BULLETIN OF THE POLISH
ACADEMY OF SCIENCES
MATHEMATICS
Vol. 55, No. 1, 2007

GEOMETRY

Extending Nearaffine Planes to Hyperbola Structures
by
Kinga CUDNA-SALMANOWICZ and Jan JAKOBOWSKI
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Summary. H. A. Wilbrink [Geom. Dedicata 12 (1982)] considered a class of Minkowski
planes whose restrictions, called residual planes, are nearaffine planes. Our study goes in
the opposite direction: what conditions on a nearaffine plane are necessary and sufficient
to get an extension which is a hyperbola structure.

1. Basic concepts. Let {2 be a nonempty set, and = some family of
subsets of (2. Elements of {2 are called points, elements of = lines. Moreover
let >: 2x02\{(Z,Z); Z € 2} — = be a surjection, called join, and let
= C Z X Z be an equivalence relation called parallelism of lines. The image
of (X,Y) under the join map will be denoted by X > Y. The point X is
called a base point of the line X > Y. In general join is not commutative.
A line X > Y satisfying X >Y =Y > X is called straight. All remaining
lines are called proper. The set of all straight lines will be denoted by T
[4, p. 345].

DEFINITION 1.1 (|7, pp. 53-54]). A quadruple NA = (2, Z,>,=) is a
nearaffine plane if the following three groups of axioms hold:

1. Axzioms of lines:

(L1) X,)YeXp>Yforall XY € 2, X #Y.

(L2) Ze XY \{X} XY =Xp>Zforall X,Y,Z € (2,
X4Y.

(L3) XpY =YX =XnZ = X>Z=ZbX forall X,Y, Z € 2,
Y £ X #Z.
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II. Azioms of parallelism:

(P1) For every line a and every point X there exists exactly one
line with base point X parallel to a (we denote this line by
(X =a)).

(P2) X>Y=Y>Xforall X,Y e X£Y.

(P3) a=bAhae?Y =beT forallabe =.

III. Azioms of richness:

(R1) There exist at least two nonparallel straight lines.
(R2) Every line a meets every straight line g with g # a in exactly
one point.

DEFINITION 1.2 (|7, p. 56]). A bijection ¢ : 2 — (2 is an automorphism
of NA = (2,2, >,=)if o(P>Q) = ¢(P)>¢(Q) and a = b < ¢(a) = p(b)
for any P # ) and a,b € =.

Among nearaffine planes there is a distinguished class satisfying the fol-
lowing postulate [7, p. 55]:

(V) (The Veblen condition) Let a be a straight line containing points
P, Q, R, and b a line different from a with base point P; moreover,
let Se€b\{P}. Then (R=QrS)Nb#0.

Now, let II be some other set of points, provided with three pairwise
disjoint families X, | A of subsets, elements of which are called (+)gener-
ators, (—)generators and circles, respectively. Consider the following axioms:

(M1) For every point P there exists a unique (4 )generator, denoted by
[P]+, and a unique (—)generator, denoted by [P]_, containing P.

(M2) Every (+)generator meets every (—)generator in a unique point.

(M3) There is a circle containing at least three points.

(M4) Through three distinct points P, Q, R, no two of which are on a
common generator, there is a unique circle, denoted by (P, Q, R).

(M5) Every circle intersects every generator in a unique point.

—~

T) Given a circle A\, a point P € A and a point Q ¢ A with P and Q
not on a generator, there is one and only one circle g through @

such that AN = {P}.

DEFINITION 1.3 ([5, p. 269]). The quadruple M = (I, X, ¥ _,A) is a
Minkowski plane (resp. a hyperbola structure) if the axioms (M1)—(MS5) and
(T) (resp. (M1)-(MS5)) hold.

2. New results. As H. A. Wilbrink has demonstrated in [6], every point
Z of a Minkowski plane M satisfying two additional conditions induces a
nearaffine (so-called residual) plane. For a given nearaffine plane NA we
shall construct some hyperbola structure H(NA) such that NA is a residual
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plane with respect to some point Z of H(INA). A special case of this problem
is solved in [4].

