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NUMBER THEORY

Primitive Points on a Modular Hyperbola
by
Igor E. SHPARLINSKI

Presented by Andrzej SCHINZEL

Summary. For positive integers m, U and V, we obtain an asymptotic formula for the
number of integer points (u,v) € [1,U] x [1, V] which belong to the modular hyperbola
uwv = 1 (modm) and also have ged(u,v) = 1, which are also known as primitive points.
Such points have a nice geometric interpretation as points on the modular hyperbola which
are “visible” from the origin.

1. Introduction. For a positive integer m we consider the modular
hyperbola
i Hp = {(u,v) :wv =1 (modm), 1 < u,v < m}.

Various properties of the points (u,v) € H,, have been considered in the
literature. For example,

e the question about the joint distribution of parity of u and v is known
as the Lehmer problem and has attracted a lot of attention (see [27]-
[29]);

e the distribution of the distances |u — v| for (u,v) € H,, has been
addressed in the literature as well (see [5, 14, 30]);

e some geometric properties of the convex hull of H,,, have been studied
in [15].

Here we consider an apparently new question of estimating the number
of points (u, v) € H,y, with ged(u, v) = 1 which belong to a given box (u,v) €
[1,U] x [1,V]. These points have an attractive geometric interpretation as
points on H,, which are “visible” from the origin (see [2, 12, 18, 26] and
references therein for several other aspects of distribution of “visible” points
in various regions).
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More precisely, for positive real numbers U and V' we consider the set
Hin (U, V) ={(u,v) E Hpm:1<u<U 1<0v <V}

and we define
N (U, V) = > oL
(u,v)EHm (U,V)
ged(u,v)=1
We obtain an asymptotic formula for N, (U, V') which is nontrivial whenever
(1) Uv > m3/2+s

for any fixed € > 0 and sufficiently large m.

We recall that the notations U < V and U = O(V') are both equivalent
to the statement that |U| < ¢V with some constant ¢ > 0. Throughout the
paper, o(1) denotes a quantity which tends to zero as m — oo.

2. Preparation. We need the following bound on the distribution of
inverses of squares in residue rings which could be of independent interest.

For an integer d with gcd(d,m) = 1, we use d to denote the modular
inverse of d modulo m, that is, dd = 1 (modm), 1 < d < m.

For a real R and integers K and L with 1 < K, R < m we denote by
Tn(R; K, L) the number of integers d € [L, L + K — 1] with ged(d,m) =1
and such that d2 = r (modm) for some integer r with 1 < r < R.

LEMMA 1. For any real R and integers K and L with 1 < K, R < m,
we have

L+K-1
T(R; K, L —E 1+ O(m/2+e)
gcd(ddfrg):l

Proof. The proof uses very standard arguments so we give only the main
ingredients.

Our basic ingredient is the following bound on complete exponential
sums:

ad? + bd 1
i )| < /2+0(1)
b:mljz}%m ‘ dg_l exp( g - > ‘ < (mged(a,m)) ,
gcd(d,_m):l

which holds for any integer a and is a very special case of the more general
bound of [20] for exponential sums with monomials. Now, using the standard
reduction between complete and incomplete sums (see [13, Section 12.2]),
we obtain

L+K-1 aﬁ
Z exp (27m' W)' < (mged(a, m))Y/ 2o,

d=L
ged(d,m)=1
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Combining this with the Erdés—Turdn inequality (see [17, Corollary 1.1,
Chapter 1]), after simple calculations we obtain the desired result. =

We also remark that the Weil and Salié bounds of complete Kloosterman
sums together imply that

‘ Z exp (27Ti au bu> ‘ < (mged(a, m))/?Ho0)
m

u=1
ged(u,m)=1

(see [13, Corollary 11.12]). Now, the above mentioned reduction between
complete and incomplete sums (see [13, Section 12.2]) leads to the following
well known bound on incomplete Kloosterman sums.

LEMMA 2. For any integer a and real Z with 1 < Z < m, we have

Z exp (277@' @> < (mged(a, m))/?HeW
m

(u,0)EHm
1<u<”z

3. Main result. As usual, ¢(m) denotes the Euler function.

THEOREM 3. For all integers m and real U, V with 1 < U,V < m, we
have

1 -1
N (U, V) = % UV H (1 + _) + O(U1/2V1/2m‘1/4+°(1)),
—om plm P

where the product is taken over all prime numbers p|m.

Proof. For an integer d, we let

My (U V)= > 1
(u,0)EHm (U,V)
d|ged(u,v)
be the number of pairs (u,v) € Hy, (U, V) with d|ged(u, v).

