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Summary. Properties of topologically invertible elements and the topological spectrum
of elements in unital semitopological algebras are studied. It is shown that the inversion
x — x ! is continuous in every invertive Fréchet algebra, and singly generated unital
semitopological algebras have continuous characters if and only if the topological spectrum
of the generator is non-empty. Several open problems are presented.

1. Introduction

1.1. A semitopological algebra is a real or complex linear topological
space with an associative separately continuous multiplication. An element x
in a semitopological algebra A with unit element e 4 is said to be left (respec-
tively, right) topologically invertible if e4 € Ax (respectively, e € zA) (1), or
equivalently, if there is a net (z4)ac4 in A such that lim, zox = e4 (respec-
tively, lim, £z, = €4). An element z in A is topologically invertible if it is
left and right topologically invertible. The set of all left (respectively, right)
invertible elements in A will be denoted by G;(A) (respectively, G,(A)), and
the set of all topologically left (respectively, right) invertible elements in A
by Gi(A) (respectively, GL(A)). Hence, the set G(A) of all invertible ele-
ments equals G;(A)NG,(A), and the set G'(A) of all topologically invertible
elements equals G}(A) N GL(A). It is easy to see that G(A) C G*(4). In
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(*) Here and later on U denotes the closure of U in A.
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particular, when G(A) = G!(A), A is called an invertive algebra () (see [2,
p. 14]); and a topologically invertible element is said to be proper (see |20,
p. 323]) if it is non-invertible. Properties of topologically invertible elements
have been studied in several papers, for example, in [2], [6]-[9], [11], [13]-[16]
and [18]-[20].

1.2. Let A be a semitopological algebra, and m(A) the set of all closed
two-sided ideals in A which are maximal as left or right ideals in A. A semi-
topological algebra A over K is called a Gelfand—Mazur algebra if A/M (in
the quotient topology) is topologically isomorphic to K for each M € m(A),
and a simplicial algebra if every closed regular left (respectively, right) ideal
of A is contained in some closed maximal left (respectively, right) ideal of A.
Main classes of Gelfand-Mazur algebras have been described in [1] or [4].
It is known (see [5, Corollary 5] (*)) that every commutative unital locally
m-pseudoconvex Hausdorff algebra is simplicial.

1.3. Let A be a semitopological algebra over K with unit element e 4,
M(A) the set of all continuous K-valued characters (non-zero multiplicative
linear functionals) on A,

oa(z) ={AeK:x—Xea € G(A)}
the (algebraic) spectrum of x € A, and
oa(x) = sup{|A| : A € oa(x)}

the (algebraic) spectral radius of x. The (algebraic) spectrum o4 (z) and the
spectral radius p4(z) of x play an important role in invertive algebras. For
non-invertive algebras a similar role is played by the topological spectrum

o) ={NeK:z— dea € G'(A)}
and the topological spectral radius

0'(x) = sup{|A| : X € oy (2)}.
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a € A. Conversely, let a € A\ G(A). Then 0 € o 4(a). If now o4(a) = o4(a),
then a ¢ G'(A). Hence, G(A) = G*(A), and so A is invertive.

(?) Tt is known (see [2, Corollary 2]) that every complete unital locally m-pseudoconvex
algebra is an invertive algebra, but any commutative unital F-algebra with a discontinuous
inverse is not (see [19, Proposition 4]).

(*) For complete algebras see [3, Proposition 2] or [10, Corollary 7.1.14], and for locally
m-convex Hausdorff algebras see [12, pp. 321-322].
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Let 7 € A, ¢ € M(A) and = — p(v)eq € G'(A). Then there are nets
(Za)aca and (yu)pem in A such that both ((z — ¢(z)es)ra)aca and
(Yyu(z — @(x)ea))uem converge to eq. Since ¢ is continuous, the nets
(02— p()ea)p(a) aca and (9(z — o(2)ea)@(yy) uer then converge to 1,
but this is not possible, because ¢(x — p(z)es) = 0. Hence, x — p(z)es &
G'(A) for each ¢ € M(A). Consequently,

{o(z) 1 € M(A)} C oy (2)
for each = € A. In particular, if 9(A) is not empty and

oly(z) = {p(x) : o € M(A)}

for each z € A, we will say that = has functional topological spectrum.

