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COMMUTATIVE ALGEBRA

Relations between Elements r*' — 7 and p -1 for a Prime p
by
Andrzej PROSZYNSKI

Presented by Andrzej SCHINZEL

Summary. For any positive power n of a prime p we find a complete set of generating
relations between the elements [r] = r™ — r and p - 1 of a unitary commutative ring.

1. Introduction. Let R be a commutative ring with 1. In [2], the author
introduced the ideals I,,(R) generated by all elements " —r where r € R. It
follows from [2 Proposition 5.5 that I,,(R) is precisely the intersection of all
maximal ideals M of R such that |R/M|— 1 divides n — 1. The main result
of [I] determines generating relations for the generators r — r of I,(R),
where n is a power of 2 or n = 3 (Theorem .

In [3], the author introduced the ideals I,,(R) = I,(R)+pR for prime p. It
follows from [3, Theorem 1.4.8] that I,(R) is precisely the intersection of all
maximal ideals M of R such that |R/M| = p. In this paper, we consider the
more general case of ideals I],(R) = I,(R) 4+ pR, generated by all elements
™ —r for r € R and the element p-1 € R, where n = p! for l = 1,2,....
The purpose of this paper is to find a complete set of generating relations
between these elements (Theorem 1), generalizing also (in Corollary [4) a
part of [1, Theorem 1].

2. n-derivations. Recall some ideas of [1]. If f is a mapping between
R-modules and f(0) = 0 then we define

(A%f)(@,y) = f(z+y) — f(z) = f(y).
Let n be a fixed natural number. By an n-derivation over R we mean
a function f: R — M, where M is an R-module, satisfying the following
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condition:
(D,) Flrs)=1"f(s) + sf(r), rs€R.

For example, the function f: R — R, f(r) = r™ — r, is an n-derivation. On
the other hand, any (ordinary) derivation is a 1-derivation.
The following lemma contains some new properties.

LEMMA 1. If f is an n-derivation then for any r,s € R we have

(1) (" =r)f(s) = (s" = s)f(r),

(2) f(0)=f@1) =0,

(3) if s is invertible then f(s7!) = —s "1 f(s),

(4) f(?“k) — (rn(k—1)+rn(k—2)+1 _}_Tn(k—3)+2+. . -—|—T‘n+(k_2)+’l“k_1)f(7‘),

(5) if n is a positive power of a prime p and p divides k then f(rF) =
af(r) where a € I (R).

Proof. Relation (1) follows from the two symmetric versions of (D,,). The
equalities f(0) = f(1) = 0 follow from (D,,) for r = s = 0 or 1. Using (D,,)
and (2) we obtain 0 = f(1) = f(s-s7!) = s"f(s7!) + s71f(s), and this
gives (3). Property (4) follows from (D,,) by induction.

(5) Since ™ = r mod I’,(R), the coefficient in (4) is congruent to krk=1.
This belongs to I/ (R) since p | k and p-1 € I,(R). =

Let S be a multiplicatively closed set in R.

PRrROPOSITION 1. For any n-derivation f: R — M there exists a unique
n-deriwation fs: Rg — Mg satisfying the condition fs(i(r)) = i(f(r)) for
r € R. It is given by the formula

fs(r> _ 0 (T)”ﬂs) ) ()

S S S

S 8n+1

Moreover,

w2 (7,7) = B0

tn

3. ('-functions. Let p be a fixed prime and n a fixed natural number
of the form n = p!, 1 =1,2,.... Let M be an R-module with a fixed element
mg € M. We will call an n-derivation f: R — M semi-additive, and denote
f: R— (M,my), if it satisfies the additional condition

(C) flr+s)=f(r)+ f(s) + N(r,s)mo, 7,5€R,
or equivalently

cn (A2f)(r,s) = N(r,s)mg, 7,5€R,
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where

(note that %(2) € Z for k =1,...,n — 1 because of the shape of n). Using
the generalized Newton symbols

(i 4+ ix)!
il i)

_ <i1+"'+ik><i1+"'+ik_1>”'<i1+i2>
ik Th—1 19

= (i1 4+ Fip—1,0k) (01, ., Ip—1)

(i1, ..., 0k) =

we define the following generalization of N(r, s):

1

N(’I”l,. . .,T'k) = Zg(il,...,ik)ril ...7“2’“,
where the sum is over all systems of non-negative integers 1, . . ., ix such that
i1+ ---+ip = n and at least two i; are non-zero (then all the coefficients
in the sum are integers). In particular, for any integers my,..., mg, the
generalized Newton formula shows that
1
N(m1-1,...,mk-1):];((ml—i—---—kmk)"—m’f—---—mZ)-l,
and for my =--- =my =1 we get N(1,...,1) :%(k”—k)-l.
LEMMA 2. For any r1,...,7k, "k+1 € R we have

(1) N(riseoo ri i) = N(rio+ - 4 g, mge1) + N(r, .m0,

k k
@) F(3m) =D F0) + NG m)mo
i=1

=1
provided that f satisfies (C),).