Let u(d) denote the Mébius function. We recall that u(1) =1, u(d) =0
if d > 2 is not square-free and u(d) = (—1)“(¥) otherwise, where w(d) is the
number of distinct prime divisors of d. By the inclusion-exclusion principle,
we write

(2) N (U, V) = l(d) M (d; U, V).
d=1
Clearly
(3) My (d;U, V) =0

if ged(d,m) > 1 or d > m.
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For ged(d, m) = 1, writing
(4) u=ds and v =dt,
we have
M, (d; U, V) = #{(s,t) : st = d2 (modm), 1 <s<U/d, 1 <t<V/d}

where as before, d denotes the modular inverse of d modulo m.

Lemma 2, combined with the Erdés-Turadn inequality (see [17, Corol-
lary 1.1, Chapter 1]), immediately implies that
UVp(m)

d?m?
(see, for example, [2, Lemma 1.7]; similar results are also obtained in
14, 29]).

We also note that for each d, the product r = st < UV/d?, where s and ¢
are given by (4), belongs to a fixed residue class modulo m and thus can take
at most UV/d*m+1 possible values. Denoting by 7(k) the number of positive
integer divisors of k > 1, we see that for each fixed r < UV/d? < UV < m?,
there are 7(r) = m°!) pairs (s,t) of integers s and ¢ with r = st (see [24,
Section 1.5.2]). Therefore, we also have

(5) My (d; U, V) = + O(m!/?o)

(© Mdi0,V) < (o + 1),

Finally, we note that for any integer A > /UV/m we have

S° Mu(d;U,V) < T (UV/A% A, Aym®
2A>d>A
since d2 = r (modm) where, as before, r = st < UV/d? < UV/A?2 < m
(thus for every d the value of 7 is uniquely defined and for every r there are
at most 7(r) = m°)) possible pairs (s,t)). Therefore,

|'2logm]
S Mpduvy< Y Y, Mu(&UV)
m>d>A v=0 2v+t1A>d>2vA
[2log m]

< Z m(UV/(2VA)2%;2 A, 28 Aym°W).

Hence, by Lemma 1 we obtam
[2logm]

. WAUV 1 /240(1)
uv

< 1 l/2+o(1).

Aml+o()
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Therefore, for arbitrary integers A > § > 1, using the asymptotic for-
mula (5) for d < §, the bound (6) for 6 < d < A, and the bound (7) for
d > A, we derive from (2) and (3) that

UVep(m w(d
(8) Nin(U, V) = % >, % + B,
1<d<s
ged(d,m)=1
where

E < émt/2te®) 4 Z (—[2‘7; + 1) m°® L gl2y1l/2 po=Lye()
9) §<d<A
< 6mM*M L gvsTtmT + AmeM L UV AT I
We also have
w(d w(d _ 1 _
S Ly Do 1(u- 5 o
1<d<$ a>1 ptm p
ged(d,m)=1 ged(d,m)=1

where the product is taken over all prime numbers p f m. Recalling that

H(l—%>= M) =5

p d>1
and
1 1 1 o(m) ( 1)
1-—=|= 1—- 1+-)="——+= 1+-,
H< p2> H( p>H< p) m 11 p
plm plm plm |m
we obtain
p(d) 6 m 1\ -1
(10) > —2:—2—H<1+—> +0(67Y).
1<d<s d m <p(m) plm P
ged(d,m)=1

We now substitute (9) and (10) in (8), which yields
6 UV 1\
No(UV)==-—1]] <1+—>

™2 m P
plm

+00m!?°W L yvetm™ + AmeM + UV AT Im Y.
Taking
5= [U1/2V1/2m_3/41 and A — (Ul/Qvl/zm_l/QL
we derive the desired result. m
It is easy to see that

I1 (1+%) <] <1—%)_1 - % < loglog m.

plm plm
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In particular, we conclude that Theorem 3 is nontrivial under the condi-
tion (1).

COROLLARY 4. For all integers m and real U, V with 1 < U,V < m
and UV > m3/2t¢ we have

6 uv 1\ !
N(U,V) = <F i O(m_5/2+°(1))> T <1 i 5) |
plm

4. Remarks. There is little doubt that our approach can also be used
to obtain asymptotic formulas for the sums

Y ln(w)| and Yo lulwn(v)

(u,0)EHm (U,V) (u,0)EHm (U,V)

and several other sums. However, we do not see any approaches to bound

the sums
S u(w) and 3 (%)

(u,0)EHm (U,V) (u,0)EHm (U,V)

where (u/v) is the Jacobi symbol, which we also extend to even values of v
by putting (u/v) = 0 if ged(v,2) = 2.
Various properties of points on multidimensional hyperbolas

up - -up =1 (modm)

have been studied as well [1, 21, 22].

Hyperbolas uv = a (modm) for an arbitrary integer a with ged(a, m) =1
are also of interest. Although for every given a their theory is similar to the
case a = 1, these new settings lead to a new type of problem of getting more
precise results on average over a (see [6-10, 16, 19, 23, 31] and references
therein)

Finally, solutions of more general polynomial congruences have also been
studied in the literature (see for example [3, 4, 11, 25, 32]).
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