1.4. In this paper, we will study the properties of topologically invert-
ible elements and of the topological spectrum of elements in unital semi-
topological algebras. Among other results, it is shown that (a) the set of
all topologically invertible elements in any unital Fréchet (that is, complete
and metrizable) algebra is a Gs-set; (b) if the inversion in a unital Fréchet
algebra A is discontinuous, then A has left and right dense ideals; (c) if A is
a commutative complex unital semitopological algebra, then the topological
spectrum has the spectral mapping property; (d) every element of a com-
mutative unital simplicial Gelfand—Mazur algebra has functional topological
spectrum; and (e) if every element in a unital semitopological algebra A
has functional topological spectrum, then the topological spectral radius is
a submultiplicative seminorm on A. Several open problems are presented at
the end of paper.

2. Properties of G!(A) for a Fréchet algebra A. Let A be a unital
(real or complex) non-commutative Fréchet algebra with F-norm || - ||, i.e.

with a function z +— ||z|| on A such that
(i) [|z|| > 0 for each = € A, and ||z|| = 0 if and only if z = 04 (*);
(i) [z +yl < [l + [ly]| for all 2,y € A;
(iii) (A, x) — |[Az| is a jointly continuous map from K x A to R.

NabNab/

Let |lea|| = 1, and

gi(w) = inf luz — eall and g,(x) = inf |lzw— e4]

for each x € A. Then
Gi(A)={r € A:g(r) =0} and GL(A)={rec A:g.(z)=0}.

(*) Here and below, .4 denotes the null element of A.
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LEMMA 1. Let A be a unital non-commutative Fréchet algebra. Then the
sets

Sia={ze€A:g(x) <A} and S,y={recA:g(x) <A}
are open in A for any A > 0.
Proof. The proof is similar to the proof of Lemma 1 in [19]. »

COROLLARY 1. The function g; is continuous at all points of Gt(A), and
gr is continuous at all points of GL(A).

It is known (see [19, Proposition 3]) that G(A) is a Gs-set for any com-
mutative unital F-algebra A. In the non-commutative case, we have

PROPOSITION 1. Let A be a non-commutative unital F-algebra. Then
Gi(A), GL(A) and G'(A) are Gs-sets.

Proof. Since

Gl = Mz eAral@) < 1n). LA = (({reA: g @) <1/n).
neN neN

Gi(A) and GL(A) are Gs-sets by Lemma 1. Therefore so is G*(A) as the

intersection of two Gg-sets. m

COROLLARY 2. Let A be a unital F-algebra. If the inversion x — x ! is

discontinuous in A, then G'(A)\ G(A) # 0.

Proof. 1t is known (see, for example, [17, Theorem 1.6]) that the inversion
is continuous in A if and only if G(A) is a Gs-set and G(A) C G*(A). If the
inversion is discontinuous, then G*(A) \ G(A) # 0 by Proposition 1. =

COROLLARY 3. In every invertive Fréchet algebra the inversion is con-
tinuous.

COROLLARY 4. If the inversion is discontinuous in a unital F'-algebra A,
then A has a dense left and a dense right ideal.

Proof. By Corollary 2 there is an element
7 € (GI(A4) N GL(A))\ G(A),

Suppose that € Gj(A). Then there exists a € A such that ax = e4. Since
r € GL(A) as well, there is a sequence (z,) C A such that (zx,) converges
to e4. This implies that (z,) converges to a and za = e4. Thus x € G(A),
which is not the case. Similarly, from = € G, (A) it follows that x € G(A),
which is again impossible. Consequently,

z € (Gi(A) \ Gi(4)) N (GL(A)\ Gr(4)).
This means that the left ideal Az and the right ideal £ A are dense in A. u
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3. Singly generated topological algebras. We say that a semitopo-
logical algebra A is singly generated by an element o € A (the generator)
if the set of all polynomials in 2y (with real coefficients in the case of a real
algebra) is dense in A. We now show how the topological spectrum can be
used to decide when a unital singly generated semitopological algebra A has
continuous characters (°). In this case A is commutative.

PROPOSITION 2. Let A be a unital singly generated (real or complex)
semitopological algebra and xg the generator of A. Then there is a one-to-one
correspondence between the elements in 9M(A) and the scalars in o'y (o).

Proof. Suppose that o%(z9) # 0 and fix A\ € o%(z0). Let Ay be the
subalgebra of A consisting of all polynomials p in z (then Ag is a dense
subalgebra of A) and let

(a) Ia(p(x0)) = p(A).

