BULLETIN OF THE POLISH
ACADEMY OF SCIENCES
MATHEMATICS
Vol. 54, No. 3-4, 2006

DYNAMICAL SYSTEMS AND ERGODIC THEORY

Contracting-on-Average Baker Maps
by
Michat RAMS

Presented by Andrzej LASOTA

Summary. We estimate from above and below the Hausdorff dimension of SRB measure
for contracting-on-average baker maps.

1. Introduction. One of the main open problems in the dimension the-
ory of dynamical systems is how to work with non-conformal systems, i.e.
systems with two (or more) different negative Lyapunov exponents or with
two (or more) different positive Lyapunov exponents. The simplest such sys-
tems are solenoids, and it is for them that some results are known (cf. [B],
[S2], [SS], [RS]).

These results were achieved by considering a projection of the system in
the direction of maximal contraction. The resulting (non-invertible) hyper-
bolic systems are called baker maps. They are of independent interest and
were studied as well: see for example [S1], [T], [R1].

In all these papers a transversality condition was assumed, first intro-
duced by Pollicott and Simon [PS| in the context of one-parameter fam-
ilies of iterated function systems. This condition is open and it is easy
to show examples of systems satisfying it. For some regions in parameter
space, the transversality condition is satisfied on a dense subset, as shown
by Bothe [B].

In this paper we consider a generalisation of baker maps: contracting-on-
average baker maps. Those are non-uniformly hyperbolic systems. However,
we show the same dimension estimates for the SRB measures of COA baker
maps as are known for standard baker maps. The upper bound does not
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require any additional assumptions. To obtain the lower bound we need the
transversality condition to be satisfied.

2. Geometry of contracting-on-average baker maps

2.1. Definition of contracting-on-average baker maps. Let us start from
some notations. We are going to use three symbolic spaces:

2 ={0,..., k— 13N}
2o =A{0,.. .k -1},
Y=Y xX={0,....k -1}~
We define a map o acting on Y’ and on X by
(ow)i = wi—1.
On Y, we define k maps o; as follows:
oilwwy...) =iwwy..., 1=0,...,k—1.

Finite sequences of symbols from {0,...,k — 1} will be denoted by w" =
w1 ...wn. By w™" we will denote w” written backwards, i.e. ™" = w,, ...w;.
We will consider maps of the form

(2.1) f(z,y) = (9(x), h(z,y)),

acting on S x R.

We demand that g is a k-1 C? orientation preserving expanding map of
the circle, i.e. g is C?, ¢ > 1 everywhere and every point has precisely k
preimages under g. We parametrise the circle as the interval (0, 1], where 1 is
one of the fixed points of g. We assume g to be C? except possibly at points
r € g~1(1) and to be continuous and have left and right derivative every-
where. Similarly, we assume h to be C? except on the lines {z € g~1(1)}.

We will also assume that the map f has uniformly bounded first and
second order derivatives in its whole domain (again except possibly on the
lines {x € g~1(1)}) and that 02h is bounded away from zero. We denote the
iterations of f by f™(z,y) = (¢"(z), hn(z,y)).

Given z, the supremum of |Oxh(z, )| will be denoted by &(z); we assume
that

(2.2) [2(z)| < 1g'()].
Let
L= exp( S log &(x) dv_(:c)).
Sl
DEFINITION 2.1. The map (2.1) satisfying the smoothness assumptions
above will be called a contracting-on-average (COA) baker map if L < 1.
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2.2. One-dimensional dynamics of g. The results of this subsection are a
standard application of the thermodynamical formalism to expanding maps.
An introduction to the thermodynamical formalism can be found in Bowen’s
book [Bo]. The way of applying it to expanding maps is explained (in a
slightly different situation) in the fourth chapter of Falconer’s book [F|, so
we will omit the detailed proofs.

There are k intervals of the form (a, b] that are mapped by g onto (0, 1]
in a bijective way. These intervals are pairwise disjoint and form a covering
of (0,1]. We will denote them by Go,...,Gj_1. The branch of g~! moving
(0,1] onto G; will be denoted by g;.

