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Extending Neara�ne Planes to Hyperbola Stru
turesbyKinga CUDNA-SALMANOWICZ and Jan JAKÓBOWSKIPresented by Jan RYCHLEWSKI
Summary. H. A. Wilbrink [Geom. Dedi
ata 12 (1982)℄ 
onsidered a 
lass of Minkowskiplanes whose restri
tions, 
alled residual planes, are neara�ne planes. Our study goes inthe opposite dire
tion: what 
onditions on a neara�ne plane are ne
essary and su�
ientto get an extension whi
h is a hyperbola stru
ture.1. Basi
 
on
epts. Let Ω be a nonempty set, and Ξ some family ofsubsets of Ω. Elements of Ω are 
alled points, elements of Ξ lines. Moreoverlet � : Ω × Ω \ {(Z, Z); Z ∈ Ω} → Ξ be a surje
tion, 
alled join, and let
≡ ⊂ Ξ ×Ξ be an equivalen
e relation 
alled parallelism of lines. The imageof (X, Y ) under the join map will be denoted by X � Y . The point X is
alled a base point of the line X � Y . In general join is not 
ommutative.A line X � Y satisfying X � Y = Y � X is 
alled straight. All remaininglines are 
alled proper. The set of all straight lines will be denoted by Υ[4, p. 345℄.Definition 1.1 ([7, pp. 53�54℄). A quadruple NA = (Ω, Ξ, �,≡) is aneara�ne plane if the following three groups of axioms hold:I. Axioms of lines:(L1) X, Y ∈ X � Y for all X, Y ∈ Ω, X 6= Y .(L2) Z ∈ X � Y \ {X} ⇔ X � Y = X � Z for all X, Y, Z ∈ Ω,

X 6= Y .(L3) X�Y = Y �X = X�Z ⇒ X�Z = Z�X for all X, Y, Z ∈ Ω,
Y 6= X 6= Z.2000 Mathemati
s Subje
t Classi�
ation: 51A15, 51A45, 51A30, 51A35.Key words and phrases: a�ne plane, Desargues postulate, hyperbola stru
ture, near-a�ne plane, Veblen 
ondition. [71℄ 
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II. Axioms of parallelism:(P1) For every line a and every point X there exists exa
tly oneline with base point X parallel to a (we denote this line by

(X ≡ a)).(P2) X � Y ≡ Y � X for all X, Y ∈ Ω, X 6= Y .(P3) a ≡ b ∧ a ∈ Υ ⇒ b ∈ Υ for all a, b ∈ Ξ.III. Axioms of ri
hness :(R1) There exist at least two nonparallel straight lines.(R2) Every line a meets every straight line g with g 6≡ a in exa
tlyone point.Definition 1.2 ([7, p. 56℄). A bije
tion ϕ : Ω → Ω is an automorphismof NA = (Ω, Ξ, �,≡) if ϕ(P �Q) = ϕ(P )�ϕ(Q) and a ≡ b ⇔ ϕ(a) ≡ ϕ(b)for any P 6= Q and a, b ∈ Ξ.Among neara�ne planes there is a distinguished 
lass satisfying the fol-lowing postulate [7, p. 55℄:(V) (The Veblen 
ondition) Let a be a straight line 
ontaining points
P , Q, R, and b a line di�erent from a with base point P ; moreover,let S ∈ b \ {P}. Then (R ≡ Q � S) ∩ b 6= ∅.Now, let Π be some other set of points, provided with three pairwisedisjoint families Σ+, Σ−, Λ of subsets, elements of whi
h are 
alled (+)gener-ators, (−)generators and 
ir
les, respe
tively. Consider the following axioms:(M1) For every point P there exists a unique (+)generator, denoted by