We show that fy is a character on Agy. To this end, we first have to show
that fy is well defined, i.e. if p;(zg) = p2(zo), then p1(A) = p2(A), or that
p(z) = 0 implies p(A) = 0. If this is not so, i.e. if p(zg) = 0 but p(A\) # 0,
then the relation

p(x0) — p(Nea = (zo — Aea)q(zo, A)

for some polynomial ¢ in two variables implies that

ea = —[p(N)] ™" (zo — Aea)q(wo, A),
i.e. A is not in the (algebraic) spectrum o4(xg). So, A cannot be in the
(smaller) spectrum o' (), which gives a contradiction. Hence, the formula
(a) defines a multiplicative linear functional on Ag.
We now show that f) is continuous. Indeed, if not, then f/\_l(()) is dense
in Ap, and so there is a net (pa)aca C fy *(0) such that (p(70))aca tends
to e4. Since

Pa(z0) = (0 — Aea)qa(T0, A) = ralw0, \) (20 — Aea)
for some polynomials ¢, and r, in two variables, xo — Ae4 is topologically in-
vertible, which is a contradiction, since A € o%,(zo). Thus, f) is a continuous

character on Ag and extends by continuity to an element of 9t(A), which we
also denote by fy. Then

(b) f)\(ﬂj'o) = A
so that to different scalars A\ correspond different functionals in 2(A).

Conversely, assume that 9(A) # 0, let f € M(A), and put A = f(zo).
Then = 29 — Aes € f~1(0) and z is not topologically invertible, as other-

(°) This result has been extended by the second author to finitely generated commu-
tative topological algebras (see [21]).
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wise there is a net (uq)aca With (ua®)aea — €4, which is impossible (be-
cause then 0 = f(uqx) — f(ea) =1 for each a € A). Thus X € o, (z0) and
the conclusion follows (the announced one-to-one correspondence is given
by (b)). =

Thus we have a situation somewhat similar to that of singly generated
(unital) Banach algebras, where the spectrum of the generator can be iden-
tified with the maximal ideal space (equipped with the Gelfand topology)
both as a set and as a compact space. The example below shows that the
two sets may not be homeomorphic in general.

ExAMPLE. Let A be the Cartesian product of continuum many copies of
the field of scalars, provided with the coordinatewise algebra operations and
the product topology. We can identify A with the algebra of all scalar-valued
functions on the complex plane C with the topology of pointwise convergence.
This topology is given by the seminorms ||z||s = max¢cg|z(()| for each
x € A, where S runs over the family F of all finite subsets of C. Clearly,
A is a complete multiplicatively convex algebra, and all its multiplicative
linear functionals are continuous and are of the form f:(x) = x((), where
¢ € C (see, e.g., [14]). The algebra A is singly generated by the fuction
xo defined by z¢(¢) = (. In fact, for any x in A and S in F, there is
a polynomial p with scalar coefficients such that p(z)(¢) = x(¢) for all ¢
in S. Thus |[p(z) — z||s = 0 and = can be approximated by polynomials
of z. We can identify 2M(A) with C as a set, but, as shown below, not as
a topological space, because the Gelfand topology of 9 (A) is discrete. To
show this, consider the element x1 of A given by

1 if¢=0,
.«m(o:{ ¢

0 otherwise,
and the character fo(z) = x(0). Its neighbourhood
U(f;21,1/2) = {f € M(A) : | f(z1) = folz1)] < 1/2}
in the Gelfand topology consists of fy only, and our claim follows.
As a corollary to Proposition 2 we obtain the following

PROPOSITION 3. A singly generated unital semitopological (real or com-
plex) algebra has a continuous character if and only if the topological spec-
trum of its generator is non-empty.

REMARK. The above result fails to be true if we replace the topological
spectrum by the algebraic spectrum. The By-algebra L“[0, 1] of Arens (see
[8] or [20, Example 10.5]), equal to (2 Lp[0, 1], is singly generated (%) by
the function xg, where xo(t) = t for each t € C (that is, the subalgebra of

(5) All algebraic operations in L“[0, 1] are defined pointwise.
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all polynomials in zg is dense in L*[0, 1]). Then o7w(g1)(z0) = [0,1] # 0. On
the other hand (see [20, Subsection 14.2]), L*[0, 1] has no characters and so
no continuous characters. It can be easily seen that the translates zg — Ae
with 0 < X <1 are not invertible and not topologically invertible. Therefore,
UEW[O’H (x0) = 0 (this also follows from Proposition 3).

