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Summary. Dunford—Pettis type properties are studied in individual Banach spaces as
well as in spaces of operators. Bibasic sequences are used to characterize Banach spaces
which fail to have the Dunford—Pettis property. The question of whether a space of op-
erators has a Dunford—Pettis property when the dual of the domain and the codomain
have the respective property is studied. The notion of an almost weakly compact operator
plays a consistent and important role in this study.

1. Introduction. Throughout this paper X, Y, E, and F' will denote real
Banach spaces. The unit ball of X will be denoted by Bx unless otherwise
specified, and X* will denote the continuous linear dual of X. An operator
T : X — Y will be a continuous and linear function. Of course, it is well
known that 7': X — Y is a compact (resp. weakly compact) operator if and
only if T*(By~) is relatively compact (resp. relatively weakly compact) in
X*. The following equivalences (which one can easily derive directly from
definitions) appear to be less well celebrated:

(a) T : X — Y is completely continuous iff 7*(By~) is an L-subset
of X™.

(b) T : X — Y is unconditionally converging iff 7*(By-) is a V-subset
of X™.

(¢) T: X — Y is limited iff T is w*-norm sequentially continuous.

(d) T(Bx) is a DP subset of Y iff T* : Y* — X* is completely continu-
ous.

(e) T(Bx) is a V*-subset of YV iff T* : Y* — X* is unconditionally
converging.
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In this paper we will investigate some structural consequences of (a)—(e)
as well as topological properties of distinguished sets naturally associated
with the classes of operators mentioned above.

2. Definitions and notation. The set of all continuous linear trans-
formations from X to Y will be denoted by L(X,Y’), and the compact op-
erators will be denoted by K(X,Y). The w*-w continuous (resp. w*-w con-
tinuous compact) maps from X* to Y will be denoted by L, (X*,Y) (resp.
K+ (X*,Y)).

The bounded subset A of X is called a Dunford—Pettis subset (resp. lim-
ited subset) of X if each weakly null sequence in X* (resp. w*-null sequence
in X*) tends to 0 uniformly on A. The bounded subset A of X* is called an
L-subset of X* if each weakly null sequence in X tends to 0 uniformly on A,
and the subset S of X is said to be weakly precompact provided that every
bounded sequence from S has a weakly Cauchy subsequence.

The operator T : X — Y is limited provided that T'(Bx) is a limited sub-
set of Y; T is completely continuous (or Dunford—Pettis) if it maps weakly
Cauchy sequences to norm convergent sequences; T is unconditionally con-
verging if it maps weakly unconditionally converging series to uncondition-
ally converging series; and T is almost weakly compact if T'(Byx) is weakly
precompact. If every weakly compact operator defined on X is completely
continuous, then we say that X has the Dunford—Pettis property (= DPP);
see [9] and [1] for inventories of classical results related to the DPP. We de-
note the canonical unit vector basis of ¢y (resp. ¢1) by (ey) (resp. (e})). The
reader should consult Lindenstrauss and Tzafriri [29], Diestel [10], or [3] for
undefined terminology and notation.

3. Almost weakly compact operators, limited sets, and Dun-
ford—Pettis sets. Odell, Rosenthal, and Stegall [33, p. 377] showed that
an operator T : X — Y is almost weakly compact if LoT : X — L,
is compact whenever L : Y — Lp is a completely continuous map. (The
converse of this statement is straightforward.) In view of the connection
between completely continuous operators and L-sets noted in (a) above, the
Odell-Stegall-Rosenthal theorem appears to say that the L-subsets of Y*
are sufficient to identify the almost weakly compact operators T : X — Y.
More precisely, we have the following.

THEOREM 3.1. An operator T : X — Y is almost weakly compact if and
only if T*(A) is relatively compact in X* whenever A is an L-subset of Y™*.

Proof. Suppose that T : X — Y is almost weakly compact, and let A be
an L-subset of Y*. Let B(A) be the Banach space (sup norm) of all bounded
real-valued functions defined on A, and let J : Y — B(A) be the natural
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evaluation map, i.e., J(y)(a) = a(y). Since A is an L-set, J is completely
continuous. Then J o T is compact, A C J*(B*) (B* = unit ball of B(A)*),
and T J*(B*) is relatively compact. Thus 7%(A) is relatively compact.

Conversely, suppose that 7%(A) is relatively compact for all L-subsets A
of Y*. Let L : Y — Lj be a completely continuous operator. Then L*(By_)
is an L-subset of Y* and T*(L*(Br.)) is relatively compact. Therefore
(LoT)* and L o T are compact. By the Odell-Rosenthal-Stegall theorem,
T is almost weakly compact. m

COROLLARY 3.2 (|14]). Ewvery L-subset of X* is relatively compact iff
0 S X,

Proof. Apply Rosenthal’s ¢1-theorem and the previous theorem to the
identity operator I : X — X. =

It is well known that ¢; — X if and only if L; — X* [10, p. 213],
and that L; has the DPP [9]. Consequently, any normalized and weakly
null sequence in L is a non-relatively compact DP subset (therefore a non-
relatively compact L-subset) of L. Thus the preceding corollary can be
restated.

COROLLARY 3.3 ([2, Cor. 7], [20, Thm. 1]). The following are equivalent:

(i) & X.
) Every L-subset of X* is relatively compact.
ii) Every DP subset of X* is relatively compact.
) Every weakly null DP sequence in X* is norm null.
V) L1 7L> X,
(vi) The identity map from X to X is almost weakly compact.

The Odell-Rosenthal-Stegall theorem used completely continuous maps
with range in L; to identify almost weakly compact operators. Weakly com-
pact maps with range in ¢y can also be employed to identify such operators.

THEOREM 3.4. If T :' Y — X s an operator and LoT :'Y — ¢y is
compact for all weakly compact operators L : X — cg, then T is almost
weakly compact.

