On the Hausdorff Dimension of Topological Subspaces

by

Tomasz SZAREK and Maciej ŚLĘCZKA

Presented by Andrzej LASOTA

Summary. It is shown that every Polish space X with $\dim_T X \geq d$ admits a compact subspace Y such that $\dim_H Y \geq d$ where \dim_T and \dim_H denote the topological and Hausdorff dimensions, respectively.

In this note we prove that every Polish space (i.e. complete and separable metric space) X has a compact subspace Y such that $\dim_{\mathrm{H}} Y \geq \dim_{\mathrm{T}} X$, where \dim_{H} and \dim_{T} denote the Hausdorff dimension and the topological dimension, respectively.

From Marczewski's theorem it follows that if X is a Polish space, then $\dim_{\mathbf{H}} X \geq \dim_{\mathbf{T}} X$ (see [8]). On the other hand, it is well known that for every positive integer n there exists an example of a Polish space, say E, such that $\dim_{\mathbf{T}} E = n$ and $\dim_{\mathbf{T}} F = 0$ for every compact subspace $F \subset E$ (see [2, 5]).

The present paper is closely related to [7]. It fills the gap contained in the proof of Lemma 2 there. Indeed, we tacitly assumed that the measure defined in that lemma was finite. Then we used Ulam's lemma (see [1]) valid only for finite measures.

Recall now the definition of the *upper Lebesgue integral*. Let $A \subset \mathbb{R}$ be a Borel set. Let $f: A \to [0, \infty]$ be given. Set

 $\mathcal{F}_f = \{g : A \to [0, \infty] : g \text{ is Borel measurable and } g(x) \geq f(x), x \in A\}$ and define the upper Lebesgue integral by the formula

$$\int_{A} f(x) dx = \inf_{g \in \mathcal{F}_f} \int_{A} g(x) dx.$$

²⁰⁰⁰ Mathematics Subject Classification: Primary 54A05; Secondary 54B05. Key words and phrases: topological dimension, Hausdorff dimension.

The following facts can be easily derived from the above definition:

- $\overline{\int}_A f(x) dx = \int_A f(x) dx$ if f is Borel measurable;
- $\overline{\int}_A f(x) dx \le \overline{\int}_A g(x) dx$ if $0 \le f(x) \le g(x)$ for $x \in A$;
- $\overline{\int}_A f(x) dx = \int_A g(x) dx$ for some $g \in \mathcal{F}_f$;
- $\overline{\int}_A f(x) dx > 0$ if f(x) > 0 for every $x \in A$;
- $\overline{\int}_A \liminf_{n\to\infty} f_n(x) dx \leq \liminf_{n\to\infty} \overline{\int}_A f_n(x) dx$ for each sequence $(f_n)_{n\geq 1}$ of nonnegative functions.

By B(x,r) (resp. S(x,r)) we denote the closed ball (resp. sphere) with centre x and radius r.

LEMMA 1. If dim_T $X \ge d+1$, where d is an integer greater than or equal to -1, then there exists $x_0 \in X$ and $\lambda_0 > 0$ such that dim_T $S(x_0, \lambda) \ge d$ for every $\lambda \in (0, \lambda_0]$.

The proof easily follows from the definition of topological dimension (see also [6]).

Lemma 2. Suppose that $\dim_T X \geq d$, where $d \in \mathbb{N} \cup \{0\}$. Then there exists a Borel probability measure μ such that

(1)
$$\mu(B(x,r)) \le Cr^d \quad \text{for every } x \in X \text{ and } r > 0,$$

where C > 0 is a positive constant independent of x and r.