4. Topological spectrum

4.1. Properties of the topological spectrum. Let A be a unital semitopo-
logical algebra. The topological spectrum of elements of A has several prop-
erties similar to the (algebraic) spectrum. It is easy to see that o, (64) = {0},
oly(ea) = {1} and o%y(e) = {0,1} for any idempotent e of A with e # 04
and e # e4. Moreover, we have

PROPOSITION 4. Let A be a unital semitopological algebra. For any x,y
€ A with o(z) # 0 and o'y (zy) # 0 and p € K we have

(a) oy (pz) = po'y(x);

(b) oy (pea+ ) = p+ oy ();

(c) if x € G(A), then oty(z7 1) = (A1 X e oy (2)};

(d) oy (zy) U {0} = oy (yx) U{0}.

Proof. Since px — dea = p(x — p~'Aeq) for all g # 0 and \ € K, it
follows that A € ofy(uz) if and only if u=1\ € of|(x). Therefore

oty (ux) C poty(x) = poly (= (pr)) C oy ()
for p # 0. Thus, we have (a) for u # 0 (if © = 0, then (a) also holds).
Similarly to (a), the equality (b) follows from the identity
(nea+x) —Xea=x— (A—pea,
and (c) follows from
A leg = (=Xt (2 = dea) = (@ — de) (=1 "Lz 7Y,

because (—A "tz (x — Aea) = (z — Aea)(—=A"ta1) for each z € G(A).
To prove (d), we first show that e4 —zy € G*(A) if and only if ey —yx €

G'(A). Let eq — 2y € G*(A). Then there exist nets (uq)aca and (vg)gep in

A such that ((e4 — 2y)ua)aca and (vg(ea — xy))sep converge to e4. Since

(yuz +ea)(ea — yx) = ylu(ea — zy)le + ea — ya
and
(ea —yx)(yux + eq) = yllea — zy)ulr + eq — yx
for all z,y,u € A and the multiplication in A is separately continuous, the

nets ((yvgr + ea)(ea — yx))ges and ((ea — y)(Yuaa + €4))aca converge
to es. Hence, eq — yz € GY(A). By symmetry, e4 — yx € G'(A) implies
ea —zy € GH(A).
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Let now A € oy (zy). Then zy — Aeg & G'(A). Since
zy —deg = —Mea — (A 1z)y)
for A\ # 0, we have eq — (A\"!y)z & G'(A). Hence, A € o!y(yz). Thus
o (xy) U{0} C oy (yar) U{0}.
Interchanging x and y, we get the reverse inclusion. =

LEMMA 2. Let A and B be unital semitopological algebras and m a con-
tinuous homomorphism from A into B such that w(es) = ep. Then

op(m(x)) C o)()
for all x € A.

Proof. Let A € oy(m(z)). Then m(x — Aea) = n(z) — Xep € GY(B).
Therefore z — Aes & G'(A). Thus A € oly(z). =

PROPOSITION 5. Let A and B be unital semitopological algebras and w a
continuous open homomorphism from A onto B. If there exists a neighbour-

hood O of zero in A such that es + O + kerm C G(A), then
op(n(z)) = oi(z)
for each x € A.

Proof. By Lemma 2, the inclusion o (7(x)) C o (z) holds. To prove the
opposite inclusion, assume that A & o (7(x)) and O is as in the statement.
Then 7(z) — Aep € G'(B). Therefore there exist nets (z,)em and (yu)vev
in A such that the nets ((7(x) —Xep)m(x,))uenmr and (7(y,)(7(x) —AeB))vev
converge to ep in B. Since 7 is open, m(O) is a neighbourhood of zero in B.
Hence there exist g € M and vy € V such that

(x—Xea)r, —es € H(m(0)) =0 +kern
whenever p > o, and
Yo (r — Xea) —ea € 1 H(m(0)) = O +kerm
whenever v > vg. This means that
(z—Xea)zy € ea+ O +kerm C G'(A)
whenever u > pg and
yo(x — Xea) €ea+ O +kerm C GHA)
whenever v > 1.