Such a construction is possible if NA satisfies a number of additional
conditions. Since the straight lines of a residual plane are obtained from
generators, it is obvious that NA = ({2, Z,>,=) must have exactly two
classes W1, ¥y of straight lines. Note that there exist nearaffine planes with
more than two classes of straight lines, and two distinct lines may have
three or more points in common (see e.g. [2, p. 207]). Let (21, 29, {Z}
be sets (elements of which are also called points) disjoint from each other
and from §2. We assume that there exist bijections f; : §; — ¥; for ¢ =
1,2. Let [P]; denote the straight line through P belonging to ¥;, and set
P = fl._l([P]i). All points marked with the superscript “i” belong to {2; (see
Figure 1). Points of any structure will be denoted by capital Latin letters,
lines of a nearaffine plane by small Latin letters, and circles of a hyperbola
structure by small Greek letters.

DEFINITION 2.1 (cf. [6, p. 123]).

() T={(P,Q) €2 x 2 P#Q, P>Q ¢ Ub).
(b) For (S,T) € I" we put

(S, T)={S,T,Z}U
{Re 2; (R,S),(R,T) e I' N\=(Ippge= S, T,Re P>Q\ {P})}.

P]':flil(a) Q1 “)Z
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/
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Fig. 1

COROLLARY 2.1. [S,T|=[T,S] and U € [S,T] & T € [S,U]. For every
automorphism ¢ we have p([S,T]\{Z}) = [¢(S), o(T)]\ {Z}.

DEFINITION 2.2.
=00 URUu{Z},
Sy ={[Phu{P'}; Pe 2} u{nu{Z}},
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. ={[PU{P?}; Pe R} U{2U{Z}},
Ay ={(P>Q\{P})U{P" P’} (P.Q) € I},
AQZ{[S,T];(S,T)EF}, AU Ay = A

LEMMA 2.1. The structure (IT,X;,X_, A) described in Definition 2.2
satisfies (M1)—(M3) (see Figure 1).

THEOREM 2.1. The quadruple HINA) = (II, X, X_, A) described in
Definition 2.2 is a hyperbola structure if and only if the nearaffine plane
NA = (2, 2, >, =) satisfies the following conditions:

(H1) IfU € [S,T] and U # S then [S,T]| = [S,U].

(H2) Every set [S,T] intersects every straight line in exactly one point.

(H3) For two proper lines P> Q and R1> S with (P,R) € I', the sets
P>Q\{P} and R> S\ {R} have at most two distinct points in
common.

(H4) For every straight line a and two distinct points P,Q ¢ a with
(P,Q) € I, there exists a unique point S € a such that S 1> P =
S > Q (see Figure 2).

..
f—
————.

Pt St = £ )

Fig. 2

Proof. Let (M1)-(MS5) hold in H(NA).

For (H1), by Definitions 2.1, 2.2 and (M4), U € [S,T] means that
(U,S,T)=(S,T,Z)=(S,U,Z) in HINA), ie. [S,T] =[S, U].

To prove (H2), consider any set [S,T] and any straight line a € ¥;. The
set [S,T] is a circle and a U {f; '(a)} is a generator in H(NA). Then by
(M5), there exists a point R such that {R} = [S,T] N (a U {f; ' (a)}). Since
fr(a) ¢ [S,T), we have {R} = [S,T] N a.

(H3) is immediate from (M4).

Finally, we prove (H4). Let a, P, @ satisfy the assumptions of (H4) and
e.g.a € V. In H(NA), aU{f; (a)}, 21 U{Z}, 2,U{Z} are generators and
P,Q, f/ 1(a) are distinct points, no two of which are on the same generator
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(see Figure 2). By (M2) we have {f; '(a)} = (a U {f;  (a)}) N (1 U{Z})
and by (M4), P, Q, ffl(a) determine exactly one circle \. Define {S?} =
(22 U{Z}) N (ef. (M5)) and {8} = [$%]_ N [/ (@), ie. fi(a) = S
By Definition 2.2 and (M4) we have

S>P\{S}=X\{S' 8%} = (P, S%\ {st, 5%
= (@, 5", 9)\{9", 5%} =91 Q\{5}.