Proof. Let (yn) be a sequence in By . Suppose (by way of contradiction)
that (T'(y,)) has no weakly Cauchy subsequence. By Rosenthal’s ¢;-theorem,
we can assume that (T'(y,)) ~ (e}). Let S = [T'(yn)], an isomorph of ¢;. Let
j S — ¢g be the natural inclusion. Since j naturally factors through /s,
Jj is absolutely 2-summing [32, Satz 2|. Now use the fact that all closed
linear subspaces of an Lo-space are complemented and the constructions in
Theorem 2 of [32] (U° = (Bx+,w*)) and on pp. 60-61 of [10] to obtain a
weakly compact operator J : X — ¢o which extends j. Then JT : Y — ¢



240 I. Ghenciu and P. Lewis

*

*) = en, and (ey) is certainly not relatively

is compact. But JT'(y,) = j(e
compact in ¢cp. =

The weak precompactness of a DP set is well known and has been used
extensively by many authors; e.g., see [1], [3], [13] and [20]. The usual proof
of this result involves the Odell-Rosenthal-Stegall theorem. Theorem 3.4
yields a particularly quick argument for this fact.

COROLLARY 3.5. Fwvery Dunford—Pettis subset of X is weakly precom-
pact.

Proof. If K is a DP subset of X, W is the closed and absolutely convex
hull of K, and T : £1(W) — X is defined by T'(f) = >, e f(w)w, then
T and T* are completely continuous, and K C T'(By,w)). If L : X — co is
weakly compact, then a look at the adjoint immediately shows that Lo T is
compact. m

It is known that a set A can be isometrically embedded in both E and
F (F C FE) and be a limited (Dunford-Pettis) subset of E and fail to be a
limited (Dunford-Pettis) subset of F. For example, Phillips’ lemma shows
that if j : co — f is the natural inclusion, then j* : £ — ¢ is w*-norm
sequentially continuous; thus A := B, is a limited set in . Certainly A
fails to be a limited subset of cy.

Also, if B is any bounded subset of a separable reflexive space R and R is
viewed as sitting in C[0, 1], then the fact that C[0, 1] has the DPP guarantees
that B is a Dunford—Pettis subset of C[0, 1]. If R is infinite-dimensional and
B = Bp, then the identity map [ : R — R clearly shows that B is not
a Dunford—Pettis subset of R. In fact, since the continuous linear image of
a DP set is a DP set, B is not a DP subset of any space in which R is
complemented.

We note that these observations, together with the easily established
fact that the continuous linear image of a limited set is a limited set, lead
to a particularly simple proof that ¢y is not complemented in fo,. For if
P : s — co were a projection, then P(B.) = B, would be a limited
subset of ¢g, and it is not.

The definitive result which determines when a basic sequence (x,,) in X
is simultaneously equivalent to (e, ) and limited in X is due to Schlumprecht.
See p. 36 of [35] for a proof.

THEOREM 3.6. If (zy,) is a basic sequence in X which is equivalent to
(en), then the following are equivalent:

(a) (zy) is a limited sequence in X.
(b) If S is an infinite subset of N, then Span{x,, : n € S} is not comple-
mented in X.
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The proof of Theorem 3.6 in [35] used Sobczyk’s theorem: If X is separable
and cg — X, then cq is complemented in X. The proof of 3.6 immediately
implies that the following is true.

If Bx+ is w*-sequentially compact, (x,) is a basic sequence in X which
is equivalent to (e,), and (b,) is any subsequence of (z,), then there is a
subsequence (c¢;,) of (by,) such that [(¢,,)] is complemented in X. We do not
know if the full sequence [(z,)] is complemented in X. See Emmanuele [17]
for a similar result.

The next result uses bibasic sequences to characterize when (e,) embeds
as a limited sequence in X. In the process, we extend Theorem 4.5 of [3].
We refer the reader to [8], [3], and [36, p. 32] for a discussion of bibasic se-
quences (Zn, f) in X x X*. In particular, note that if (z,, f¥) is a bibasic
sequence in X and (z},) is the a.s.c.f. for (x,), then f} is a continuous linear
extension of z; to all of X for each k. The problem of the equivalence of
(fr) and (x}) as basic sequences has been studied by several authors; e.g.,
see [36].

It is known that /., contains limited sets which are not relatively weakly
compact (see Example 1.1.8 of [35]). Further, Haydon [25] has given an ex-
ample of a C(K) space which is Grothendieck and does not contain £o,. Such
a space must contain limited sets S which are not relatively weakly compact
[35, pp. 27-28]. We shall see that such limited sets generate bibasic sequences
(T, fr) for which (f}) o (z}) in a very strong sense. In the next theorem,

n
t: N — N is a strictly increasing function and u:(n) = x:(n)][mt(j) . jEN]-

THEOREM 3.7. If S is a limited subset of X which is not relatively weakly
compact, then there is a a bibasic sequence (T, f) in S x X* so that if
t: N — N and uj,,, are defined as above, then (u;"(n)) b (ft*(n)) Further,
(en) embeds as a limited sequence in X iff there is a bounded bibasic se-
quence (Ty, ) in X x X* so that (x,,) is limited in X, unconditional, and

(fz) ~ (23)-

Proof. Let (x,) be a sequence in S which has no weakly convergent
subsequence. By Petczyniski’s version of the Eberlein-Smulian Theorem [10,
p. 41|, we may assume that (z,) is a seminormalized basic sequence. Let
(x}) be the sequence of coefficient functionals, and let (f;¥) be a sequence
of Hahn-Banach extensions to all of X. Suppose that (f) has a w*-Cauchy

subsequence. Without loss of generality, assume that f; — fr.; “% 0. Then
(fu = [ry1sTn) — 0 since (z,) is limited. However, (f; — fo 1, 7n) = 1
for all n. Therefore (f;) has no w*-Cauchy subsequence, and thus it has
no weakly Cauchy subsequence. By Rosenthal’s ¢1-theorem, we may assume
that (f¥) ~ (e}). The bibasic sequence (z,, f) satisfies the first conclusion

of the theorem. For if ( ft*(n)) were equivalent to (ur(n)), then the proof of
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Lemma 2.2 in [28] would show that (z4(,)) ~ (e,) and some subsequence of
() would be weakly null.