Now we fix 3 > pp and v; > 1. Then there exist nets (uq)aca and

(vg)ges in A such that ((z — Aea) (2 ua))aca and ((vgyw,)(x — Aea))sen
converge to e4 in A. Consequently, z — Aeg € G'(4), i.e. A € o'y(x). Thus,
oly(z) C oly(w(x)) holds as well. m
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COROLLARY 5. Let A be a unital semitopological algebra, I a two-sided
ideal of A and m the canonical homomorphism from A onto A/I. If there
ezists a neighbourhood O of zero in A such that es + O + I C G*(A), then

ol r(m(2)) = s ()
for each x € A.

COROLLARY 6. Let A and B be unital semitopological algebras and 7 a
homomorphism and homeomorphism from A into B such that w(es) = ep.

If

(a) G'(A) is open in A

(b) G'(m(A)) = G(B) N (A),
then

for each x € A.

Proof. The inclusion o (7(z)) C oy (x) holds for each 2 € A, by Lemma 2.
If A satisfies condition (a) and 7 is one-to-one, then the opposite inclusion
also holds for each z € A, by Proposition 5. Let now A and 7 satisfy con-
dition (b). Let z € A and X\ ¢ ol(w(x)). Then m(z — Xea) € G'(m(A))
by (b). Therefore there exist nets (z,)uem and (yu)vey in A such that
both (7[(x — Aea)zu])uem and (7[y,(x — Aea)])vey converge to m(eq) in
m(A). Since 77! is continuous, ((x —Aea)z,)uenmr and (yu(z — Aea))vev con-
verge to e4 in A. Hence, x — Aeg € G'(A), i.e. A € o'(z). Consequently,
o(x) C op(n(x)). =

PROPOSITION 6. Let A and B be unital semitopological algebras and w
a continuous homomorphism from A into B. If B is a Hausdorff space and

m(A) is dense in B, then
G'(n(A)) = GY(B) N w(A).

Proof. Tt is easy to see that G'(w(A)) C GY(B) N m(A). To prove the
opposite inclusion, let O be a neighbourhood of zero in w(A) (then there is a
neighbourhood O’ of zero in B with O = O’'Nw(A)) and let y € GY(B)Nr(A).
Then there are x € A such that y = n(z) and a neighbourhood O; of zero
in B such that yO; + 01,01y + O1 C O. Since y € G*(B), there exist nets
(Yu)uem and (z,)yev in B such that (yy,)u.enm and (2,y),ev converge to ep.
Therefore, there are p9 € M and vy € V such that yy, —ep € O1 whenever
> o, and z,y — ep € O1 whenever v > 1. Let 1 € M and v; € V be
such that g1 > p9 and v > 1vg9. Then yy,, —ep € Oy and z,,y —ep € O1.
Since 7(A) is dense in B, there are nets (un)aca and (vg)gep such that
(m(uq))aca converges to y,, and (m(vg))gen converges to z,,. Hence, there
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are \g € A and fy € B such that 7(us) — yu, € O1 whenever a > o, and
m(vg) — 2, € O1 whenever 8 > 3. Taking this into account (7),

(@) (tta) — T(e4) = 7(2)[M(tta) — Yuu] + 7()gps — €5 € YOL+ O3 C O
whenever o > «g, and

m(vg)m(x) — w(ea) = [7(vg) — 2, |7 (x) + 20, 7(x) —ep € O1y + O1 C O
whenever 3 > [y. Consequently, (m(2)7(tqa))aca and (w(vg)m(x))sen con-
verge to m(e4) in w(A). Thus, y € Gt(r(A)). =

COROLLARY 7. Let A and B be unital semitopological algebras and 7 a

continuous homomorphism from A into B. If B is a Hausdorff space and
m(A) is dense in B, then

074 (7(a)) = op(n(a))
for each a € A.

Proof. Let a € A. If X € afr(A)(ﬂ(a)), then w(a) — Am(ea) & G(m(A)).
Hence, m(a) — Ar(ea) € G'(B), by Proposition 6. Therefore, A € aly(m(a)).
Thus,

7 a)(m(a)) C og(n(a)).
The opposite inclusion holds similarly, by Proposition 6. =

COROLLARY 8. Let A be a unital semitopological Hausdorff algebra, A the
completion of A and T the homeomorphism from A into A defined by the
completion of A. Then

o5(1(a)) = oy(a)
for each a € A (®).
Proof. Since 7(A) is dense in /1 the assertion holds by Corollary 6. =

4.2. Spectral mapping property for the topological spectrum. To prove
the spectral mapping theorem for the topological spectrum, we need the
following

LEMMA 3. Let A be a commutative unital semitopological algebra, n € N
and x1,...,z, € A. Then x1-- -z, € G'(A) if and only if x; € G'(A) for
each i € N, (7).