Proof. (1) The generalized Newton formula shows that

N(ri4 - 41, Teg1) = Z (G go)(r 4 A )R
Jit+j2=n
J1,j2>0
- Z Z 7(]17]2)(21,...7116)(7’31“_T.Zk)rii_l
J1tjo=ni1+-Fip=41 p
J1,32>0
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1 .
. . . . . . 7 Tk 2k+1
= ) —(i1 4 g Ger) (1, )T T
i1+ i1 =n
i1+ tig >0, g1 >0

= > l(il,...,ik,ikﬂ) Lo
i1+"'+ik+1:’l’b
i1+ 41 >0,9541>0
Since (i1,...,1%,0) = (i1,...,1), the above is equal to N (r1,..., 7k, Tk+1) —
N(ry,...,rg), as required.
(2) For k = 2 see (C},). If (2) holds for some k > 2 then, by (C),) and (1),

(32) = 135 ) # o)+ (S v

= Z f(?”z) + N(?”l, e rk)mo + f(?“k+1) + N(?"l + s+ T, Tk+1)m0

1
:Zf(ﬁ‘)—i—N(rl,...,rkH)mo. .

COROLLARY 1. Let f: R — (M,mp) be a semi-additive n-derivation.
Then

(1) flpr) =pf(r)+ ("' = )r"m,

(2) flp-1) ="~ 1me
If p"~t — 1 is invertible in R and u = (p"~! —1)~! € R then

(3) mo=uf(p-1),

(4) pf(r)= (" —r)mo.

Proof. Setting k = p and r; = r in Lemma 2(2) we obtain (1), since
N(1,...,1) = %D(p” —p) - 1. Then Lemma 1(2) gives (2) and (3). It follows
from Lemma 1(1) and from (2) above that

W =p)f(r)= (" =r)f(p-1) = (" =r)(p"" = L)mo.
Then multiplication by u gives (4). =
By a C’'-function of degree n over R we will mean a semi-additive n-

derivation f: R — (M, mg) satisfying condition (4) of the above lemma. In
other words, it is assumed that the following conditions are fulfilled:

(Dn) f(rs) =7r"f(s) +sf(r), s € R,
(Ch) f(r+s)=f(r)+ f(s)+ N(r,s)mo, rseER,
(En) pf(r) = (r" —r)mo, r e R.
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ExaMpPLE 1. The function f: R — (R,p-1), f(r) = ™ —1r, is a
C’-function of degree n. Indeed, it is an n-derivation, (C!)) is satisfied since

<r+s)n—(r+s)—(7«"—7«)—(sn—s):i<z>rn—k8k—rn_sn

k=0

—~1 n—k k
p; S Ol
by the Newton binomial formula, and (E,) is obvious. Later, we prove that
it is a universal C’-function of degree n (Theorem [L)).

EXAMPLE 2. A C’-function of degree 3 is a 3-derivation f: R — (M, mg)
such that 3f(r) = (r® —r)mg and f(r+s) = f(r)+ f(s) + (r’s+rs®)mg for
r,s € R. Then f(2) = 2myg and it is easy to check that f satisfies conditions
(C1)—(C3) of [1, showing that f is a so called C-function of degree 3.

EXAMPLE 3. Let R be the polynomial ring Zo[X|, M = Zo = Z2[X]/(X)
and my = 1+ (X). Then for any g = >, ¢: X" € Z3[X], m € M and
k=1,2,... we have g*m = gfm = gym. Define f: Zs[X] — M by f(g) =
g1 + (X). Since

f(gh) = goh1 + hog1 + (X) = g" f(h) + hf(g)

it follows that f is an m-derivation for any n. Let now n be a power of an
odd prime p. Then N(g,h)mo = N(go,ho)mo = 0 for any g,h € Zs[X]
since N(1,1) = %(2” — 2) is even. Moreover, f is additive, and hence it is
semi-additive (actually, it is the only semi-additive n-derivation f: Zo[X] —
(M, myg) satisfying f(X) = 1+ (X)). On the other hand, (E,,) is not fulfilled,
since pf(X) = 14(X) # 0 and (X™—X)my = 0. Hence f is not a C’-function
of degree n.