[P ]+, and a unique (−)generator, denoted by [P ]−, 
ontaining P .(M2) Every (+)generator meets every (−)generator in a unique point.(M3) There is a 
ir
le 
ontaining at least three points.(M4) Through three distin
t points P, Q, R, no two of whi
h are on a
ommon generator, there is a unique 
ir
le, denoted by (P, Q, R).(M5) Every 
ir
le interse
ts every generator in a unique point.(T) Given a 
ir
le λ, a point P ∈ λ and a point Q /∈ λ with P and Qnot on a generator, there is one and only one 
ir
le µ through Qsu
h that λ ∩ µ = {P}.Definition 1.3 ([5, p. 269℄). The quadruple M = (Π, Σ+, Σ−, Λ) is aMinkowski plane (resp. a hyperbola stru
ture) if the axioms (M1)�(M5) and(T) (resp. (M1)�(M5)) hold.2. New results. As H. A. Wilbrink has demonstrated in [6℄, every point
Z of a Minkowski plane M satisfying two additional 
onditions indu
es aneara�ne (so-
alled residual) plane. For a given neara�ne plane NA weshall 
onstru
t some hyperbola stru
ture H(NA) su
h that NA is a residual
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plane with respe
t to some point Z of H(NA). A spe
ial 
ase of this problemis solved in [4℄.Su
h a 
onstru
tion is possible if NA satis�es a number of additional
onditions. Sin
e the straight lines of a residual plane are obtained fromgenerators, it is obvious that NA = (Ω, Ξ, �,≡) must have exa
tly two
lasses Ψ1, Ψ2 of straight lines. Note that there exist neara�ne planes withmore than two 
lasses of straight lines, and two distin
t lines may havethree or more points in 
ommon (see e.g. [2, p. 207℄). Let Ω1, Ω2, {Z}be sets (elements of whi
h are also 
alled points) disjoint from ea
h otherand from Ω. We assume that there exist bije
tions fi : Ωi → Ψi for i =
1, 2. Let [P ]i denote the straight line through P belonging to Ψi, and set
P i = f−1

i ([P ]i). All points marked with the supers
ript �i� belong to Ωi (seeFigure 1). Points of any stru
ture will be denoted by 
apital Latin letters,lines of a neara�ne plane by small Latin letters, and 
ir
les of a hyperbolastru
ture by small Greek letters.Definition 2.1 (
f. [6, p. 123℄).(a) Γ = {(P, Q) ∈ Ω × Ω; P 6= Q, P � Q /∈ Ψ1 ∪ Ψ2}.(b) For (S, T ) ∈ Γ we put
[S, T ] = {S, T, Z}∪
{R ∈ Ω; (R, S), (R, T ) ∈ Γ ∧ ¬(∃P�Q∈Ξ S, T, R ∈ P � Q \ {P})}.
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Fig. 1Corollary 2.1. [S, T ] = [T, S] and U ∈ [S, T ] ⇔ T ∈ [S, U ]. For everyautomorphism ϕ we have ϕ([S, T ] \ {Z}) = [ϕ(S), ϕ(T )] \ {Z}.Definition 2.2.
Π = Ω ∪ Ω1 ∪ Ω2 ∪ {Z},

Σ+ = {[P ]1 ∪ {P 1}; P ∈ Ω} ∪ {Ω2 ∪ {Z}},
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Σ− = {[P ]2 ∪ {P 2}; P ∈ Ω} ∪ {Ω1 ∪ {Z}},
Λ1 = {(P � Q \ {P}) ∪ {P 1, P 2}; (P, Q) ∈ Γ )},
Λ2 = {[S, T ]; (S, T ) ∈ Γ}, Λ1 ∪ Λ2 = Λ.Lemma 2.1. The stru
ture (Π, Σ+, Σ−, Λ) des
ribed in De�nition 2.2satis�es (M1)�(M3) (see Figure 1).Theorem 2.1. The quadruple H(NA) = (Π, Σ+, Σ−, Λ) des
ribed inDe�nition 2.2 is a hyperbola stru
ture if and only if the neara�ne plane

