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Summary. We estimate from above and below the Hausdor� dimension of SRB measurefor 
ontra
ting-on-average baker maps.1. Introdu
tion. One of the main open problems in the dimension the-ory of dynami
al systems is how to work with non-
onformal systems, i.e.systems with two (or more) di�erent negative Lyapunov exponents or withtwo (or more) di�erent positive Lyapunov exponents. The simplest su
h sys-tems are solenoids, and it is for them that some results are known (
f. [B℄,[S2℄, [SS℄, [RS℄).These results were a
hieved by 
onsidering a proje
tion of the system inthe dire
tion of maximal 
ontra
tion. The resulting (non-invertible) hyper-boli
 systems are 
alled baker maps. They are of independent interest andwere studied as well: see for example [S1℄, [T℄, [R1℄.In all these papers a transversality 
ondition was assumed, �rst intro-du
ed by Polli
ott and Simon [PS℄ in the 
ontext of one-parameter fam-ilies of iterated fun
tion systems. This 
ondition is open and it is easyto show examples of systems satisfying it. For some regions in parameterspa
e, the transversality 
ondition is satis�ed on a dense subset, as shownby Bothe [B℄.In this paper we 
onsider a generalisation of baker maps: 
ontra
ting-on-average baker maps. Those are non-uniformly hyperboli
 systems. However,we show the same dimension estimates for the SRB measures of COA bakermaps as are known for standard baker maps. The upper bound does not2000 Mathemati
s Subje
t Classi�
ation: Primary 28A78, 37D25.Key words and phrases: baker map, Hausdor� dimension, SRB measure, transversality
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require any additional assumptions. To obtain the lower bound we need thetransversality 
ondition to be satis�ed.2. Geometry of 
ontra
ting-on-average baker maps2.1. De�nition of 
ontra
ting-on-average baker maps. Let us start fromsome notations. We are going to use three symboli
 spa
es:

Σ− = {0, . . . , k − 1}−N∪{0},

Σ+ = {0, . . . , k − 1}N,

Σ = Σ− ×Σ+ = {0, . . . , k − 1}Z.We de�ne a map σ a
ting on Σ− and on Σ by
(σω)i = ωi−1.On Σ+ we de�ne k maps σi as follows:

σi(ω1ω2 . . .) = iω1ω2 . . . , i = 0, . . . , k − 1.Finite sequen
es of symbols from {0, . . . , k − 1} will be denoted by ωn =
ω1 . . . ωn. By ω−n we will denote ωn written ba
kwards, i.e. ω−n = ωn . . . ω1.We will 
onsider maps of the form(2.1) f(x, y) = (g(x), h(x, y)),a
ting on S1 × R.We demand that g is a k-1 C2 orientation preserving expanding map ofthe 
ir
le, i.e. g is C2, g′ > 1 everywhere and every point has pre
isely kpreimages under g. We parametrise the 
ir
le as the interval (0, 1], where 1 isone of the �xed points of g. We assume g to be C2 ex
ept possibly at points
x ∈ g−1(1) and to be 
ontinuous and have left and right derivative every-where. Similarly, we assume h to be C2 ex
ept on the lines {x ∈ g−1(1)}.We will also assume that the map f has uniformly bounded �rst andse
ond order derivatives in its whole domain (again ex
ept possibly on thelines {x ∈ g−1(1)}) and that ∂2h is bounded away from zero. We denote theiterations of f by fn(x, y) = (gn(x), hn(x, y)).Given x, the supremum of |∂2h(x, ·)| will be denoted by Φ(x); we assumethat(2.2) |Φ(x)| < |g′(x)|.Let

L = exp
(\

S1

logΦ(x) dν−(x)
)
.