If there is an isomorphism 7" : ¢y — X so that the sequence (T'(ey)) is
limited in X and (z7)) is the associated sequence of coefficient functionals,
then (z7,) ~ (e}). If (f;¥) is any sequence of Hahn-Banach extensions of (7))
to all of X, then the strength of the ¢;-norm ensures that (f;}) ~ (z7).

Conversely, suppose that the sequence (z,, f,) satisfies the hypotheses
of the concluding statement in the theorem. Let L : [f}] — [z};] be an iso-
morphism so that L(f;) = z} for each n. Since (x,) is a limited sequence in
X, some subsequence (f;.) of (f;) is equivalent to (ej). Thus (z}, ) ~ (e).
Consequently, we have an unconditional basic sequence (z,) and a subse-
quence (z;, ) of the coordinate functionals so that (z},) ~ (ef) in [(z,)]".

Thus (z,,) ~ (e;) (see Lemma 1 in [28]). =

Next we use bibasic sequences and the techniques in the proof of 1.3.1
in [35] to produce a strong characterization of spaces which do not have the
DPP.

THEOREM 3.8. The Banach space X fails to have the DPP iff there is a
bounded bibasic sequence (zy, f) € X x X* so that (x,,), (x)), and (f}) are
weakly null.

Proof. Note first that X has the DPP iff every weakly null sequence in X
is a Dunford—Pettis subset of X. Suppose then that X fails to have the DPP,
and let (x,) be a weakly null sequence in X which is not Dunford—Pettis.
By passing to a subsequence, we may (and do) assume that (x,,) is a weakly
null basic sequence (apply the Bessaga-Pelczyriski selection principle [10])
which is not a Dunford-Pettis sequence in X and none of its subsequences
is a Dunford—Pettis sequence in X. Thus we may assume that there is a
w-null sequence (z) in X* and 2} (x,) = 1 for each n. Further, by passing
to subsequences, we may assume that (2 (x,,))5°_; converges for all n. Let
an, = limy, 2 (x,,) for each n. By passing to another subsequence if necessary,
one may assume that one of the following three cases holds:

(1) an =0 for each n.
(2) an # 0 for each n, and a, — 0.
(3) There is an € > 0 for which |a,| >, n € N.

In (1) we set y = 2 for each n. Now suppose that (2) holds. By passing

to subsequences, we assume that 2z’ _;(z,) < 1/4 for each n. Define r, to

be (2% — (an/an—1)z);_q,xn) for n € N. Since a,,/a,—1 — 1, we may assume

that r, > 1/2 for each n. Set v} = (1/ry)(z; — (an/an—1)z;_;), and note
that % 5 0, (y%,z,) = 1, and lim,, y(x,,) = 0 for each n.
Suppose next that (3) holds. In this case, the sequence (ay/an+1) is

bounded. Set 7, = (2, — (an/any1)2) 1, Tn). Since (z;) is weakly null, we
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may assume (as above) that 7, > 1/2 for each n. Set y} = (1/r,)(z} —
(an/ant1)z;.1)- Then, as in the preceding paragraph, y;(z,) =1, y; — 0,
and 7 (x,,) = 0 for each n.

The reader should note that in all three cases one has lim,, v} (x,) =
lim,,, ¥ () = 0 for each n. By passing to further subsequences if necessary,
we assume that > . [y (2m)| <1/2,n € N.

Define T : X — ¢ by T(x) = (y}:(z)). It is not difficult to check that
(T'(zp)) ~ (en). Further, T*(e}) =y for each n. Thus T* and T" are weakly
compact operators. Let Yy = span{7T(x,) : n € N} = [(T(x,))]. Define
So : Yo — ¢o by So(T(zy)) = e, for each n. Now Yy is (isomorphic to) a
separable subspace of ¢g, and ¢q is separably injective. Let S : ¢g — ¢y be a
continuous linear extension of Sy, and consider the operator ST : X — cg.

Let f¥ = (ST)*(e}) for each n. Since ST is weakly compact and e, N 0,
it follows that f = 0; i.e., the adjoint of a weakly compact operator is
w*-w continuous. Further, f(z,,) = (e}, emn) = dnm. Another application
of the Bessaga—Pelczyniski selection principle allows us to assume that (f¥)
is a weakly null basic sequence in X*. Let x;, = f;]((z,)- To see that (z7,)
is weakly null, notice that the restriction operator R : X* — [(zy)]* maps
weakly null sequences to weakly null sequences. This completes the proof of
one implication in the theorem, and the converse implication follows from
the definition. m

REMARK. By localizing the preceding argument, one sees that if K is
a bounded subset which is not a Dunford—Pettis subset of X, then one can
find a sequence (z,) in K and a weakly null sequence (z}) in X* so that
2} (Tm) = Opm. Lemma 1.3.1 of [35] showed that if a bounded subset K of X
is not limited in X, then there exists an operator T : X — ¢ so that {e, :
n € N} C T(K). The proof of 3.8 shows that K is not a DP subset of X iff
there is a weakly compact operator T': X — ¢ so that {e,, : n € N} C T'(K).

If (x,) is a basic sequence in X and (z,) ~ (ey), then (x,) is always
a DP sequence in X, and Theorems 3.6 and 3.7 investigate when (x,) is a
limited sequence in X. If (z,,) ~ (e), then (z,,) is never a limited or a DP
sequence in X. However, (e}) may embed as a V*-subset of X. Also, (&)
may embed as a V-subset of X*.