Similarly, we have k™ intervals of the form (a,b] that are mapped by
g™ onto (0,1] in a bijective way. We will write Gyn = ¢y, (Guy. ., )- The
corresponding branch of ¢g~" will be denoted by g,-» = 9w, © - © gu, -

We introduce a symbolic expansion on (0, 1] in the following way:

mi(x) = {j; ¢'(x) € Gz}, i>0.

In other words,
oo

T = ﬂ GWO(»’U)---W"(’C)'
n=0

Let 7(z) = ... mp(x) ... m(x)mo(x). The map 7 : (0,1] — X_ is bijective and
almost onto (the set X'_\7((0, 1]) is countable). Moreover, it is a conjugation
between g acting on (0, 1] and o acting on X_.

For any function % : (0,1] — R define

n—1
S"p(@)=) v(g'(x), Sty(w")=inf S"(z),  SPY(w")=sup S (x).
i=0 ¢

The following lemma is equivalent to Proposition 4.1 in [F].

LEMMA 2.2. Let ¢ : (0,1] — R be Lipschitz on every G,;. Then
max S™(-) — min S™Y(-) is bounded inside any G n; the bound is uniform
with respect to both n and w™.

Hence, Sy — 5S¢ < K with K depending only on .

The Lasota—Yorke theorem states that there exists a unique absolutely
continuous g-invariant probability measure v_ on (0, 1] and its density is
bounded away from zero and infinity. As every g; is C?, if we take v_|Gn
for any w", iterate it n times under g and normalise, the resulting measure
will still have its density uniformly bounded away from zero and infinity.
Hence,

1 1
(2.3) K < (G
for some K independent of w and n.

dv_|Gnd(v- 0 g, ) < K
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The image of v_ under 7 is a shift-invariant probability measure on 3/_
that will be denoted by p_. It is the equilibrium measure for the potential
p(w) = —log ¢’ (77 !(w)), hence it is ergodic.

For ¢ as in Lemma 2.2 set

D(y,K,e,n) = {x; n(l—s)swdy_—K < S"P(x) < n(l+€)§zpdl/_+K}.

The central limit theorem for equilibrium measures (Theorem 1.27 in [Bo])
implies the following lemma.

LEMMA 2.3. Let ¢ be as in Lemma 2.2. Fiz ¢ > 0. For any 6 > 0 there
exists K > 0 such that

[e.9]

> (1 —v (D, K, e,n))) < 6.

n=1
In particular, for any positive ¢ and for v_-almost every z € (0, 1] there
exists K7 such that
(2.4) KA < |G| < KA,

where
A= exp(— S log ¢’ (x) dv_ (a:))

Sl

2.3. Geometry and dynamics of f, SRB measure. The measure p_ is
o-invariant. Hence there exists a unique o-invariant measure on X' for which
p— is the marginal distribution on Y'_. We will denote this measure by p
and let p4 be the marginal distribution of u on X,. As u_ is ergodic, so
is p.

Fix a small positive € and let w be a sequence from X'y such that for
some K and for all n,

(2.5) S"logP(w™™) <n(l—¢)log L+ K.

Lemma 2.3 guarantees us plenty of such w. Consider the sequence of curves
(2.6) (G {O).

They are graphs of C? functions y = A, , ().

PROPOSITION 2.4. Assume that (2.5) is satisfied for some w € X. Then
the sequence Ay, ., converges uniformly in C? to some A,. Moreover, the first
two derivatives of A, are uniformly bounded independently of w. The limit
does not change if in (2.6) we replace G,—n x {0} by G —n x {t} for anyt.

Proof. We have
Ap1.0(2) = Anw(2) = hn(gon (2), Mg s1,0))) = ha(gun (2),0).
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By the choice of w, |O2hy| is not greater than eL"17¢). As this is a
summable series and |h(-,0)| is uniformly bounded, A, ,(x) is a Cauchy
sequence in sup norm.

