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Summary. It is shown that every Polish space X with dimt X > d admits a compact
subspace Y such that dimy Y > d where dimr and dimy denote the topological and
Hausdorff dimensions, respectively.

In this note we prove that every Polish space (i.e. complete and separable
metric space) X has a compact subspace Y such that dimgY > dimp X,
where dimpg and dimt denote the Hausdorff dimension and the topological
dimension, respectively.

From Marczewski’s theorem it follows that if X is a Polish space, then
dimg X > dimt X (see [8]). On the other hand, it is well known that for
every positive integer n there exists an example of a Polish space, say F,
such that dimt £ = n and dimt F' = 0 for every compact subspace F' C E
(see [2, 5]).

The present paper is closely related to [7]. It fills the gap contained in
the proof of Lemma 2 there. Indeed, we tacitly assumed that the measure
defined in that lemma was finite. Then we used Ulam’s lemma (see [1]) valid
only for finite measures.

Recall now the definition of the upper Lebesgue integral. Let A C R be a
Borel set. Let f: A — [0, 00] be given. Set

Fr={g9:A—[0,00] : g is Borel measurable and g(z) > f(z), x € A}
and define the upper Lebesgue integral by the formula

if(:l;) dr = gien]_ﬁf gg(x) dzx.

2000 Mathematics Subject Classification: Primary 54A05; Secondary 54B05.
Key words and phrases: topological dimension, Hausdorff dimension.

[201]



202 T. Szarek and M. Sleczka

The following facts can be easily derived from the above definition:
§Af( ydx = §, f(x)dx if f is Borel measurable;

§ dm<SAg()dxifOSf(m)Sg(x)forxeA;

§Af ydx = §, g(x) dx for some g € Fr;
I
J

Af(@)dx > 0if f(x) >0 for every z € A;

qliminf, o fu(z)dr < liminfn_,ooiAfn(x) dx for each sequence

(fn)n>1 of nonnegative functions.

By B(xz,r) (resp. S(x,r)) we denote the closed ball (resp. sphere) with
centre x and radius 7.

LEMMA 1. If dimt X > d+1, where d is an integer greater than or equal
to —1, then there exists xo € X and Ao > 0 such that dimt S(zg, \) > d for
every A € (0, Ao].

The proof easily follows from the definition of topological dimension (see
also [6]).

LEMMA 2. Suppose that dimt X > d, where d € N U {0}. Then there
ezists a Borel probability measure v such that

(1) w(B(z,r)) < Crt  for every z € X and r > 0,
where C > 0 is a positive constant independent of x and 7.

Proof. We use induction on d. For d = 0 condition (1) obviously holds
for every Borel probability measure p. Assume that it holds for d = m. By
Lemma 1 there exist 9 € X and \¢p > 0 such that dimt S(zg,A) > m for
every A € (0, \]. Fix A € (0, \o] and set X = S(xp, ). By the induction
hypothesis there exists a Borel probability measure ji on X such that

ux(Ba(z,r)) < Cy\r'™  for every z € X, and r > 0,

where B, (z,r) stands for the closed ball in X, with centre x € X, and
radius r, and C), is independent of x and r. Without loss of generality we
may assume that Cy > 1. Define the Borel measure py : B(X) — [0,1] by
the formula

pa(A) = (AN Xy)/(2"Cy)  for A € B(X).
Clearly supp puy C X, and
(2) px(B(x,r)) <r™ for every x € X and r > 0.
Set

B= | p(x)dx
(0,A0]
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and observe that § > 0, by the properties of the upper Lebesgue integral.
From these properties it follows that there is a decreasing sequence (X, )n>1
of closed subsets of X such that

| ma(Xn)dr> /2
(0,20]

and X, has a 27"-net for each n € N. Indeed, let n = 1 and let {x}i>1
be a dense subset of X. Applying the Fatou lemma for the upper Lebesgue
integral to fr(A\) = pa(U;, B(z;,1/2)) we obtain

I om( U 5 1/2)) dx > /2

(0,X0] i=1

for some i; € N. Set X; = (!X, B(z;,1/2). Further, assume that we have

1=

defined Xi,..., X;. As before we find i1 such that

_ Tht1
[ (Xk n | Blas, 1/2’““)) x> B/2.
(0, 0] i=1

Setting Xpy1 = X N UL B(zy, 1/281) finishes the induction.
For k€ Nand i € {1,...,k} we define

g = sup{pa(Xx) : A € ((i — 1)Ao/k,iXo/K]}.
Let
k
Ao
Vi = m ; Mk i
where Mk, = Hp with )\k,z‘ S ((Z — 1))\0/k,i)\0/k] and
N/\kﬂ' (Xk) Z ak,i/Q‘

By the definition of the upper Lebesgue integral we have

k Ao
(3) 2(Xe) 2 20D > § (i) dA > /2
=1 0

Now define a positive linear functional A : C'(X) — R by the formula
A(S) :IL(( { fduk>keN> for f € C(X),

Xk
where L is a Banach limit and C(X) stands for the space of continuous
functions f : X — R. From (3) it follows that A is nontrivial. Let K =
MNi=; X&- Observe that K is a compact set and A(f) =0 for 0 < f < 1x\ k-
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Hence A is a Riesz functional. Let p. be the Borel measure such that

A(f) =\ f(2) pald)  for | € C(X).
X
Obviously supp ps« C K. We end the proof by showing that

e (B(x,r)) < opmtl

for all x € X and r > 0. This part of the proof is similar to the proof of
Proposition 5 in [6]. It is incorporated here for convenience of the reader and
to make the paper self-contained. Fix z € X and r > 0. For k € N define

i(k) =minJ, and I(k)= maxJg,
where
Ji = {1 <i<k: B(m,r) N S(.%'(),A]m) 7& @}
If Ji, = 0 we set i(k) = I(k) = 0. Further we have
Ao
&

On the other hand, by the construction of the measures v, we obtain

(I(k) —i(k)) < 2r + %

(4) vp(B(x,r)) < % ™ (I(k) —i(k) 4+ 1) < 2rmTt 4 % 2r™.
Fix now n > 0 and let f € C(X) be such that f(y) =1 for y € B(z,7),
f(y)=0for y ¢ B(x,r+n) and 0 < f < 1. Then
px(B(x, 1)) < A(f) < limsup vy (B(x,7r +1n)).

k—o00

By (4) and the fact that n > 0 may be arbitrarily small, we obtain
(B, r)) < 20!
and the proof is complete. u
We are in a position to formulate the main result of the paper.

THEOREM 1. Suppose that dimp X > d, where d € NU{0}. Then there
exists a compact subspace Y C X such that dimg Y > d.

Proof. From Lemma 3 it follows that there exists a Borel measure, say fi,
and a positive constant C' > 0 such that

px(B(z,r)) < Cr?  for z € X and r > 0.

Further there exists a compact set Y C X such that u.(Y) > 0, by Ulam’s
lemma. Then dimp Y > d by Frostman’s lemma (see |3, 4]). =
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