A bounded subset A of X (resp. A of X*) is called a V*-subset of X

(resp. a V-subset of X*) provided that
lim(sup{|x) (x)| : x € A}) =0
(resp. lim(sup{|z*(z,)| : * € A}) =0)

for each wuc series Y x¥ in X* (resp. wuc series »_ z, in X). A Banach
space X has property V if every V-subset of X* is relatively weakly com-
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pact, and X has property V* if every V*-subset of X is relatively weakly
compact [31].

Emmanuele [15] and Bombal [4] determined when (e}) embeds as a V*-
sequence in X.

THEOREM 3.9. If (zy,) is a sequence in X and (x,) ~ (e}), then the
following are equivalent:

(1) {xp:n>1} is a V*-set in X.
(2) If N is an infinite subset of N, then [z, : n € N] is not complemented
mn X.

Since every limited subset of X is a DP subset of X, it is clear that every
limited subset of X is weakly precompact. Theorem 4.2 of 3] points out that
the class of bounded and weakly precompact sets is properly contained in
the class of V*-sets. Since every bounded subset of /, is a V-subset of £, it
is immediate that any isomorphic copy of (e}) contained in £+, is a V-subset
of /o, which is not weakly precompact. Further, a direct interpretation of
Theorem 3.10 in terms of V-sets fails: one can have (z}) ~ (e}), (z)) is a
V-sequence in X*, and [z} : n € A] is complemented in X* for all non-empty
ACN.

Pelczyniski gave an operator-theoretic characterization of spaces X which
have property V: FEvery unconditionally converging operator with domain X
1s weakly compact iff every V-subset of X* is relatively weakly compact. In
the next theorem, we give elementary operator-theoretic characterizations
of weak precompactness, relative weak compactness, and relative norm com-
pactness for both V-sets and V*-sets. The argument contains the theorem
in [31] just cited.

THEOREM 3.10.

(1) The following are equivalent:

(D)) If T : Y — X* is an operator and T™*|x is unconditionally
converging, then T is almost weakly compact (weakly com-
pact, resp. compact).

(1)(ii) Same as (1)(i) with Y = ¢;.

(1)(iii) Every V -subset of X* is weakly precompact (relatively weakly
compact, resp. relatively compact).

(2) The following are equivalent:

(2)(i) If T :' Y — X is an operator so that T* : X* — Y™ is
unconditionally converging, then T is almost weakly compact
(weakly compact, resp. compact).

(2)(ii) Same as (2)(i) with Y = ¢;.
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(2)(iil) Every V*-subset of X is weakly precompact (relatively weakly
compact, resp. relatively compact).

Proof. We will show that (1)(i)=(1)(ii)=(1)(iii)=(1)(i) in the weakly
precompact case, as well as (2)(i)=(2)(ii)=(2)(iii)=(2)(i) in the compact
case. These two arguments are similar, and the arguments for all the re-
maining implications in the theorem follow the same pattern.

(1) (weakly precompact) Certainly (i) implies (ii). Now suppose that A
is a V-subset of X*, and let (z) be a sequence in A. Define T": {; — X* by
T'(b) = > biz}. Since the closed absolutely convex hull of (z}) is a V-subset
of X*, T*|x is unconditionally converging. Thus T is almost weakly com-
pact, and (T'(e})) = (z}) has a weakly Cauchy subsequence. To see that
(iii)=(i), note that T'(By) is a V-subset of X* iff 7%|x is unconditionally
converging.

(2) (compact) Certainly (i) implies (ii). Suppose that A is a V*-subset
of X, and let (x,) be a sequence in A. Define T : {; — X as above, and
note that 7™ is unconditionally converging. Thus T is compact, and (z)
has a norm converging subsequence. To see that (iii)=(i), use (e) in the
introduction. =

Theorem 3.10 facilitates a particularly quick proof of Theorems 1 and 1’
of [31].

COROLLARY 3.11. If H is a compact Hausdorff space and X is reflexive,
then C(H, X)) has property V.

Proof. If T :' Y — C(H,X)* is an operator and L = T*|¢(y, x) is un-
conditionally converging, then L is strongly bounded [7], [37], [12]. Since
X is reflexive, L is weakly compact (|7, Thm. 4.1]). Therefore T is weakly

compact, and the desired conclusion follows from part (1) of the preceding
theorem. m

Observations (c) and (d) in the introduction, the fact that the closed
absolutely convex hull of a DP (resp. limited) subset of X is a DP (resp.
limited) subset of X, and the arguments in 3.10 yield the next result.

THEOREM 3.12.

(1) The following are equivalent:

(1)(i) If T:Y — X is an operator and T* : X* — Y™ is completely
continuous, then T is weakly compact (resp. compact).
(1)(ii)) Same as (1)(i) with Y = {;.
(1)(iii) Every DP subset of X is relatively weakly compact (resp. rel-
atively compact).

(2) The following are equivalent:
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(2)3) If T: Y — X is an operator and T : X* — Y™ is w*-norm
sequentially continuous, then T is weakly compact (resp. com-
pact).

(2)(ii) Same as (2)(i) with Y = {;.

(2)(iii) Every limited subset of X is relatively weakly compact (resp.
relatively compact).

COROLLARY 3.13 (|6, parts 5 and 6]). If X is reflexive or separable, then
every limited subset of X 1is relatively compact.

Proof. In either case, a w*-norm sequentially continuous adjoint T™ :
X* — Y™ must be compact. =

COROLLARY 3.14. If X* is isomorphic to a C(K)-space, then every DP
subset of X 1is relatively weakly compact.