Proof. We use induction on d. For d=0 condition (1) obviously holds for every Borel probability measure μ . Assume that it holds for d=m. By Lemma 1 there exist $x_0 \in X$ and $\lambda_0 > 0$ such that $\dim_T S(x_0, \lambda) \geq m$ for every $\lambda \in (0, \lambda_0]$. Fix $\lambda \in (0, \lambda_0]$ and set $X_\lambda = S(x_0, \lambda)$. By the induction hypothesis there exists a Borel probability measure $\widetilde{\mu}_{\lambda}$ on X_{λ} such that

$$\widetilde{\mu}_{\lambda}(B_{\lambda}(x,r)) \leq C_{\lambda}r^{m}$$
 for every $x \in X_{\lambda}$ and $r > 0$,

where $B_{\lambda}(x,r)$ stands for the closed ball in X_{λ} with centre $x \in X_{\lambda}$ and radius r, and C_{λ} is independent of x and r. Without loss of generality we may assume that $C_{\lambda} \geq 1$. Define the Borel measure $\mu_{\lambda} : \mathcal{B}(X) \to [0,1]$ by the formula

$$\mu_{\lambda}(A) = \widetilde{\mu}_{\lambda}(A \cap X_{\lambda})/(2^{m}C_{\lambda})$$
 for $A \in \mathcal{B}(X)$.

Clearly supp $\mu_{\lambda} \subset X_{\lambda}$ and

(2)
$$\mu_{\lambda}(B(x,r)) \leq r^m$$
 for every $x \in X$ and $r > 0$.

Set

$$\beta = \int\limits_{(0,\lambda_0]} \mu_\lambda(X) \, d\lambda$$

and observe that $\beta > 0$, by the properties of the upper Lebesgue integral. From these properties it follows that there is a decreasing sequence $(X_n)_{n\geq 1}$ of closed subsets of X such that

$$\int_{(0,\lambda_0]}^{\infty} \mu_{\lambda}(X_n) \, d\lambda > \beta/2$$

and X_n has a 2^{-n} -net for each $n \in \mathbb{N}$. Indeed, let n = 1 and let $\{x_k\}_{k \geq 1}$ be a dense subset of X. Applying the Fatou lemma for the upper Lebesgue integral to $f_n(\lambda) = \mu_{\lambda}(\bigcup_{i=1}^n B(x_i, 1/2))$ we obtain

$$\int_{(0,\lambda_0]} \mu_{\lambda} \left(\bigcup_{i=1}^{i_1} B(x_i, 1/2) \right) d\lambda > \beta/2$$

for some $i_1 \in \mathbb{N}$. Set $X_1 = \bigcup_{i=1}^{i_1} B(x_i, 1/2)$. Further, assume that we have defined X_1, \ldots, X_k . As before we find i_{k+1} such that

$$\int_{(0,\lambda_0]} \mu_{\lambda} \left(X_k \cap \bigcup_{i=1}^{i_{k+1}} B(x_i, 1/2^{k+1}) \right) d\lambda > \beta/2.$$

Setting $X_{k+1} = X_k \cap \bigcup_{i=1}^{i_{k+1}} B(x_i, 1/2^{k+1})$ finishes the induction. For $k \in \mathbb{N}$ and $i \in \{1, \dots, k\}$ we define

$$\alpha_{k,i} = \sup\{\mu_{\lambda}(X_k) : \lambda \in ((i-1)\lambda_0/k, i\lambda_0/k]\}.$$

Let

$$\nu_k = \frac{\lambda_0}{k} \sum_{i=1}^k \mu_{k,i},$$

where $\mu_{k,i} = \mu_{\lambda_{k,i}}$ with $\lambda_{k,i} \in ((i-1)\lambda_0/k, i\lambda_0/k]$ and

$$\mu_{\lambda_{k,i}}(X_k) \ge \alpha_{k,i}/2.$$

By the definition of the upper Lebesgue integral we have

(3)
$$2\nu_k(X_k) \ge \frac{\lambda_0}{k} \sum_{i=1}^k \alpha_{k,i} \ge \int_0^{\lambda_0} \mu_\lambda(X_k) \, d\lambda > \beta/2.$$

Now define a positive linear functional $\Lambda: C(X) \to \mathbb{R}$ by the formula

$$\Lambda(f) = \mathbb{L}\left(\left(\int_{X_k} f \, d\nu_k\right)_{k \in \mathbb{N}}\right) \quad \text{for } f \in C(X),$$

where \mathbb{L} is a Banach limit and C(X) stands for the space of continuous functions $f: X \to \mathbb{R}$. From (3) it follows that Λ is nontrivial. Let $K = \bigcap_{k=1}^{\infty} X_k$. Observe that K is a compact set and $\Lambda(f) = 0$ for $0 \le f \le \mathbf{1}_{X \setminus K}$.