(") Since B is a Hausdorff space and = is continuous, and 7(A) is dense in B, we have
m(ea) = ep.

(%) For unital complex metrizable algebras this result is known (see [19, Proposi-
tion 16]).

(?) Here and below, N,, = {1,2,...,n} for each n € N.
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Proof. Let x = x1 -+, € G*(A). Then there exists a net (24)aca in A
such that (2z4)aca converges to e4. Therefore

(902‘(901 o Ti—1 L4107 xnza))aeA

converges to ey for each i € N,,. Now for each fixed a € A we put wé =
To - TpZa, wfl =X1cTi_1 - Titl - TpZe for each ¢ with 2 <7 < n—2 and
Wl = 21+ Tp_12q. Then for any i € N,, the net (x;w’,)aeca converges to e4.
Hence, z; € G'(A) for 1 <i < n.

Conversely, let z; € G'(A) for any 1 < i < n. Using induction, it is
sufficient to consider the case n = 2. Since z; € G'(A), there exists a net
(za)aea In A such that (z124)aea converges to ey, so for any (open) neigh-
bourhood U of zero in A there is ag € A such that z12, € e4 + U whenever
a > ag. Moreover, since z9 € G*(A), there exists a net (vg)gep in A such that
(vgx2)sep converges to eq. Now (vgxa(x124))geB converges to 1z, for each
fixed o € A. Since e4 + U is a neighbourhood of 1z, for each o > «y, there
exists By € B such that (vgza)x122 € €4 + U for each a > ag and 3 > .
Hence, there is a net (vgza)(3,a)eBx.4 in A such that ((vgza)(2172))(8,0)eBx.4
converges to e4. Consequently, 7122 € G*(A). »

PROPOSITION 7. Let A be a commutative complex unital semitopological
algebra. Then

o (p(z)) = p(o'y(x))
for any complex non-constant polynomial p and element x € A.

Proof. Fix a polynomial p of degree n > 0 and z € A. If A\ € o4(x),
then z — Xeg € G*(A). Since p(z) —p(N)ea = (x — Aea)r(z, \) (where 7 is a
polynomial in two variables), we have p(x) — p(A)es € G*(A) by Lemma 3,
i.e. p(A) € !y (p(x)). Thus, p(c'y(z)) C o' (p(z)).

Conversely, let 1 € oy (p(x)). Then g(t) = p(t)—p = a(t—p1) - - - (t—pin),
where a, p1,...,un € C, a # 0 and py, ..., pu, are the zeros of g. It follows
that p(u;) = p for each 1 < i < n. Now we have the factorization g(z) =
p(z) — pea = a(z — prea) - (x — pnea). Since p € o'y(p(z)), it follows
that g(z) ¢ G'(A). Hence, © — purea € GY(A) for some k by Lemma 3, i.e.
pk € oy (z). Therefore, u = p(pi) € p(cy(x)). Thus oy (p(z)) C p(chy(x)). =

4.3. Functional topological spectrum. Next we describe the class of semi-
topological algebras, all elements of which have functional topological spec-
trum.

PROPOSITION 8. Let A be a commutative unital simplicial Gelfand—Ma-
zur algebra. If p(a) # 0 for each ¢ € M(A) (1), then a € G*(A).

(*°) Since A is a commutative unital simplicial Gelfand—Mazur algebra, 9t(A) is not
empty.
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Proof. Let a € A be such that p(a) # 0 for each ¢ € M(A). Suppose
that a ¢ G'(A). Then there is a closed maximal ideal M in A such that
aA C M (because A is simplicial). Since A is also a Gelfand—Mazur algebra,
there exists ¢ € M(A) such that M = ker p. Hence, p(a) = 0, contrary to
assumption. =

COROLLARY 9. FEvery element of a commutative unital simplicial Gel-
fand-Mazur algebra has functional topological spectrum.

Proof. Let a € A and X € o'y(a). Then a — \eq ¢ G'(A). Hence, by
Proposition 8, there is a ¢ € M(A) such that p(a) = A. Thus, o%(a) C
{o(x): e M(A)}. u

COROLLARY 10. FEwvery element of a commutative unital locally
m-pseudoconver Hausdorff algebra has functional topological spectrum.