Proof. If X* is a C(K)-space and T : X* — Y™ is completely continu-
ous, then 7™ is unconditionally converging and thus weakly compact [31]. =

4. Spaces of operators. This section will be primarily concerned with
studying the following two (related) questions:

(A) Does a space of operators have a certain Dunford-Pettis type prop-
erty when the codomain and the dual of the domain have this prop-
erty?

(B) Does ¢y embed isomorphically into a space of operators?

If X is infinite-dimensional and ¢y — L(X,Y’), then {oc — L(X,Y) [27],
and thus L(X,Y) must contain a limited copy of (e,) as well as limited
sets which are not relatively weakly compact. In 1.3.6 of [35], Schlumprecht
showed that if X contains a copy of cg—whether the corresponding copy
of (ep) is limited or not—then (e,) does embed as a non-limited sequence
in the least crossnorm tensor product completion X ®) Y of X and Y.
We say that X has (DPrcP) if every DP subset of X is relatively com-
pact [20]; X has RDP* (or X € (RDPY)) if every DP subset of X is
relatively weakly compact [3]; X is a Gelfand—Phillips space if every lim-
ited subset of X is relatively compact, and X has the (BD) property if
every limited subset of X is relatively weakly compact. If ¢; <~ X, then
X has the (BD) property [6]. X has RDP* whenever X has V* or X is
weakly sequentially complete [3]. Also, X* has RDP* whenever X has V. If
co — L(X,Y), then L(X,Y) fails to belong to any of the classes of spaces
just defined.

One can find numerous references to papers which study the embedabil-
ity of ¢¢ in spaces of operators in [19], [18], and [27]. Specifically we note that
[19], [18], and [27] point out that if the Banach space X has an unconditional
finite-dimensional decomposition, then ¢y — K (X, X). However, is ¢y com-
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plemented in these spaces? Emmanuele gave a positive answer in Theorem
18 of [21].

THEOREM 4.1. Let ¢y embed in Ky«(X*,Y). If Y is a Gelfand—Phillips
space, then cy embeds complementably into K,-(X*,Y).

The techniques of Schlumprecht [35, Corollary 1.3.6] which were used
to prove Theorem 4.1 can also be employed with different hypotheses to
produce complemented copies of ¢y in K+ (X*,Y).

THEOREM 4.2. Suppose that X and Y are infinite-dimensional Banach
spaces.

(i) If co — X orcog — Y, then Ky (X*,Y) contains a copy of co which
is complemented in Ky~(X*,Y).

(ii) If co &> X, By~ is w*-sequentially compact, and co — K+ (X*,Y),
then ¢ is complemented in K,«(X*,Y).

For completeness, we give a proof of Theorem 4.2.

Proof. (i) Let (z,) be a sequence of normalized vectors in X so that
(xn) ~ (en). Let (x) be a sequence of norm one functionals in X* so that
x}(xy) = ||zy]|| for each n, and suppose that (y)) is a w*-null sequence of
norm one in Y*. For each n € N, choose y, € Y so that 1 < |ly,| < 2
and y'(yn) = 1. Let T € K,«(X*,Y), and observe that 7% is also w*-w
continuous and compact. Therefore | T*(y})|| — 0. Consequently, if one de-
fines 2} @y (T') to be yx (T(x})) = (T*(y)), x}), then () ®y}) is a w*-null
sequence in the dual of K« (X™*,Y). Moreover, (x, ®yy) has a natural inter-
pretation as a sequence in Ky« (X*,Y) [11], and then the argument in 1.3.6
of [35] shows that (x, @yp) ~ (e,). Now (2} Qu, £, Qyn) = x} ()Y (yn) =
|zn|| # 0, and (x,, ® yy,) is not limited in K, +(X*,Y). Note that we obtain
the same construction if we assume that ¢y — Y. An application of Theorem
3.6 gives that [(z,, ® yp)] is complemented in K« (X*,Y).

(ii) Suppose that (73,) ~ (e,) in Ky« (X*,Y). Then ) T, is weakly un-
conditionally convergent. Without loss of generality, suppose that ||T,|| =1
for each n, and let (7)) be a sequence in Bx+ so that ||T,,(z})|| > 1/2. Now
let (y}) be a sequence in By~ so that

(s Tu(23)) = | Tn(p) || > 1/2

Further, since By~ is w*-sequentially compact, we may assume that y v y*.
Now use the fact that ) T;, is weakly unconditionally convergent to see that
ST (y*) is weakly unconditionally convergent—and thus unconditionally
convergent—in X. Therefore (y*, T, (z})) < |T(y*)|| — 0. Consequently,

(U = 4" Tula)) = (Yn, Tu(zn)) = (4", Tulay)) > 1/2 - 1/4
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for large n. Specifically,

(Tn, 5, @ (yn — ")) 7 0.

Since (x} ® (v — y*)) is w*-null in the dual of K,+(X*,Y), (T}) is not
limited in this space of operators. Apply Theorem 3.6. =

REMARK. Theorems 3.7, 4.2, and 3.6 (Schlumprecht’s result) make it
clear that a Banach space X may contain a copy of (e;) which is limited in
X as well as a copy which fails to be limited in X. In particular, if there are
copies of (e,) in X (or Y) which are limited in X (or Y'), then the natural
isometric copies of these spaces in K,-(X*,Y) will produce copies of (ey)
which are limited in this space of operators. The complemented copy of (ey,)
is not limited in K,«(X*,Y). Since K(X,Y) = K,-(X*,Y), notice also
that if ¢y ¥~ X*, By~ is w*-sequentially compact, and ¢y — K(X,Y'), then
co <> K(X,Y). Consequently, co < K (f,0), and thus (e,) embeds as a
non-limited sequence in K ({2, (5).