Hence S>> P =S5 Q.

Conversely, let (H1)-(H4) hold in NA.

To prove (M4), let P,Q, R € II be points such that no two are on a
common generator. We have the following possibilities:

1.

P,Q,R € (2. Either there exists a proper line X > Y such that
P,Q,R € X >Y \ {X}, or such a line does not exist. In the for-
mer case the line X > Y is uniquely determined by (H3) and we put
A= (XY \{X})U{X", X2} In the latter case, by (H1) and Corol-
lary 2.1, [P,Q] = [P,R] = [Q,R] and A = [P, Q] is a unique circle
containing P, @), R.

. P,Q € 2, R = Z. No circle from A; contains Z. Then [P,Q] is a

unique circle through P, @, R.

P.Q € 2, R € . No circle from A, contains an element of (2.
Thus a circle through P, @, R' must belong to A;. There exists the
straight line f1(R'). Of course P,Q ¢ fi(R'). In view of (H4) there
is a unique point S € f1(R') such that S > P = S 1> Q. Therefore

A= (S P\{SHU{R ;' ([S]2)} = (S> P\ {S}) U {s", 5%

is the only circle containing P, @, R'.

. Pelf Ql € (), R? € (2. Let {Y} = fl(Ql)ﬂfg(Rz) (cf. (R2)). We

obtain A= (Y > P\{YHU{Q, R*} = (Y > P\{Y}Hu{Y YL

For (M5), consider A € A = A; U Az and 0 € ¥ U X_. The following
cases are possible:

1.

©w

A= (P>Q\{P})U{P", P?}, o = [R]; U{R'} for some P,Q,R € 1,
(P,Q) € I'. By (R2) we have P> QN [R]; = {X} for some X € {2
and X = P < P! = X! = R'. Then ANo = {X} for R! # P! and
ANo = {R'} for R' = PL.

A= (P>Q\{P}H)U{P, P?}, 0=6U{Z}. Then A\No = {P'}.
A=[5,T),0 =2, U{Z}. Then A\no ={Z}.

A=[9,T], o = [R]; U{R'}. By (H2) we have [S,T|N[R]; = {U} for
some U € (2 and we obtain A\No = {U}.

PROPOSITION 2.1. Every automorphism ¢ of a nearaffine plane NA sat-
isfying the conditions (H1)—(H4) extends to an automorphism @ of the hy-
perbola structure H(NA).
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Proof. We define §lo =, p(Z) =2, 5(X") = f; ' (o(fi(X"))) for X' € (2,
where i,5 € {1,2}, j =1 if p(¥;) = ¥;, and j # ¢ if p(¥;) # ¥; (Figure 3).
Thus @ is a bijection. By Definition 2.2, Definition 1.2 and Corollary 2.1,
maps every circle of H(INA) onto a circle.

£ixh

, ® /@AY M =5 (X"
0 (X)) 5

Fig. 3

We shall use the notation P> @Q = \* for A € Ay, A = (P!, P2,Q).

LEMMA 2.2 (see [2, Corollary 1, p. 215| for the finite case). Let distinct
lines a, b have base points on a common straight line.

(a) Ifa=0b then anb=1.

(b) If the Veblen condition holds and a N'b = () then a = b.

Proof. Let g € T and let P, @ € g be the base points of a, b, respectively.
Ifa=band S€anb, thena=P> S5, b=Q>S. By (P2) and (P1),
we obtain S>P =Pp>S=Qr>S=5>0Q,ie. S>P = S Q. This
contradicts (R2). Now assume that aNb =0 and a Zb. Let P # S € a and
(S=b)Nng={R}. Thenb=(S=b)=S>R=R>SandanNR>S#(
but a N'b = ), which contradicts (V).