Definition 2.1. The map (2.1) satisfying the smoothness assumptionsabove will be 
alled a 
ontra
ting-on-average (COA) baker map if L < 1.
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2.2. One-dimensional dynami
s of g. The results of this subse
tion are astandard appli
ation of the thermodynami
al formalism to expanding maps.An introdu
tion to the thermodynami
al formalism 
an be found in Bowen'sbook [Bo℄. The way of applying it to expanding maps is explained (in aslightly di�erent situation) in the fourth 
hapter of Fal
oner's book [F℄, sowe will omit the detailed proofs.There are k intervals of the form (a, b] that are mapped by g onto (0, 1]in a bije
tive way. These intervals are pairwise disjoint and form a 
overingof (0, 1]. We will denote them by G0, . . . , Gk−1. The bran
h of g−1 moving

(0, 1] onto Gi will be denoted by gi.Similarly, we have kn intervals of the form (a, b] that are mapped by
gn onto (0, 1] in a bije
tive way. We will write Gωn = gω1

(Gω2...ωn
). The
orresponding bran
h of g−n will be denoted by gω−n = gωn

◦ · · · ◦ gω1
.We introdu
e a symboli
 expansion on (0, 1] in the following way:

πi(x) = {j; gi(x) ∈ Gj}, i ≥ 0.In other words,
x =

∞⋂

n=0

Gπ0(x)...πn(x).Let τ(x) = . . . πn(x) . . . π1(x)π0(x). The map τ : (0, 1] → Σ− is bije
tive andalmost onto (the set Σ−\τ((0, 1]) is 
ountable). Moreover, it is a 
onjugationbetween g a
ting on (0, 1] and σ a
ting on Σ−.For any fun
tion ψ : (0, 1] → R de�ne
Snψ(x)=

n−1∑

i=0

ψ(gi(x)), Sn
−ψ(ωn)= inf

G
ω

n

Snψ(x), Sn
+ψ(ωn)=sup

G
ω

n

Snψ(x).The following lemma is equivalent to Proposition 4.1 in [F℄.Lemma 2.2. Let ψ : (0, 1] → R be Lips
hitz on every Gi. Then
maxSnψ(·) − minSnψ(·) is bounded inside any Gωn ; the bound is uniformwith respe
t to both n and ωn.Hen
e, Sn

+ψ − Sn
−ψ < K with K depending only on ψ.The Lasota�Yorke theorem states that there exists a unique absolutely
ontinuous g-invariant probability measure ν− on (0, 1] and its density isbounded away from zero and in�nity. As every gi is C2, if we take ν−|G

ω
nfor any ωn, iterate it n times under g and normalise, the resulting measurewill still have its density uniformly bounded away from zero and in�nity.Hen
e,(2.3) K−1 ≤

1

ν−(Gωn)
dν−|G

ω
n
d(ν− ◦ gω−n) ≤ Kfor some K independent of ω and n.
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The image of ν− under τ is a shift-invariant probability measure on Σ−that will be denoted by µ−. It is the equilibrium measure for the potential

φ(ω) = − log g′(τ−1(ω)), hen
e it is ergodi
.For ψ as in Lemma 2.2 set
D(ψ,K, ε, n) =

{
x; n(1− ε)

\
ψ dν−−K ≤ Snψ(x) ≤ n(1+ ε)

\
ψ dν− +K

}
.The 
entral limit theorem for equilibrium measures (Theorem 1.27 in [Bo℄)implies the following lemma.Lemma 2.3. Let ψ be as in Lemma 2.2. Fix ε > 0. For any δ > 0 thereexists K > 0 su
h that

∞∑

n=1

(1 − ν−(D(ψ,K, ε, n))) < δ.

In parti
ular, for any positive ε and for ν−-almost every x ∈ (0, 1] thereexists K1 su
h that(2.4) K−1
1 λ

n(1+ε)
− < |Gτn(x)| < K1λ

n(1−ε)
− ,where

λ− = exp
(
−
\

S1

log g′(x) dν−(x)
)
.