Recall that X has the Schur property precisely when weak and norm
convergence of sequences in X coincide. Lust [30] and Ryan [34] showed that
Ly+(X*,Y) (resp. L(X,Y)) has the Schur property if and only if X and YV
(resp. X* and Y') have the Schur property. Thus L(cp,¢1) is a Schur space,
and ¢yg % L(co,?1). Note also that L(co,¢1) = K(cgp,¢1). This equality is
common to all spaces L(X,Y) which have the Schur property. We give a
brief argument for completeness.

THEOREM 4.3. If L(X,Y) is a Schur space, then L(X,Y) = K(X,Y).

Proof. Suppose that T' € L(X,Y) and T is not compact. Since Y has
the Schur property, T" cannot be almost weakly compact. Thus there must
be a sequence in Bx without a weakly Cauchy subsequence, and Rosenthal’s
(1-theorem guarantees that ¢; < X. Therefore L1 — X* [10, p. 212|, and
X* cannot be a Schur space. =

We remark that the proof of Theorem 4.3 could have been given using
the fact that X™* has the Schur property iff X has the DPP and ¢; < X.
In [23] we proved the following theorem.

THEOREM 4.4. If Ly« (E*,F) = Ky«(E*,F) and E and F are weakly
sequentially complete, then K, (E*, F') is weakly sequentially complete.

As a consequence, we deduce that Ky« (E*, F') has RDP* if L« (E*, F') =
Ky~ (E*, F) and both E and F' are weakly sequentially complete.

Next we investigate sufficient conditions for a subset of K,«(X*,Y) to
be relatively weakly compact. If H C Ly« (X*,Y), z* € X* and y* € Y™,
let H(z*) = {T'(z*) : T € H} and H*(y*) = {T*(y*) : T € H}. We
begin with three lemmas which are similar to results in [26]. In Corollary 2
of [26], Kalton used these results to show that if X and Y are reflexive
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and L(X,Y) = K(X,Y), then K(X,Y) is reflexive. Kalton’s lemmas are
extended to the w*-w operator case. Theorem 4.8 below extends Corollary 2
of [26].

Let U denote the unit ball of X™* with the w* topology and V denote
the unit ball of Y* with the w* topology. For T in L« (X™*,Y"), define yp :
UxV —Rby xr(z*,y*) = y*(Tz*).

LEMMA 4.5. The mapping T — xr defines a linear isometry of the space
K+ (X*,Y) onto a closed subspace of C(U x V).

Proof. Suppose z, Y, 2* € U and vn w, y* € V. We have
IXT (25, Ya) = X1 (2, ") = |ya(Tz5) — y* (T27)]
< ya(Twg — Tz%)|[ + |(yo — y*)(Tz"))|
< [Ty = Ta™|| + [(ya — y™ ) (Ta")].
Since T is w*-w continuous and compact, T is w*-norm continuous, and
thus || Tz} — Tx*|| — 0. Also, |(y}: — y*)(T'z*)] — 0 because y}, N y*.
Thus x7(23,y5) — xr(z*,y*) and xr € C(U x V). Since |xr|| = ||T|| and
T — xr is linear, the conclusion follows. =

Let wot denote the weak operator topology on L(X,Y): T,, — T (wot)
provided that (T,,(z),y*) — (T'(z),y*) for all z € X and y* € Y*. Follow-
ing [26], we let w’ denote the dual weak operator topology defined by the
functionals T' — ™ T*(y*), 2™ € X**, y* € Y*.

LEMMA 4.6. Let A be a subset of Ky« (X*,Y). Then A is weakly compact
if and only if A is wot-compact.

Proof. Suppose A is wot-compact and let x(A) be {xp : T € A}. Let (T},)
be a net in A and (T) be a wot-convergent subnet. If T3 — T' (wot), then
X175 (7", y*) — xr(z*,y*) for all * € X* and y* € Y*, and x(A) is compact
in the topology of pointwise convergence on C(U x V). By Grothendieck’s
result [24], x(A) is weakly compact in C(U x V'), and A is weakly compact
by the preceding result.

The other implication is clear since wot is weaker than the weak topology
on Ky«(X*,Y). m

LEMMA 4.7. Let (T},) be a sequence of w*-w continuous compact oper-
ators such that T,, — T (wot), where T is w*-w continuous and compact.
Then T,, — T weakly.

Proof. Let A = {(T,,),T} and apply the previous lemma to this wot-
compact set. m

Next we apply 4.5-4.7 to obtain an extension of Corollary 2 of [26].
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THEOREM 4.8. If H C Ly~ (E*, F), H(x*) is relatively weakly compact
for each x* € E*, H*(y*) is relatively weakly compact for each y* € F*, and
Ly~ (E*, F) = Ky~ (E*, F), then H is relatively weakly compact.

Proof. Let (hy) be a sequence in H, and let S = [h,(E*) : n > 1]. The
compactness of each h, implies that S is separable. Therefore (Bg~,w*) is
a compact metric space. Let Y = (y) be a w*-dense sequence in S*. By
hypotheses, {h}(y;) : n > 1} is relatively weakly compact for each i. By
diagonalization, we may (and do) assume that (h,,) is a subsequence of (hy,)
so that (hy, (y}));2, is weakly convergent for each k. In fact, without loss of
generality, we assume that (h}(y*)) is weakly convergent for each y* € Y.

Now consider (hy,(z*)), where * € E*. This sequence must have a weakly
convergent subsequence. Suppose that z; and zy are weak sequential cluster
points of this sequence. Certainly 21, 20 € S. Suppose that hy,)(z") 2 o,

) (%) % 2, and y* € Y. Now
i (2%, gy (%) = lim {1y <x*>,y e
and z; = zp since Y is w*-dense in S*. Therefore (h,(z*)) is w-convergent
for all * € E*. Set
h(z*) = w-lim h,(z*) for x* € E*.