NA = (Ω, Ξ, �,≡) satis�es the following 
onditions:(H1) If U ∈ [S, T ] and U 6= S then [S, T ] = [S, U ].(H2) Every set [S, T ] interse
ts every straight line in exa
tly one point.(H3) For two proper lines P � Q and R � S with (P, R) ∈ Γ , the sets
P � Q \ {P} and R � S \ {R} have at most two distin
t points in
ommon.(H4) For every straight line a and two distin
t points P, Q /∈ a with
(P, Q) ∈ Γ , there exists a unique point S ∈ a su
h that S � P =
S � Q (see Figure 2).
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Fig. 2Proof. Let (M1)�(M5) hold in H(NA).For (H1), by De�nitions 2.1, 2.2 and (M4), U ∈ [S, T ] means that
(U, S, T ) = (S, T, Z) = (S, U, Z) in H(NA), i.e. [S, T ] = [S, U ].To prove (H2), 
onsider any set [S, T ] and any straight line a ∈ Ψ1. Theset [S, T ] is a 
ir
le and a ∪ {f−1

1
(a)} is a generator in H(NA). Then by(M5), there exists a point R su
h that {R} = [S, T ] ∩ (a∪ {f−1

1
(a)}). Sin
e

f−1

1
(a) /∈ [S, T ], we have {R} = [S, T ] ∩ a.(H3) is immediate from (M4).Finally, we prove (H4). Let a, P , Q satisfy the assumptions of (H4) ande.g. a ∈ Ψ1. In H(NA), a∪{f−1

1
(a)}, Ω1∪{Z}, Ω2∪{Z} are generators and

P, Q, f−1

1
(a) are distin
t points, no two of whi
h are on the same generator
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(see Figure 2). By (M2) we have {f−1

1
(a)} = (a ∪ {f−1

1
(a)}) ∩ (Ω1 ∪ {Z})and by (M4), P , Q, f−1

1
(a) determine exa
tly one 
ir
le λ. De�ne {S2} =

(Ω2 ∪ {Z}) ∩ λ (
f. (M5)) and {S} = [S2]− ∩ [f−1

1
(a)]+, i.e. f−1

1
(a) = S1.By De�nition 2.2 and (M4) we have

S � P \ {S} = λ \ {S1, S2} = (P, S1, S2) \ {S1, S2}
= (Q, S1, S2) \ {S1, S2} = S � Q \ {S}.Hen
e S � P = S � Q.Conversely, let (H1)�(H4) hold in NA.To prove (M4), let P, Q, R ∈ Π be points su
h that no two are on a
ommon generator. We have the following possibilities:1. P, Q, R ∈ Ω. Either there exists a proper line X � Y su
h that

P, Q, R ∈ X � Y \ {X}, or su
h a line does not exist. In the for-mer 
ase the line X � Y is uniquely determined by (H3) and we put
λ = (X �Y \{X})∪{X1, X2}. In the latter 
ase, by (H1) and Corol-lary 2.1, [P, Q] = [P, R] = [Q, R] and λ = [P, Q] is a unique 
ir
le
ontaining P , Q, R.2. P, Q ∈ Ω, R = Z. No 
ir
le from Λ1 
ontains Z. Then [P, Q] is aunique 
ir
le through P , Q, R.3. P, Q ∈ Ω, R1 ∈ Ω1. No 
ir
le from Λ2 
ontains an element of Ω1.Thus a 
ir
le through P , Q, R1 must belong to Λ1. There exists thestraight line f1(R

1). Of 
ourse P, Q /∈ f1(R
1). In view of (H4) thereis a unique point S ∈ f1(R

1) su
h that S � P = S � Q. Therefore
λ = (S � P \ {S}) ∪ {R1, f−1

2
([S]2)} = (S � P \ {S}) ∪ {S1, S2}is the only 
ir
le 
ontaining P , Q, R1.4. P ∈ Ω, Q1 ∈ Ω1, R2 ∈ Ω2. Let {Y } = f1(Q

1)∩ f2(R
2) (
f. (R2)). Weobtain λ = (Y � P \ {Y }) ∪ {Q1, R2} = (Y � P \ {Y }) ∪ {Y 1, Y 2}.For (M5), 
onsider λ ∈ Λ = Λ1 ∪ Λ2 and σ ∈ Σ+ ∪ Σ−. The following
ases are possible:1. λ = (P � Q \ {P})∪{P 1, P 2}, σ = [R]1 ∪{R1} for some P, Q, R ∈ Ω,