2.3. Geometry and dynami
s of f , SRB measure. The measure µ− is
σ-invariant. Hen
e there exists a unique σ-invariant measure on Σ for whi
h
µ− is the marginal distribution on Σ−. We will denote this measure by µand let µ+ be the marginal distribution of µ on Σ+. As µ− is ergodi
, sois µ.Fix a small positive ε and let ω be a sequen
e from Σ+ su
h that forsome K and for all n,(2.5) Sn logΦ(ω−n) < n(1 − ε) logL+K.Lemma 2.3 guarantees us plenty of su
h ω. Consider the sequen
e of 
urves(2.6) fn(Gω−n × {0}).They are graphs of C2 fun
tions y = Λn,ω(x).Proposition 2.4. Assume that (2.5) is satis�ed for some ω ∈ Σ+. Thenthe sequen
e Λn,ω 
onverges uniformly in C2 to some Λω. Moreover , the �rsttwo derivatives of Λω are uniformly bounded independently of ω. The limitdoes not 
hange if in (2.6) we repla
e Gω−n × {0} by Gω−n × {t} for any t.Proof. We have

Λn+1,ω(x) − Λn,ω(x) = hn(gωn(x), h(gωn+1
, 0))) − hn(gωn(x), 0).
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By the 
hoi
e of ω, |∂2hn| is not greater than eKLn(1−ε). As this is asummable series and |h(·, 0)| is uniformly bounded, Λn,ω(x) is a Cau
hysequen
e in sup norm.Of 
ourse, if we used fn(Gω−n × {t}) (the graphs of fun
tions that wewill denote by Λt

n,ω), the limit would be the same, as
‖Λt

n,ω − Λn,ω‖ = ‖hn(·, t) − hn(·, 0)‖ ≤ t · eKLn(1−ε) → 0.To estimate the derivatives of Λω note that f may be lo
ally expanding in theverti
al dire
tion, but the expansion in the horizontal dire
tion is stronger(by a uniform 
onstant). We 
an thus write f lo
ally as the sum of a linearmap f0(x, y) = (x0 + M(x − x0), y0 + m(y − y0)) (with M/m uniformlygreater than 1) and a nonlinear distortion term f1 (with �rst and se
ondorder derivatives uniformly bounded). Hen
e,
|Λ′

n+1,ω| ≤
m

M
max |Λ′

n,ω| + Cand
|Λ′′

n+1,ω| ≤
m

M2
max |Λ′′

n,ω| + C,thus the �rst and se
ond derivatives of Λω exist and are uniformly bounded(note that the bounds do not depend on K or ε; we only need to know that
Λn,ω 
onverges).The 
urves Λω will be 
alled the leaves of the map f . We proved theexisten
e of the leaves for some ω given by (2.5). Denote by Σ̃+ the set of ωfor whi
h leaves exist. As the image of a leaf under f is a union of k leaves,(2.7) Σ̃+ ⊂

k−1⋃

i=0

σi(Σ̃+).Hen
eforth we will 
on
entrate on the points of the form (x,Λω(x)) for
ω ∈ Σ̃+. The natural symboli
 spa
e for su
h points is Σ̃ = Σ− × Σ̃+ ⊂ Σ.Let us denote this expansion by τ̃(x, y), i.e. τ̃ : (0, 1] × R → Σ̃. This map isnot uniquely de�ned�interse
tion points of leaves will have more than onesymboli
 expansion (
orresponding to their history under iteration of f).The map τ̃ 
onjugates f with σ a
ting on Σ̃ as a subset of Σ. By (2.7), Σ̃is σ-invariant.Note here a relation between the measures µ− and µ+. Denote by C−(ωn)the set of all sequen
es from Σ− ending with ωn and by C+(ωn) set of allsequen
es from Σ+ beginning with ωn. Then by invarian
e of µ under σ,