The following generalizes Theorem 2.4 from [2, p. 217].

PROPOSITION 2.2. For any straight line g of a nearaffine plane NA =
(2,2 >,=)let Leg={acZ;a=g} U{P>Q € EZ; Peg}. Then A(g) =
(12, L) is an affine plane if and only if (V) and (H4) hold in NA.

Proof. <: Let X,)Y € 2, X # Y. If X > Y is straight in NA then
it is a unique line through X, Y in A(g). Let (X,Y) € I'. If X € ¢ then
X>Y € L, and of course, it is a unique line through X, Y with base
point on g. Similarly for Y € g. If X, Y ¢ g then (H4) means exactly that
there exists a unique (proper) line a through X, Y with base point on g, i.e.
a€ Ly
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Let a € Ly, P ¢ a. Set b= (P =a). If a € T then by (R2), b is the only
line through P disjoint from a. Either b = g, or b # g has a base point on g.
In both cases b € Ly. If a ¢ T then put bNg = {Q}. By (P1) and (P2),
(Q =0b) =b=a, where P € (Q =), and the base points of () = b), a are
on g. By Lemma 2.2(a), (Q = b)Na = 0 and by Lemma 2.2(b), only (Q = b)
is a line through P, with base point on g and disjoint from a.

=: Assume that A(g) is affine for every g € 7. In particular, for ev-
ery P,Q ¢ g such that (P,Q) € I', there exists exactly one line from £,
passing through P, @, i.e. a proper line with base point S on g. Thus (H4)
holds. Suppose that (V) does not hold, i.e. for some pairwise distinct points
P,Q,Regand S ¢ g we have (R=Q>S)NPr>S = (. By Lemma 2.2(a),
Q>SN(R=QrS)=0. Thus Pr>S and Q> S are distinct lines through S,
both parallel to (R = @ > S) in the affine plane A(g), a contradiction.

PROPOSITION 2.3. For any A € A1, P € \, Q € 2U {25\ ) there exists
a circle pu such that AN p = {P'} and Q € p.

Proof. Let \* = P> S for some S € A\NN. If Q € 2 then (Q=Pr>S9)
intersects [P]; in some point R and by (P2) we get

P>S=(Q=P>S)=QrR=R>Q=(R=P>59).

If Q = Q? € {2 then define { R} = [P']:N[Q?]_. In both cases let u* = (R =
Pr>S) =b. Thus b = P> S and the base points are on the common straight
line f1(P'),so bN P> S =0 (cf. Lemma 2.2(a)), whence AN u = {P}. Of
course () € .

PROPOSITION 2.4. If (V) holds in NA then the following conditions are
satisfied:

(a) The circle p from Proposition 2.3 is uniquely determined.

(b) Let X* = P> U, anA={P}, Q*c o, pna={Q?} and Q* € p.
If3nAx={P?}, Q' € B, vnB={Q'} and Q* € v then u = v. If
U = Q then P € u (see Figure 4).

Proof. From Propositions 2.3 and Lemma 2.2(b) item (a) is immediate.
Therefore «, 3, p, v exist and they are uniquely determined. Set {R} =
[PY4+ N[Q%- and {S} = [Q']+ N [P?]_. For some points T € o and V € 8
we obtain a* = Ri>T, * = S >V, and the conditions a N A = {P'},
BNAX={P?} mean R>T = P>U = S>V. Since parallelity is symmetric,
we have S>>V = Rp>T and there exists a line Q> X = v*, where yNg3 = {Q'}
and v N a = {Q?}. Therefore =y =v.