(P, Q) ∈ Γ . By (R2) we have P � Q ∩ [R]1 = {X} for some X ∈ Ωand X = P ⇔ P 1 = X1 = R1. Then λ ∩ σ = {X} for R1 6= P 1 and
λ ∩ σ = {R1} for R1 = P 1.2. λ = (P � Q \ {P}) ∪ {P 1, P 2}, σ = Ω1 ∪ {Z}. Then λ ∩ σ = {P 1}.3. λ = [S, T ], σ = Ω1 ∪ {Z}. Then λ ∩ σ = {Z}.4. λ = [S, T ], σ = [R]1 ∪ {R1}. By (H2) we have [S, T ] ∩ [R]1 = {U} forsome U ∈ Ω and we obtain λ ∩ σ = {U}.Proposition 2.1. Every automorphism ϕ of a neara�ne plane NA sat-isfying the 
onditions (H1)�(H4) extends to an automorphism ϕ of the hy-perbola stru
ture H(NA).
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Proof. We de�ne ϕ|Ω =ϕ, ϕ(Z)=Z, ϕ(X i)=f−1

j (ϕ(fi(X
i))) for X i∈Ωi,where i, j ∈ {1, 2}, j = i if ϕ(Ψi) = Ψi, and j 6= i if ϕ(Ψi) 6= Ψi (Figure 3).Thus ϕ is a bije
tion. By De�nition 2.2, De�nition 1.2 and Corollary 2.1, ϕmaps every 
ir
le of H(NA) onto a 
ir
le.
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Fig. 3We shall use the notation P � Q = λ∗ for λ ∈ Λ1, λ = (P 1, P 2, Q).Lemma 2.2 (see [2, Corollary 1, p. 215℄ for the �nite 
ase). Let distin
tlines a, b have base points on a 
ommon straight line.(a) If a ≡ b then a ∩ b = ∅.(b) If the Veblen 
ondition holds and a ∩ b = ∅ then a ≡ b.Proof. Let g ∈ Υ and let P, Q ∈ g be the base points of a, b, respe
tively.If a ≡ b and S ∈ a ∩ b, then a = P � S, b = Q � S. By (P2) and (P1),we obtain S � P ≡ P � S ≡ Q � S ≡ S � Q, i.e. S � P = S � Q. This
ontradi
ts (R2). Now assume that a∩ b = ∅ and a 6≡ b. Let P 6= S ∈ a and
(S ≡ b) ∩ g = {R}. Then b ≡ (S ≡ b) = S � R ≡ R � S and a ∩ R � S 6= ∅but a ∩ b = ∅, whi
h 
ontradi
ts (V).The following generalizes Theorem 2.4 from [2, p. 217℄.Proposition 2.2. For any straight line g of a neara�ne plane NA =
(Ω, Ξ, �,≡) let Lg = {a ∈ Ξ; a ≡ g} ∪ {P � Q ∈ Ξ; P ∈ g}. Then A(g) =
(Ω,Lg) is an a�ne plane if and only if (V) and (H4) hold in NA.Proof. ⇐: Let X, Y ∈ Ω, X 6= Y . If X � Y is straight in NA thenit is a unique line through X, Y in A(g). Let (X, Y ) ∈ Γ . If X ∈ g then
X � Y ∈ Lg and of 
ourse, it is a unique line through X, Y with basepoint on g. Similarly for Y ∈ g. If X, Y /∈ g then (H4) means exa
tly thatthere exists a unique (proper) line a through X, Y with base point on g, i.e.
a ∈ Lg.
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Let a ∈ Lg, P /∈ a. Set b = (P ≡ a). If a ∈ Υ then by (R2), b is the onlyline through P disjoint from a. Either b ≡ g, or b 6= g has a base point on g.In both 
ases b ∈ Lg. If a /∈ Υ then put b ∩ g = {Q}. By (P1) and (P2),