µ−(C−(ωn)) = µ+(C+(ωn)).Lemma 2.3 implies that Σ̃ has positive µ-measure. By ergodi
ity of µ, wehave µ(Σ̃) = 1.
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We 
an proje
t µ ba
k from the symboli
 spa
e by π = τ̃−1; the resultingmeasure will be denoted by ν. It is the SRB measure for our system and wewill work with it in the rest of the paper. For ν we 
ompute the Lyapunovexponent of the map f :

log λ =
\
log |∂2h(x, y)| dν(x, y)(it is the Lyapunov exponent in the verti
al dire
tion; the one in the hori-zontal dire
tion equals − log λ− and we need only g and ν− to 
ompute it).We need to introdu
e our last geometri
 assumption: transversality.Definition 2.5. If there exists b > 0 su
h that for any two leaves Λωand Λω̃ with ω1 6= ω̃1 we have

|Λω(x) − Λω̃(x)| + |Λ′
ω(x) − Λ′

ω̃(x)| > bthen we say that the baker map satis�es the transversality 
ondition.The name 
omes from the fa
t that the 
ondition implies that two su
hleaves have only a uniformly bounded number of interse
tions and thoseinterse
tions are transversal. As the transversality of interse
tions betweenleaves is preserved under iteration of f , the transversality 
ondition impliesthat all the leaf interse
tions are transversal (but not 
onversely).The transversality 
ondition is open and we 
an give a family of examplesof baker maps satisfying it.Example 2.6. Consider a linear baker map of the form g(x) = kx(mod 1) and h(x, y) = hj
1x+hj

2y, with hj
1 and hj

2 depending only on j = ⌊kx⌋.For su
h a map, Λω(x) = b(ω) + a(ω)x, where
a(ω) =

∑

i

k−iSih2(ω
−i+1)h1(ω

−i).In other words, a(ω) is the limit point of the iterated fun
tion system of themaps
fj : x 7→ hj

2k
−1x+ hj

1and su
h a system will satisfy the strong separation 
ondition if ∑hj
2 < k, forproperly 
hosen hj

1. The strong separation 
ondition for this system impliesthat a(ω) and a(ω̃) will di�er at least by a 
onstant if ω1 6= ω̃1, hen
e thetransversality follows.We 
an now formulate our main theorem. We de�ne
s =

log λ−
log λ

.Theorem 2.7. For any 
ontra
ting-on-average baker map the upperHausdor� dimension of its SRB measure is not greater than min(2, 1 + s).
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If the map satis�es the transversality 
ondition, then the upper and lowerHausdor� dimensions of the SRB measure are equal to min(2, 1 + s).3. Proof of Theorem 2.73.1. Upper bound for Hausdor� dimension. We may freely assume s < 1,otherwise the assertion is empty. We �x some small positive ε. We denoteby WK the set of points (x, y) ∈ π(Σ̃) ∩ {y ∈ [−K,K]} for whi
h for all n,(3.1) n(1 + ε) logλ− logK <

n−1∑

i=0

log |∂2hi(x, y)| < n(1 − ε) log λ+ logKand (2.4) holds.For in
reasing K, ν(WK) will in
rease to 1 by Lemma 2.3. We 
hoosesome large K.We have to 
he
k how some iteration fn (n large) behaves in the neigh-bourhood of a point (x, y) ∈ WK . We know that (3.1) holds at (x, y) andwould like to �nd some neighbourhood of this point where it holds as well(possibly with worse K, but at most worse by a multipli
ative 
onstant).We will take this neighbourhood U in the form of a re
tangle U = I1×I2,
x ∈ I1, y ∈ I2.Lemma 3.1. There exists dK su
h that for all n, if the re
tangle U =
I1 × I2 has nonempty interse
tion with WK where I1 = Gωn and |I2| < dKthen

n(1 + ε) log λ− logK0 <
n−1∑

i=0

log |∂2h(f
i(·))| < n(1 − ε) log λ+ logK0for all points in U , with K0 depending on K and ε but not on n.Proof. The map f is C2 and its derivative |∂2h| is bounded away fromzero. Hen
e, its logarithm is C1 with bounded derivative and the 
onditionwe need is that the sum of the diameters of the �rst n images of U under fis uniformly bounded:(3.2) n−1∑

j=0

|f j(U)| ≤ c(K).