Now assume U = (). Then we have o« = R> T, \* = P> (@ and
pw* = QY for some Y € uN{2. The base points P, R lie on the same straight
line and so do R, Q. We obtain P>QNR>T =0 and R>TNQ>Y = (.
By (P2) and Lemma 2.2(b) we get Q> P=P>Q=R>T=Q>Y. Now
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(P1) implies that Q > P =Q>Y,ie. Pe Q>Y = p*.

P! Q! 4
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Fig. 4

Propositions 2.3 and 2.4(a) imply that for Veblenian NA, H(INA) sat-
isfies (T') with the range of P restricted to {21 U {25. In order to extend this
range to 2y U 2 U{Z} = [Z]4+ U[Z]- we have to require

(H5) For every [S,T] and R ¢ [S,T] there exists a unique [U, V] such

that R € [U,V] and [S,T]N[U, V] ={Z}.

So-called classical models in any geometry are constructed “over a field”.
Some non-classical models are usually connected with algebraic structures
which are weaker than fields. However, even for such weaker structures we
often use a field as a tool. In a nearaffine plane over a field every proper
line is given by an equation (z — p)(y — q) = r. If the field is pseudo—
ordered, then this equation may be modified: if —r is positive, then we put
(f(z) =p)(y —q) =7 (cf. [4, p. 348]).

ExAMPLE 2.1. Consider a Moulton nearaffine plane, i.e.
xz forax >0,
€Tr) =
f(@) {k::z: forz <0
(cf. [4, p. 355]) using the field of rational numbers. Then proper lines are
given in the following form:
(z—p)ly—q forz= 0}

Q>S5 = {(p,Q)}U{(%yW:{(lm—p)(y—Q) for 2 <0

for some fixed k, where 0 < k # 1. This nearaffine plane extends to a
hyperbola structure [4, Corollary 3.3, p. 359]. But the Veblen condition does
not hold in this case. Indeed, let £k = 2, P = (1,0), Q = (1,6), R = (1,2),
S =(0,2). We have

PS5 ={10}U{(z,y)} (z -1y = -2},
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QDS:{(l,G)}U{(m,y);AL:{(x_l)(y—@ fOI‘xZO}’

(2x —1)(y—6) forx <0

= — o [@-1)(y—-2) forz>0
1=Qe ) =02 Ol = g ) 2o

Therefore P> SN (R = Q> S) = (. This example shows that nearaffine
planes which do not satisfy the Veblen condition may extend to hyperbola
structures. But they cannot extend to Minkowski planes (cf. [6, p. 124]).
Note that P> S # (R = Q> S) (see Lemma 2.2(b)).

We shall show that the Veblen condition is an essential assumption in
Proposition 2.4. Let A\, a, u, 3, v be circles given by the following equations:

A (z—1)y= -2, a: (z—1)(y—1)=-2,
pr @+)y-1)=-2  f: (+1)y=-2
(x+1)(y—1) forxz >0,
:{(2x+1)(y—1) for x <0.
Set P = (1,0), Q@ = (1,1). Then ANa = {P'}, Q® € o, anpu = {Q?},
Qe AnNB={P?}, Q' ep, fnv={Q'}, Q*cvand p#v.

For \* with base point P and v* with base point  we have Q € A but
Pé¢uv.

EXAMPLE 2.2. The field Q(v/2) = {p+qVv2; p, ¢ € Q} is pseudo-ordered
if we declare that p+q+/2 is positive if p2—2¢% = 0. We define f(z1+22v/2) =
x1 — 22v/2. Then proper lines are given by

(14 22V2 = (p1 + p2V2)) (11 + 12V2 — (@1 + 2V2))

=ri4+7mV2 for r%—2r% =0
and

(21 — 222 = (1 + p2V2)) (Y1 + 12V2 = (01 + ¢2V2))
=7 4+1roV2  for r? —2r2 <0.

One can easily prove that this plane satisfies Desargues’ postulates (D1),
(D2) (cf. |1, p. 72], [3, p. 339]). Therefore it is a translation plane. By
Proposition 2.1, every translation extends to a translation of some hyperbola
structure.
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