Of course, if we used f"(G,-» x {t}) (the graphs of functions that we
will denote by Af%w), the limit would be the same, as

14}, = Anoll = ha(-8) = (- 0)] < ¢ 5 L0~ — 0.

To estimate the derivatives of /A, note that f may be locally expanding in the
vertical direction, but the expansion in the horizontal direction is stronger
(by a uniform constant). We can thus write f locally as the sum of a linear
map fo(z,y) = (w0 + M(z — x0),y%0 + m(y — yo)) (with M/m uniformly
greater than 1) and a nonlinear distortion term f; (with first and second
order derivatives uniformly bounded). Hence,

|A +1w’ < MmaX’Anw‘ +C
and

m

|A”+1 w| < M2 max ‘AZ,w| + C?
thus the first and second derivatives of A, exist and are uniformly bounded
(note that the bounds do not depend on K or &; we only need to know that

Ay, converges). m

The curves A, will be called the leaves of the map f. We proved the
existence of the leaves for some w given by (2.5). Denote by X', the set of w
for which leaves exist. As the image of a leaf under f is a union of k leaves,

=0

Henceforth we will concentrate on the points of the form (z, A,(z)) for
w € E+ The natural symbolic space for such points is Y= X x Z+ c .
Let us denote this expansion by 7(z,y), i.e. 7: (0,1] x R — Y. This map is
not uniquely defined—intersection points of leaves will have more than one
symbolic expansion (corresponding to their history under iteration of f)
The map 7 conjugates f with o acting on Y as a subset of X. By (2.7), X
is o-invariant.

Note here a relation between the measures p— and p4. Denote by C_ (w")
the set of all sequences from X _ ending with w™ and by C4 (w™) set of all
sequences from 3| beginning with w™. Then by invariance of p under o,

Ho(C_(W™) = 1 (C ().
Lemma 2.3 implies that Y has positive p-measure. By ergodicity of u, we
have p(X) = 1.
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We can project p back from the symbolic space by 7 = 7~ !; the resulting
measure will be denoted by v. It is the SRB measure for our system and we
will work with it in the rest of the paper. For v we compute the Lyapunov
exponent of the map f:

log A = | log |02h(x, )| dv(x, y)

(it is the Lyapunov exponent in the vertical direction; the one in the hori-
zontal direction equals —log A_ and we need only g and v_ to compute it).
We need to introduce our last geometric assumption: transversality.

DEFINITION 2.5. If there exists b > 0 such that for any two leaves A,
and Ag with wy # @ we have

[Au(z) = Ag()] + [ A, (z) — AG(2)] > b
then we say that the baker map satisfies the transversality condition.

The name comes from the fact that the condition implies that two such
leaves have only a uniformly bounded number of intersections and those
intersections are transversal. As the transversality of intersections between
leaves is preserved under iteration of f, the transversality condition implies
that all the leaf intersections are transversal (but not conversely).

The transversality condition is open and we can give a family of examples
of baker maps satisfying it.

EXAMPLE 2.6. Consider a linear baker map of the form g(z) = kx
(mod 1) and h(z,y) = hix+hly, with h] and h} depending only on j = |kz|.
For such a map, A,(z) = b(w) + a(w)x, where

a(w) = Zk—is%(w—iﬂ)hl(w—i).

In other words, a(w) is the limit point of the iterated function system of the
maps
firz— Bk e+ B

and such a system will satisfy the strong separation condition if > h% < k, for

properly chosen h{. The strong separation condition for this system implies
that a(w) and a(w) will differ at least by a constant if w; # Wi, hence the
transversality follows.

We can now formulate our main theorem. We define
_ log A
~ log M
THEOREM 2.7. For any contracting-on-average baker map the upper
Hausdorff dimension of its SRB measure is not greater than min(2,1 + s).
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If the map satisfies the transversality condition, then the upper and lower
Hausdorff dimensions of the SRB measure are equal to min(2,1 + s).