Any image of U is an approximate re
tangle: the images of the verti
alintervals are verti
al intervals while the horizontal intervals are mapped ontoapproximately horizontal lines (graphs of fun
tions with uniformly boundedderivative; 
he
k the proof of Proposition 2.4). Hen
e
|f j(U)| ≤ c|gj(I1)| + inf

x∈I1
|hj(x, I2)|.
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The �rst part of the sum (3.2) is easy to estimate: ∑n−1

j=0 |gj(Gωn)| isuniformly bounded and the bound depends neither on n nor on ωn. Toestimate the se
ond part, let (x, t) ∈ U∩WK and 
onsider zj = |hj({x}×I2)|.We have
zj ≤ dK max

y∈I2
|∂2hj(x, y)|.We 
an use the Leibniz formula for the derivative to get

log

∣∣∣∣
∂2hj(x, y)

∂2hj(x, t)

∣∣∣∣ ≤ c

j−1∑

i=0

|hi(x, y) − hi(x, t)| ≤ c

j−1∑

i=0

ziand using (3.1) one gets bounds like those in Lemma 4.3 from [R2℄.Hen
e, ∑n−1
i=0 zi is bounded and the bound does not depend on n.We 
overWK by re
tangles of the formGωn×[jdK , (j+1)dK ] and take theimage of this family under fn. We get a family of approximately horizontalstrips with the following properties. First, as stated above, their width isnot greater than K0λ

n(1−ε). Se
ond, there are at most (2K/dK) ·Kλ
−n(1+ε)
−strips. Third, their union 
ontains fn(WK), hen
e its measure ν is at least

ν(WK).Cutting those strips into approximate squares {Ei} we get a 
over of aset of measure at least ν(WK) with 2K2K−1
0 λ

−n(1+ε)
− λ−n(1−ε) squares of size

K0λ
n(1−ε). If n was 
hosen su�
iently large,(3.3) ∑

(diamEi)
1+s(1+3ε) < 1.Repeating all this pro
edure for greater and greater K and n we get afamily of sets of in
reasing measures and their �ner and �ner 
overs, satis-fying (3.3). The upper limit of those sets has measure 1. We 
an 
over thisset with the union of our 
overs and this proves that the resulting set haszero Hausdor� measure in any dimension greater than 1 + s(1 + 3ε).As ε may be 
hosen arbitrarily small, we are done.3.2. Lower bound for Hausdor� dimension. The measure ν is absolutely
ontinuous on leaves by (2.3). Even more, by Lemma 2.2 its density variesat most by a 
onstant along any leaf. Hen
e, we 
an write(3.4) dν(x, y) ≈ dx ·
∑

π∗µ+(dω),where the sum is taken over all leaves Λω passing through (x, y).Fix a small ε. We denote by VK the set of leaves Λω for whi
h for all n,for at least one point x,
n(1 + ε) log λ− logK <

n−1∑

i=0

log |∂2h(f
i(x,Λω(x)))|(3.5)

< n(1 − ε) log λ+ logK
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and(3.6) n(1 + ε) log λ− − logK < µ+(C+(ωn)) < n(1 − ε) log λ− + logK.The formula (3.6) may be seen as dual to (2.4); it is satis�ed for anarbitrarily large set of ω by Lemma 2.3. We denote by νK the restri
tion of
ν to VK .Note that if (x,Λω(x)) satis�es (3.5) then for all x′, (x′, Λω(x′)) willsatisfy (3.5) for slightly (by a multipli
ative 
onstant) greater K. Hen
e, westill have(3.7) dνK(x, y) ≈ dx ·

∑
π∗µ+K(dω)for some measure µ+K ≤ µ+ of norm 
lose to 1.We are going to estimate from above the integral

Z(K, δ) =
\
νK(Bδ(x, y)) dνK(x, y)(for small δ), where Bδ(x, y) is the square of side-length δ 
entred at (x, y).By (3.7) we 
an write(3.8) Z(K, δ) ≤ c