Hence Λ is a Riesz functional. Let μ_* be the Borel measure such that

$$\Lambda(f) = \int_X f(x) \, \mu_*(dx)$$
 for $f \in C(X)$.

Obviously supp $\mu_* \subset K$. We end the proof by showing that

$$\mu_*(B(x,r)) \le 2r^{m+1}$$

for all $x \in X$ and r > 0. This part of the proof is similar to the proof of Proposition 5 in [6]. It is incorporated here for convenience of the reader and to make the paper self-contained. Fix $x \in X$ and r > 0. For $k \in \mathbb{N}$ define

$$i(k) = \min J_k$$
 and $I(k) = \max J_k$,

where

$$J_k = \{1 \le i \le k : B(x,r) \cap S(x_0, \lambda_{k,i}) \ne \emptyset\}.$$

If $J_k = \emptyset$ we set i(k) = I(k) = 0. Further we have

$$\frac{\lambda_0}{k} \left(I(k) - i(k) \right) \le 2r + \frac{\lambda_0}{k}.$$

On the other hand, by the construction of the measures ν_k we obtain

(4)
$$\nu_k(B(x,r)) \le \frac{\lambda_0}{k} r^m(I(k) - i(k) + 1) \le 2r^{m+1} + \frac{\lambda_0}{k} 2r^m.$$

Fix now $\eta > 0$ and let $f \in C(X)$ be such that f(y) = 1 for $y \in B(x, r)$, f(y) = 0 for $y \notin B(x, r + \eta)$ and $0 \le f \le 1$. Then

$$\mu_*(B(x,r)) \le \Lambda(f) \le \limsup_{k \to \infty} \nu_k(B(x,r+\eta)).$$

By (4) and the fact that $\eta > 0$ may be arbitrarily small, we obtain

$$\mu_*(B(x,r)) \le 2r^{m+1}$$

and the proof is complete.

We are in a position to formulate the main result of the paper.

THEOREM 1. Suppose that $\dim_{\mathbf{T}} X \geq d$, where $d \in \mathbb{N} \cup \{0\}$. Then there exists a compact subspace $Y \subset X$ such that $\dim_{\mathbf{H}} Y \geq d$.

Proof. From Lemma 3 it follows that there exists a Borel measure, say μ_* , and a positive constant C > 0 such that

$$\mu_*(B(x,r)) \le Cr^d$$
 for $x \in X$ and $r > 0$.

Further there exists a compact set $Y \subset X$ such that $\mu_*(Y) > 0$, by Ulam's lemma. Then $\dim_H Y \geq d$ by Frostman's lemma (see [3, 4]).

References

- [1] P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968.
- [2] R. Engelking, Dimension Theory, Biblioteka Mat. 51, Warszawa, 1981 (in Polish).

- [3] K. J. Falconer, Techniques in Fractal Geometry, Wiley, Chichester 1997.
- [4] O. Frostman, Potentiel d'équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions, Maddel. Lunds Univ. Mat. Sem. 3 (1935), 1–118.
- [5] J. van Mill, Infinite-Dimensional Topology, North-Holland, Amsterdam, 1989.
- [6] J. Myjak and T. Szarek, Szpilrajn type theorem for concentration dimension, Fund. Math. 172 (2002), 19-25.
- [7] J. Myjak, T. Szarek and M. Ślęczka, A Szpilrajn-Marczewski type theorem for concentration dimension on Polish space, Canad. Math. Bull. 49 (2006), 247–255.
- [8] E. Szpilrajn, La dimension et la mesure, Fund. Math. 27 (1937), 81-89.

Tomasz Szarek and Maciej Ślęczka Institute of Mathematics Silesian University Bankowa 14 40-007 Katowice, Poland E-mail: szarek@intertele.pl sleczka@ux2.math.us.edu.pl

> Received July 14, 2006; received in final form October 2, 2006 (7538)