3. Proof of Theorem 2.7

3.1. Upper bound for Hausdorff dimension. We may freely assume s < 1,
otherwise the assertion is empty. We fix some small positive €. We denote
by Wi the set of points (z,y) € 7(X) N {y € [-K, K]} for which for all n,
n—1

(3.1) n(l+e)logh—logK < Z log |02hi(x,y)| < n(l —¢)log A+ log K
i=0

and (2.4) holds.

For increasing K, v(Wp) will increase to 1 by Lemma 2.3. We choose
some large K.

We have to check how some iteration f™ (n large) behaves in the neigh-
bourhood of a point (x,y) € Wg. We know that (3.1) holds at (z,y) and
would like to find some neighbourhood of this point where it holds as well
(possibly with worse K, but at most worse by a multiplicative constant).

We will take this neighbourhood U in the form of a rectangle U = I x I,
xel,yel.

LEMMA 3.1. There exists dx such that for all n, if the rectangle U =
I x Iy has nonempty intersection with Wy where I} = Gun and |I2| < dg
then
n—1
n(l+¢)log A —log Koy < Zlog |02h(f()] < n(1 —€)log A + log Ko
=0

for all points in U, with Ky depending on K and £ but not on n.

Proof. The map f is C? and its derivative |02h| is bounded away from
zero. Hence, its logarithm is C'' with bounded derivative and the condition
we need is that the sum of the diameters of the first n images of U under f
is uniformly bounded:

(3.2) Z\fﬂ )| < e(K).

Any image of U is an approximate rectangle: the images of the vertical
intervals are vertical intervals while the horizontal intervals are mapped onto
approximately horizontal lines (graphs of functions with uniformly bounded
derivative; check the proof of Proposition 2.4). Hence

L U)] < elg/ (1) + inf by, L)
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The first part of the sum (3.2) is easy to estimate: Z;:& |97 (G )] is
uniformly bounded and the bound depends neither on n nor on w™. To
estimate the second part, let (z,t) € UNW and consider z; = |h;({z}x12)].
We have

zj < dg max |O2hj(x,y)|.
y€elz

We can use the Leibniz formula for the derivative to get

Oaly (v Z|h x, hi(x,t)| < ciz-
g 82}1; :L‘ t y (2 ) — - (2

and using (3.1) one gets bounds hke those in Lemma 4.3 from [R2].
Hence, Z?;()l z; is bounded and the bound does not depend on n. =

We cover Wi by rectangles of the form Gn x[jdg, (j+1)dk| and take the
image of this family under f". We get a family of approximately horizontal
strips with the following properties. First, as stated above, their width is
not greater than KoA™(1=¢). Second, there are at most (2K /d) - KA
strips. Third, their union contains f”(WK) hence its measure v is at least

v(Wk).

Cutting those strips into approximate squares {E;} we get a cover of a
set of measure at least v(Wy) with 2K2K61)\:n(1+€))\_"(1_6) squares of size
Ko\"1=9) 1f n was chosen sufficiently large,

(3.3) > (diam E;) 08 <1,

Repeating all this procedure for greater and greater K and n we get a
family of sets of increasing measures and their finer and finer covers, satis-
fying (3.3). The upper limit of those sets has measure 1. We can cover this
set with the union of our covers and this proves that the resulting set has
zero Hausdorff measure in any dimension greater than 1+ s(1 + 3¢).

As ¢ may be chosen arbitrarily small, we are done.

lo

3.2. Lower bound for Hausdorff dimension. The measure v is absolutely
continuous on leaves by (2.3). Even more, by Lemma 2.2 its density varies
at most by a constant along any leaf. Hence, we can write

(3.4) dv(z,y) =~ dx - Z 7 g (dw),

where the sum is taken over all leaves A,, passing through (z,vy).
Fix a small €. We denote by Vi the set of leaves A,, for which for all n,
for at least one point =z,
n—1
(3.5) n(l+¢e)logA —log K <) log|dah(f(z, Au(x)))|
i=0
<n(l—¢)log A+ log K
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and
(3.6) n(l+e)logh- —log K < py(Cyp(w™)) <n(l —e)logA_ +log K.

