordinate z = χλ(w) = −λ2/w, we have

χλ ◦ fλ ◦ χ−1
λ (z) = z/λ + 1 + O(1/z)near ∞. Now we 
an set τε := 1/λ = 1+ε and fε := χλ ◦fλ ◦χ−1

λ to have thesame setting as in Theorem 2.1. We view f and g as being parameterized by
λ or ε. (It is 
onvenient to use both parameterizations.) Note that Π(R) =
{Re z ≥ R} in this 
ase. By the same argument as in Lemma 3.1, we 
an
he
k that Re fε(z) ≥ Re z + 1/2 if z ∈ Π(R) and R ≫ 0. In parti
ular,
fε(Π(R)) ⊂ Π(R) for R ≫ 0.Let us show (1): For any 
ompa
t E ⊂ K◦

g and small r > 0, there exists
N ≫ 0 su
h that gN (E) ⊂ Pr = {|w + r| ≤ r}. (For instan
e, one 
an dedu
ethis from the existen
e of the Fatou 
oordinate.) By uniform 
onvergen
e, wehave fN (E) ⊂ Pr for all f ≈ g. To prove E ⊂ K◦

f , it is enough to show that
f(Pr) ⊂ Pr for all f ≈ g. Sin
e χλ(Pr) = Π(R) for some R ≫ 0, we have
fε(Π(R)) ⊂ Π(R) independently of ε. This is equivalent to fλ(Pr) ⊂ Pr ina di�erent 
oordinate. Thus we have (1).Next let us 
he
k (2): Set Φε := Φf and Φ0 := Φg. Then Φε(fλ(w)) =
τεΦε(w) + 1. On the other hand, by simultaneous linearization, we haveuniform 
onvergen
e uε → u0 on Π(R) that satis�es uε(fε(z)) = τεuε(z)+1.By setting Ψε(w) := uε ◦χλ(w), we have Ψε → Ψ0 
ompa
t uniformly on Pr,and Ψε(fλ(w)) = τεΨε(w) + 1.We need to adjust the images of the 
riti
al orbits under Φε and Ψε. Sin
e
gn(−1/2) → 0 along the real axis, there is an M ≫ 0 su
h that gM (−1/2) =:
a0 ∈ Pr. By uniform 
onvergen
e, we also have fM (−λ/2) =: aε ∈ Pr and
aε → a0 as ε → 0. Set bε := Ψε(aε) and cε := Φε(aε) for all ε ≥ 0. Set also
ℓε(W ) = τεW +1. Then cε = ℓM

ε (0) = τM−1
ε + · · ·+ τε +1 and cε → c0 = Mas ε → 0. When ε > 0, we 
hoose an a�ne map Tε that �xes 1/(1− τε) andsends bε to cε. When ε = 0, we de�ne T0 to be the translation by b0 − c0.Then one 
an 
he
k that Tε → T0 
ompa
t uniformly on the plane and

Φ̃ε := Tε ◦ Ψε satis�es Φ̃ε → Φ̃0 on any 
ompa
t subset of Pr. Moreover,
Φ̃ε still satis�es Φ̃ε(fλ(w)) = τεΦ̃ε(w)+1 and the images of the 
riti
al orbitunder Φε and Φ̃ε agree. Finally, by uniqueness of φf and φg, one 
an 
he
kthat Φε = Φ̃ε on Pr.
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Sin
e

Φf (w) = ℓ−N
ε ◦ Φ̃ε ◦ fN (w) → ℓ−N

0 ◦ Φ̃0 ◦ gN (w) = Φg(w)uniformly on E, we have (2).A
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