Proof. Every commutative unital locally m-pseudoconvex Hausdorff al-
gebra is a simplicial algebra (see |5, Corollary 5|) and a Gelfand-Mazur
algebra (see, for example, [1, Corollary 2|). Now apply Corollary 9. m

4.4. Properties of topological spectral radius. Now we list some properties
of the topological spectral radius.

PROPOSITION 9. Let A be a semitopological algebra. The topological spec-
tral radius Qf4 has the following properties:

(a) oY (nx) = |pldy(x) for allz € A and p € K;

(b) dly(zy) = d4y(yx) for all z,y € A;

(c) if A is commutative, then o' (z") = o' (x)" for all x € A and n € N.

In particular, if every element in A has functional topological spectrum, then

(d) oy (z +y) < oly(x) + 0iy(y) for all x,y € A;

(e) ola(zy) < oy (2)d(y) for all z,y € A.

Proof. Let © € A be such that ¢'(z) # 0, and u € K\ {0} (the case
when p = 0 is trivial). Since oy (ux) = po?y(z) for each p € K by Proposition
4(a), we have |\| < |u|oY(z) for all A € ¢%y(pa) and p € K. Therefore, the
relations

o () < |plels(w) = ploa(p" (o)) < e (ne)
yield (a). Statements (b) and (c) follow from Proposition 4(d) and Propo-
sition 7 respectively. If A has functional topological spectrum, then we can
represent every A € oY (z + y) in the form A = ¢o(z) 4+ ¢o(y) for some
o € M(A). Since

Al < leo(@)] + o(y)] < dalz) + da(y),

statement (d) follows. Statement (e) is proved similarly. m
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COROLLARY 11. Let A be a unital semitopological algebra. If every ele-
ment of A has functional topological spectrum, then the topological spectral
radius 1s a submultiplicative seminorm on A.

COROLLARY 12. Let A be a commutative unital locally m-pseudoconvex
Hausdorff algebra. Then the topological spectral radius is a submultiplicative
seminorm on A.

5. Open problems. Now we state several open problems, connected
with topological invertibility of elements.

5.1. Let A be a semitopological algebra and 2 € G*(A). Then there exist
nets (q)aecA and (yYu)uem such that lim, z42 = e4 and lim, 2y, = e4. Let
GL(A) = {z € G'(A): there exists a net (z4)aca such that lim, zoz = €4
and lim, 22z, = e4}. If A is commutative, then G§(A4) = G*(A).

PROBLEM 1. Does there exist a non-commutative semitopological algebra
A for which Gh(A) = G'(A)?

5.2. By Corollary 2, if A is a unital Fréchet algebra with discontinuous
inversion x — 271, then G*(A) \ G(A) # 0, but the converse is open so far.

PROBLEM 2. Let A be a unital Fréchet algebra. Does the discontinuity of
the inversion x +— z~! on G(A) follow from G*(A)\ G(A) #0?

5.3. By [18, Theorem 2], there is a semitopological algebra A with G*(A)
= A.

PROBLEM 3. For which semitopological algebras A does Gt(A) = A hold?

PROBLEM 4. For which semitopological algebras A does G(A) = G'(A)
hold?

5.4. We have the following result.

PROPOSITION 10. A semitopological algebra A is a Q-algebra (*1) if and
only if GY(A) is open and W =oa(a) for each a € A\ G(A).

Proof. If A is a Q-algebra, then G'(A) = G(A). Therefore, G'(A) is open
in A and o, (a) = 04(a) for each a € A\ G(A).

Conversely, let A be a semitopological algebra such that G*(A) is open
and W = o4(a) for each a € A\ G(A). If now a € A\ G(A), then
0 € g4(a). Therefore there exists a sequence (\,) in ¢ (a) which converges
to 0. Since a — \yeq € A\ GY(A) and A\ G*(A) is closed in A, we have
a € A\ G'(A). Thus, G(A) = G'(A). Consequently, A is a Q-algebra. =

PROBLEM 5. Describe the elements of a semitopological algebra A for
which o'y (a) = oa(a).

(*') That is, G(A) is open in A.
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5.5. If Ais an algebra and B a maximal commutative subalgebra of A,
then o4(a) = op(a). It is not clear whether a similar result holds for the
topological spectrum.

PROBLEM 6. Let A be a semitopological algebra. Does there exist a maz-
imal commutative subalgebra such that o'(a) # o'5(a) for some a € A?
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