The formula (3.6) may be seen as dual to (2.4); it is satisfied for an
arbitrarily large set of w by Lemma 2.3. We denote by vx the restriction of
v to Vk.

Note that if (z,A,(x)) satisfies (3.5) then for all 2/, (2/, A, (z')) will
satisfy (3.5) for slightly (by a multiplicative constant) greater K. Hence, we
still have

(3.7) dvi(z,y) ~ dx - Z Ty i (dw)

for some measure pi g < py of norm close to 1.
We are going to estimate from above the integral

Z(K,6) = \vi(Bs(x,y)) dv(x,y)

(for small §), where Bs(z,y) is the square of side-length ¢ centred at (z,y).
By (3.7) we can write

(3.8)  Z(K,8) < c ||| Leb(Bs(w, Au(2)) N Au) d dpsgc (w) dptgec ().

Set
Is(w,w) = | Leb(Bs(z, Au(x)) N Auy) da.

If w; # Wi, the above is easy to estimate from transversality: whenever A,
and A, are at a distance smaller than b/2, their derivatives must differ by
at least b/2. Hence for such pairs

4
Is(w,0') < min(z 62, 1).

We will write
(3.9) 2(K,0) < Y Zu(K, ),

where Z, (K, §) is the part of the integral (3.8) over pairs w,w’ with first n
symbols identical.
Let w = n"a and ' = 1", a1 # B1. We will estimate not I5(w,w’) but

Jn,(s(aa /8) = Z I5(nna7 77”/8)7
m

where the sum is taken over all n-digit sequences 1™ such that both A,n,
and A, belong to V. Note that

dp (7" ) & pug (Co (7)) dpiy- ()
(this follows from a similar estimate for v_ given by Lemma 2.2). For ux

the same estimate holds, but only for 7" and « such that @ € Vi and 7"
satisfies (3.6).
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We thus have
(310)  Zy(K.6) < sup i (C+() V| Tns(a, B) dpy () dpay ().

The union of the pairs (Aynq, Ayng) is the image of (A, Ag) under f".
By assumption we keep only those branches n™ of the map f™ for which it
is locally a contraction in the vertical direction (with contraction ratio not
greater than D" = cKX"17€) and not smaller than Dy = (cK)~I\n(1+e))
and a dilatation in the horizontal direction (with dilatation ratio between
D = K)\:n(HE) and D; = K‘l)\:"(l_g)). The square By is the image of an
approximate rectangle with horizontal side-length between §/D5 and &/Dy
and vertical side-length 6/Dy, D1 € [D], D ]. Hence,

Jns(a, B) <1 Duopy <D+K2)\_2"Emin(4752 1)
n, 0\ &, = 1§/Dq D2_ 2 =~ — b(Dl_)T .

n(l—e)

Substituting this into (3.10) and estimating sup,n pi1x(Cyn) by KX
from (3.6), we get

A n(1-3¢) -
(311) Zn(K, (5) < min |:C(K) (T) 52,C(K))\7i( E)An(l—a)]

Now, there are two cases: s < 1 or s > 1. Assume first that s < 1.
The sequence Z, is first increasing (exponentially fast) and then decreasing
(also exponentially fast). The sum of the series in (3.9) is thus approximately
equal to the greatest element, i.e.

Z(K,6) < e(K)AI 3 ymo(1=9)
for logd — ¢(K)
ny=-————.
(I4+¢)logA
Z(K, 5) < C(K)51—35+(1—55)s

for 0 small enough. By Tsujii’s lemma from [T], for all K the Hausdorff
dimension of vi (hence, of v as well) is not smaller than 1 — 3¢ + (1 — 5¢)s.
As € may be chosen arbitrarily small, the assertion follows.

Let now s > 1. The sequence Z,, is then nonincreasing (even decreasing
when s > 1) for n < ng, so we can estimate the sum in (3.9) by nyZp:

Z(K,6) < ¢(K)5*[log 4.

Now Tsujii’s lemma implies that the Hausdorff dimension of vk is equal to 2.

Hence
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