(Q ≡ b) ≡ b ≡ a, where P ∈ (Q ≡ b), and the base points of (Q ≡ b), a areon g. By Lemma 2.2(a), (Q ≡ b)∩a = ∅ and by Lemma 2.2(b), only (Q ≡ b)is a line through P , with base point on g and disjoint from a.
⇒: Assume that A(g) is a�ne for every g ∈ Υ . In parti
ular, for ev-ery P, Q /∈ g su
h that (P, Q) ∈ Γ , there exists exa
tly one line from Lgpassing through P , Q, i.e. a proper line with base point S on g. Thus (H4)holds. Suppose that (V) does not hold, i.e. for some pairwise distin
t points

P, Q, R ∈ g and S /∈ g we have (R ≡ Q � S)∩P � S = ∅. By Lemma 2.2(a),
Q�S∩(R ≡ Q�S) = ∅. Thus P �S and Q�S are distin
t lines through S,both parallel to (R ≡ Q � S) in the a�ne plane A(g), a 
ontradi
tion.Proposition 2.3. For any λ ∈ Λ1, P 1 ∈ λ, Q ∈ Ω ∪Ω2 \ λ there existsa 
ir
le µ su
h that λ ∩ µ = {P 1} and Q ∈ µ.Proof. Let λ∗ = P � S for some S ∈ λ ∩ Ω. If Q ∈ Ω then (Q ≡ P � S)interse
ts [P ]1 in some point R and by (P2) we get

P � S ≡ (Q ≡ P � S) = Q � R ≡ R � Q = (R ≡ P � S).If Q = Q2 ∈ Ω2 then de�ne {R} = [P 1]+∩[Q2]−. In both 
ases let µ∗ = (R ≡
P �S) = b. Thus b ≡ P �S and the base points are on the 
ommon straightline f1(P

1), so b ∩ P � S = ∅ (
f. Lemma 2.2(a)), when
e λ ∩ µ = {P 1}. Of
ourse Q ∈ µ.Proposition 2.4. If (V) holds in NA then the following 
onditions aresatis�ed :(a) The 
ir
le µ from Proposition 2.3 is uniquely determined.(b) Let λ∗ = P � U , α ∩ λ = {P 1}, Q2 ∈ α, µ ∩ α = {Q2} and Q1 ∈ µ.If β ∩ λ = {P 2}, Q1 ∈ β, ν ∩ β = {Q1} and Q2 ∈ ν then µ = ν. If
U = Q then P ∈ µ (see Figure 4).Proof. From Propositions 2.3 and Lemma 2.2(b) item (a) is immediate.Therefore α, β, µ, ν exist and they are uniquely determined. Set {R} =

[P 1]+ ∩ [Q2]− and {S} = [Q1]+ ∩ [P 2]−. For some points T ∈ α and V ∈ βwe obtain α∗ = R � T , β∗ = S � V , and the 
onditions α ∩ λ = {P 1},
β ∩λ = {P 2} mean R � T ≡ P � U ≡ S � V . Sin
e parallelity is symmetri
,we have S�V ≡ R�T and there exists a line Q�X = γ∗, where γ∩β = {Q1}and γ ∩ α = {Q2}. Therefore µ = γ = ν.Now assume U = Q. Then we have α∗ = R � T , λ∗ = P � Q and
µ∗ = Q�Y for some Y ∈ µ∩Ω. The base points P , R lie on the same straightline and so do R, Q. We obtain P � Q∩R � T = ∅ and R � T ∩Q � Y = ∅.By (P2) and Lemma 2.2(b) we get Q � P ≡ P � Q ≡ R � T ≡ Q � Y . Now
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(P1) implies that Q � P = Q � Y , i.e. P ∈ Q � Y = µ∗.
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Fig. 4Propositions 2.3 and 2.4(a) imply that for Veblenian NA, H(NA) sat-is�es (T) with the range of P restri
ted to Ω1 ∪ Ω2. In order to extend thisrange to Ω1 ∪ Ω2 ∪ {Z} = [Z]+ ∪ [Z]− we have to require(H5) For every [S, T ] and R /∈ [S, T ] there exists a unique [U, V ] su
hthat R ∈ [U, V ] and [S, T ] ∩ [U, V ] = {Z}.So-
alled 
lassi
al models in any geometry are 
onstru
ted �over a �eld�.Some non-
lassi
al models are usually 
onne
ted with algebrai
 stru
tureswhi
h are weaker than �elds. However, even for su
h weaker stru
tures weoften use a �eld as a tool. In a neara�ne plane over a �eld every properline is given by an equation (x − p)(y − q) = r. If the �eld is pseudo�ordered, then this equation may be modi�ed: if −r is positive, then we put
(f(x) − p)(y − q) = r (
f. [4, p. 348℄).Example 2.1. Consider a Moulton neara�ne plane, i.e.