Next suppose that y* € F* and consider h*(y*). Without loss of gener-
ality, suppose that h*(y*) = 2 € E, and let z* € E*. Then (h(z*),y*) =
lim,, (hy (%), y*) = lim,(z*, h'(y*)) = z*(z). Thus A*(y*) = z, and h is
w*-w continuous. Therefore h is compact and w*-w continuous. Lemma 4.7
then shows that h,, — h. =

COROLLARY 4.9. If E and F are reflexive and L(E, F') = K(E, F), then
K(E, F) is reflexive.

The assumption that H is weakly precompact allows an interpretation
of Theorem 4.8 for the space L(X,Y).

THEOREM 4.10. Suppose that K(X,Y) = L(X,Y) and H is a weakly
precompact subset of K(X,Y') so that

(i) H(z) is relatively weakly compact for all x € X,
(ii) H*(y*) is relatively weakly compact for all y* € Y*.

Then H 1is relatively weakly compact.

Proof. Let (T,) be a sequence in H. Without loss of generality, suppose
that (7)) is weakly Cauchy, and let x € X. Since (7),(z)) has a weakly
convergent subsequence and it is weakly Cauchy, it follows that it is weakly
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convergent. Similarly, (7%(y*)) is weakly convergent for all y* € Y™*. Let
T € L(X,Y) be such that T,(z) = T(z) for all z € X.

Since T (y*) N T*(y*) and {T(y*) : n > 1} is relatively weakly com-
pact, one can show that T*(y*) = T*(y*), ie. Tp Y T in K(X,Y). By
Corollary 3 of Kalton [26], we obtain T,, — T weakly. Thus H is relatively
weakly compact. =

COROLLARY 4.11. Suppose that Ky« (X*)Y) = Ly (X*,Y). If both X
and Y have property RDP* (resp. the (BD) property), then Ky« (X*,Y) has
property RDP* (resp. the (BD) property).

Proof. We present the proof of the result relative to the RDP* property;
the other case is similar. Let H be a DP set in K,,«(X*,Y"). For each z* € X*,
H(z*) is a DP set in Y, thus relatively weakly compact. Similarly H*(y*) is
relatively weakly compact for each y* € Y*. Apply Theorem 4.8. u

COROLLARY 4.12. Suppose that L(X,Y) = K(X,Y) and both X* and
Y have RDP* (resp. the (BD) property). Then K(X,Y) has RDP* (resp.
the (BD) property).

COROLLARY 4.13. Suppose that L(X,Y*) = K(X,Y™) and both X* and
Y* have RDP*. Then K(X,Y*) has RDP* and {; /> X Ry Y.

Proof. K(X,Y*) has RDP* by 4.12. Note that ¢y > (X ®, Y)* since
L(X,Y*) 2 (X ®, Y)" has RDP* (¢y does not have RDP* since (z,) =
(>°1 , e;) is a DP set which is not relatively weakly compact). By a result
of Bessaga and Pelczyriski, /1 7& X®,Y. m

The next three theorems continue to concentrate on conditions which
ensure that spaces of operators have the RDP* or the (BD) property.

THEOREM 4.14. Suppose that L(X,Y*) = K(X,Y*) and Y* has RDP*.
The following statements are equivalent:

(i) X* has RDP* and {1 /> X orl; 4 Y.

(i) K(X,Y*) has RDP*.

Proof. Suppose first that X* has RDP* and ¢; + X or {1 <+ Y. By
4.13, K(X,Y*) has RDP*.

Now suppose that K(X,Y™*) has RDP*. Then K (Y, X*) has RDP* since
K(Y,X*) = K(X,Y*). Thus X* has RDP* since the property RDP* is
inherited by subspaces. We will show that ¢; <~ X or {1 > Y. Suppose that
¢; — X and ¢; — Y. Hence L! and thus ¢, embeds in X* and similarly
¢y embeds in Y*. Hence /3 ®) ¢3 is isomorphic to a subspace of L(X,Y™) =
K(X,Y™) and thus {3 ®) 2 has RDP*. By Lemma 3.2 of [23] (as well as a
result of Emmanuele [18]), ¢ < f2 ®, {2, and we have a contradiction since
Co fails RDP*. =
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THEOREM 4.15.

(i) Suppose that X has the Schur property and Y has RDP*. Then
L (X*,Y) = Ky (X*,Y) has RDP* and co 4> K- (X*,Y).
(ii) Suppose that X has RDP* and Y has the Schur property. Then
Ly (X*)Y) = Ky (X*,Y) has RDP* and co /> Ky (X*,Y).
(iii) Suppose that X has the Schur property and 'Y has the (BD) property.
Then Ly« (X*,Y) = Ky« (X*,Y) has the (BD) property.
(iv) Suppose that X has the (BD) property andY has the Schur property.
Then Ly~ (X*,Y) = Ky« (X*,Y) has the (BD) property.

Proof. We present the proof of (i); the other cases are similar. Let 7' €
Ly~ (X*,Y). Then T is weakly compact since T* is w*-w continuous. Hence
T™* is compact since X is a Schur space. An application of 4.11 shows that
Ky (X*,Y) has RDP*. u

THEOREM 4.16.

(i) Suppose that X* is a Schur space and 'Y has RDP*. Then K(X,Y) =
L(X,Y) has RDP* and ¢y + K(X,Y). Moreover, if Y = Z*, then {; 7Z>
X®, 2.

(ii) Suppose that X* has RDP* andY is a Schur space. Then K(X,Y) =
L(X,Y) has RDP* and ¢y > K(X,Y). Moreover, if Y = Z*, then (1 4>
X ®yZ.

(iii) Suppose that X* is a Schur space and 'Y has the (BD) property. Then
K(X,Y)=L(X,Y) has the (BD) property.

(iv) Suppose that X* has the (BD) property and Y is a Schur space. Then
K(X,Y)=L(X,Y) has the (BD) property.

Proof. We present the proofs for (i) and (ii) only.