\\\
Leb(Bδ(x,Λω(x)) ∩ Λω′) dx dµ+K(ω) dµ+K(ω′).Set

Iδ(ω, ω
′) =
\

Leb(Bδ(x,Λω(x)) ∩ Λω′) dx.If ω1 6= ω′
1, the above is easy to estimate from transversality: whenever Λωand Λω′ are at a distan
e smaller than b/2, their derivatives must di�er byat least b/2. Hen
e for su
h pairs

Iδ(ω, ω
′) ≤ min

(
4

b
δ2, 1

)
.We will write(3.9) Z(K, δ) ≤

∑

n

Zn(K, δ),where Zn(K, δ) is the part of the integral (3.8) over pairs ω, ω′ with �rst nsymbols identi
al.Let ω = ηnα and ω′ = ηnβ, α1 6= β1. We will estimate not Iδ(ω, ω′) but
Jn,δ(α, β) =

∑

ηn

Iδ(η
nα, ηnβ),where the sum is taken over all n-digit sequen
es ηn su
h that both Ληnαand Ληnβ belong to VK . Note that

dµ+(τnα) ≈ µ+(C+(τn))dµ+(α)(this follows from a similar estimate for ν− given by Lemma 2.2). For µ+Kthe same estimate holds, but only for τn and α su
h that α ∈ VK and τnsatis�es (3.6).
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We thus have(3.10) Zn(K, δ) ≤ sup

ηn

µ+K(C+(ηn))
\\
Jn,δ(α, β) dµ+(α) dµ+(β).The union of the pairs (Ληnα, Ληnβ) is the image of (Λα, Λβ) under fn.By assumption we keep only those bran
hes ηn of the map fn for whi
h itis lo
ally a 
ontra
tion in the verti
al dire
tion (with 
ontra
tion ratio notgreater than D+

1 = cKλn(1−ε) and not smaller than D−
1 = (cK)−1λn(1+ε))and a dilatation in the horizontal dire
tion (with dilatation ratio between

D+
2 = Kλ

−n(1+ε)
− and D−

2 = K−1λ
−n(1−ε)
− ). The square Bδ is the image of anapproximate re
tangle with horizontal side-length between δ/D+

2 and δ/D−
2and verti
al side-length δ/D1, D1 ∈ [D−

1 , D
+
1 ]. Hen
e,

Jn,δ(α, β) ≤ Iδ/D1
·
D1

D−
2

·D+
2 ≤ D+

1 K
2λ−2nε

− min

(
4δ2

b(D−
1 )2

, 1

)
.Substituting this into (3.10) and estimating supηn µ+K(Cηn) by Kλ

n(1−ε)
−from (3.6), we get(3.11) Zn(K, δ) ≤ min

[
c(K)

(
λ−
λ

)n(1−3ε)

δ2, c(K)λ
n(1−3ε)
− λn(1−ε)

]
.Now, there are two 
ases: s < 1 or s ≥ 1. Assume �rst that s < 1.The sequen
e Zn is �rst in
reasing (exponentially fast) and then de
reasing(also exponentially fast). The sum of the series in (3.9) is thus approximatelyequal to the greatest element, i.e.

Z(K, δ) ≤ c(K)λ
n0(1−3ε)
− λn0(1−ε)for

n0 =
log δ − c(K)

(1 + ε) log λ
.Hen
e

Z(K, δ) ≤ c(K)δ1−3ε+(1−5ε)sfor δ small enough. By Tsujii's lemma from [T℄, for all K the Hausdor�dimension of νK (hen
e, of ν as well) is not smaller than 1− 3ε+ (1− 5ε)s.As ε may be 
hosen arbitrarily small, the assertion follows.Let now s ≥ 1. The sequen
e Zn is then nonin
reasing (even de
reasingwhen s > 1) for n < n0, so we 
an estimate the sum in (3.9) by n0Z0:
Z(K, δ) ≤ c(K)δ2|log δ|.Now Tsujii's lemma implies that the Hausdor� dimension of νK is equal to 2.
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