f(x) =

{

x for x ≥ 0,
kx for x ≤ 0(
f. [4, p. 355℄) using the �eld of rational numbers. Then proper lines aregiven in the following form:

Q � S =

{

(p, q)} ∪ {(x, y); r =

{

(x − p)(y − q) for x ≥ 0

(kx − p)(y − q) for x ≤ 0

}

for some �xed k, where 0 < k 6= 1. This neara�ne plane extends to ahyperbola stru
ture [4, Corollary 3.3, p. 359℄. But the Veblen 
ondition doesnot hold in this 
ase. Indeed, let k = 2, P = (1, 0), Q = (1, 6), R = (1, 2),
S = (0, 2). We have

P � S = {(1, 0)} ∪ {(x, y)}; (x − 1)y = −2},
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Q � S = {(1, 6)} ∪

{

(x, y); 4 =

{

(x − 1)(y − 6) for x ≥ 0

(2x − 1)(y − 6) for x ≤ 0

}

,

(R ≡ Q � S) =

{

(1, 2)} ∪ {(x, y); 4 =

{

(x − 1)(y − 2) for x ≥ 0

(2x − 1)(y − 2) for x ≤ 0

}

.Therefore P � S ∩ (R ≡ Q � S) = ∅. This example shows that neara�neplanes whi
h do not satisfy the Veblen 
ondition may extend to hyperbolastru
tures. But they 
annot extend to Minkowski planes (
f. [6, p. 124℄).Note that P � S 6≡ (R ≡ Q � S) (see Lemma 2.2(b)).We shall show that the Veblen 
ondition is an essential assumption inProposition 2.4. Let λ, α, µ, β, ν be 
ir
les given by the following equations:
λ : (x − 1)y = −2, α : (x − 1)(y − 1) = −2,

µ : (x + 1)(y − 1) = −2, β : (x + 1)y = −2,

ν : 4 =

{

(x + 1)(y − 1) for x ≥ 0,
(2x + 1)(y − 1) for x ≤ 0.Set P = (1, 0), Q = (1, 1). Then λ ∩ α = {P 1}, Q2 ∈ α, α ∩ µ = {Q2},

Q1 ∈ µ, λ ∩ β = {P 2}, Q1 ∈ β, β ∩ ν = {Q1}, Q2 ∈ ν and µ 6= ν.For λ∗ with base point P and ν∗ with base point Q we have Q ∈ λ but
P /∈ ν.Example 2.2. The �eld Q(

√
2) = {p+q

√
2; p, q ∈ Q} is pseudo-orderedif we de
lare that p+q

√
2 is positive if p2−2q2 ≻ 0. We de�ne f(x1+x2

√
2) =

x1 − x2

√
2. Then proper lines are given by

(x1 + x2

√
2 − (p1 + p2

√
2))(y1 + y2

√
2 − (q1 + q2

√
2))

= r1 + r2

√
2 for r2

1 − 2r2
2 ≻ 0and

(x1 − x2

√
2 − (p1 + p2

√
2))(y1 + y2

√
2 − (q1 + q2

√
2))

= r1 + r2

√
2 for r2

1 − 2r2
2 ≺ 0.One 
an easily prove that this plane satis�es Desargues' postulates (D1),(D2) (
f. [1, p. 72℄, [3, p. 339℄). Therefore it is a translation plane. ByProposition 2.1, every translation extends to a translation of some hyperbolastru
ture.
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