Let T € L(X,Y). Since X* is a Schur space, T™ is completely continuous,
and T'(Bx) is a DP set in Y, thus relatively weakly compact. Then 7" and
hence T* is weakly compact, and therefore compact because X* has the
Schur property. By 4.12, K(X,Y) = L(X,Y) has RDP* and ¢y & K(X,Y).

Suppose now that Y = Z*. Then ¢y & K(X,Z*) = (X ®, Z)* and thus
2 7& X ®- Z. Another application of 4.12 gives (ii). m

REMARK. Theorems 4.15 and 4.16 provide examples of spaces of opera-
tors which contain ¢; and have the (BD) property.

COROLLARY 4.17. Suppose that X has RDP* (resp. the (BD) property).
Then the space ll[X] of all unconditionally convergent series in X with the
norm

@)l = sup { 3~ la*(@a)] : 2" € Bx- |

has RDP* (resp. the (BD) property).
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Proof. 1t is known that ¢1[X] is isometrically isomorphic to K(cg, X)
[20]. Since X has RDP* and ¢; = ¢; has the Schur property, Theorem 4.16
gives the conclusion. =

The fact that the continuous linear image of a Dunford—Pettis (resp.
limited) set is Dunford-Pettis (resp. limited) produces the following result
for quotient spaces.

THEOREM 4.18. If X* has RDP* (resp. the (BD) property) and Z is a
quotient of X, then Z* has RDP* (resp. the (BD) property).

Proof. Let Q : X — Z be a quotient map. Then Q* : Z* — X* is an
isomorphism. If K is a DP subset of Z*, then Q*(K) is a DP subset of X*.
Thus Q*(K) and K must be relatively weakly compact. m

COROLLARY 4.19. Suppose that L(X*,Y*) = K(X*,Y*) and both X**
and Y* have RDP*. Then the dual of the space N1(X,Y) of all nuclear

operators has RDP* and hence {1 > N1 (X,Y).

Proof. It is known that N;(X,Y) is a quotient of X* ®, Y ([16]). By
Corollary 4.13, (X* ®, Y)* = L(X*,Y*) has RDP*. An application of
4.18 gives that (N1(X,Y))* has RDP*. Thus ¢y ¥ (N1(X,Y))* and ¢, ¥
Ni(X,Y). m

Feder [22] and Emmanuele [19] asked if there exist spaces X and Y so
that ¢ 4 K(X,Y) yet L(X,Y) # K(X,Y). Emmanuele gave a positive
solution to this question in the concluding “added in proof” remark in [19]
using a fundamental space created by Bourgain and Delbaen [5]. Results
of this note highlight additional properties of the Bourgain—Delbaen spaces
as well as operators defined on these spaces. We denote the two spaces by
X and ). Both X and ) are infinite-dimensional spaces with the Dunford—
Pettis property. The space X is a separable L,.-space which is a Schur space,
and both X and X* are weakly sequentially complete. Since X" is a Schur
space and X* is weakly sequentially complete, X’ contains a copy of (e})
no subsequence of which can be complemented in X'. Thus by Theorem 3.9,
(er) embeds as a V*-sequence in X.

The space ) is a separable Ly,-space which is somewhat reflexive. Fur-
ther, Y* is isomorphic to ¢;. Consequently, there is a sequence (") in Y* so
that (y)) ~ (e}), (y;) is a V-sequence in Y*, and [y} : n € A] is comple-
mented in V* for each non-empty A C N.

If the Banach spaces Z and Z* are weakly sequentially complete and

Ly (Z**,2) = Ky~ (2", Z),
then K« (Z**,Z) is weakly sequentially complete. Since
K(Z,Z) 2 Ky (Z*,Z),
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K(Z,Z) is weakly sequentially complete. If Z is infinite-dimensional, then
certainly L(Z,Z) # K(Z,Z) and ¢y /> K(Z, Z). Setting Z = X, one obtains
Emmanuele’s solution [19].

Alternatively, suppose that X* is weakly sequentially complete, Y is a
Schur space, and L(X,Y) # K(X,Y). Then K(X,Y) = K« (X*Y) =
Ly (X**,Y), and 4.4 implies that L,«(X**,Y) is weakly sequentially com-
plete. Thus ¢y & K(X,Y).

If /1 + FE and F is arbitrary, then every operator T : F — F is almost
weakly compact. If F'is weakly sequentially complete, then the operator T'
is weakly compact. If F'is Schur, then T is compact. Consequently, if F' is
Schur, then L(), F) = K(Y, F). Specifically, note that L(), X) = K(Y, X).
Further, an immediate application of the Lust-Ryan theorem stated earlier
shows that L(), X') is a Schur space and thus is weakly sequentially complete.
Consequently,

co 4 LY, X).
Moreover, another application of Theorem 4.4 shows that
Koy (X, LY, X)) = L= (X, LY, X))
is weakly sequentially complete. Therefore
co > K(X, L(Y, X)) = Ky (X, L(Y, X)).
Since X’ embeds isometrically in L(Y, X),
L(X, L(Y, X)) # K(X, L(Y, X)),

and we have another example of a solution to the Feder-Emmanuele problem
discussed previously.

The proof of Theorem 4.14 made use of the fact that ¢y <— £ ®) f2 and
Corollary 1.3.6 of [35] showed that if ¢y < X, then ¢y is complemented in
X ®) X. Certainly ¢y <~ X, and the Lust—Ryan theorem (or Theorem 4.4)
easily shows that the least crossnorm tensor product completion of any Schur
space with itself does not contain ¢g. Specifically, X @) X' — Ly« (X", X),
and Theorem 4.4 shows that this space of operators is weakly sequentially
complete, while the Lust-Ryan result shows even more. This space of oper-
ators is a Schur space; thus X ®) X is a Schur space.
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