4. The functors ¢’ = C'™., Letn =p!,1=1,2,... Denote by C'(R) =
C'")(R) the R-module generated by elements denoted by [r], r € R, and an
extra element [«], with the following relations:

(D) [rs] = r"[s] + s[r], r,s € R,
() [r+s]=[r]+[s] + N(r,s)[], rseR,
(E) plr] = (r" —r)[%], r € R.

Any unitary ring homomorphism i: R — R’ induces a module homomor-
phism C’(i): C'(R)— C'(R’) over i such that C'(i)([r]) =[i(r)] and C'(2)([])
= []. This shows that C’ is a functor to the category of modules (over all
commutative rings) with fixed elements. Observe that C’(R) is a univer-
sal object with respect to C’-functions of degree n over R, meaning that
any C’-function of degree n can be uniquely expressed as the composition
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of the canonical C’-function ¢': R — (C'(R),[#]),c(r) = [r], and an R-
homomorphism defined on C’(R) and preserving the fixed elements.
In particular, the C’-function f: R — (R,p- 1), f(r) = r™ — r, gives

COROLLARY 2. There exists an R-homomorphism P: C'(R) — I (R)
such that P([r]) =r" —r forr € R and P([x]) =p- 1.

Our goal is to show that P is an isomorphism (Theorem [I)). As a first
step, we prove that C’ commutes with localizations. Let S be a multiplica-
tively closed set in R and let +: R — Rg and i: M — Mg be the canonical

homomorphisms, i(r) = 7, i(m) = .

PROPOSITION 2. If f: R — (M, mg) is a C'-function of degree n (or a
semi-additive n-derivation) then so is the function

fsi s > (Ma,"10), Js(i) = (),
defined in Proposition [I]

Proof. Using Proposition [I] we compute that
b A? b N(a,b b
O (@2 (2.0) = B0l Nemo (o Bymo

. pf;@s(p<;zr>3n+lr<pf<s>8; o
e (O

PROPOSITION 3. There exists an Rg-isomorphism C'(R)s ~ C'(Rg)

such that
[S]Hi[:] DR}

Proof. Proposition [2| applied to the canonical C’-function ¢: R —
(C'(R), [#]), ¢ (r) = [r], gives an C’-function clg: Rg— (C'(R)s, @) over Rg,

where .
()50

The universal property yields an Rg-homomorphism g: C'(Rgs) — C'(R)g

such that
(E)-4()-4- ()% wo-
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On the other hand, the homomorphism C’(i): C'(R) — C’(Rg) over
i: R — Rg, defined by C’(i)([r]) = [%], C"(i)([*]) = [], gives an Rg-homo-

morphism

h: C'(R)s — C'(Rs), h(“j) _ 1[” h<[’1k]> )

S

Observe that h = g~!. Indeed,
() -5 ()
by Lemma 1(2). On the other hand, using Lemma 1(3) and (D) we compute
that
D) ()20 5
T r\" rl T
-G BB

Hence h is an isomorphism, as required. m

5. The main lemmas. We consider the kernel of the R-epimorphism
P:C'(R) = Il(R), P([r]) =r"—rforr € Rand P([«]) =p- 1.

LEMMA 3.

(1) P(z)y = Py )ﬂ?fm’cm?/w y € C'(R),

(2) I;,(R)Ker(P) =

Proof. (1) For x = [r], y = [s] apply Lemma 1(1), and for x = [r], y = [¥]
apply (E).

(2) If r € I/(R) and y € Ker(P) then r = P(z) and hence ry = P(z)y =
P(y)r=0by (1). u

Let now p"~! — 1 be invertible in R. Hence [¥] = u[p - 1] (Corollary 2)
and Lemma 2(2) gives the following formula:

k
{Zrl] Zn—}—N(rl,...,

i=1 i=1 i=1

Mpr

[ri] + N(r1,...,m%)u[p - 1].

Moreover, any element of C’(R) is of the form ), a;[r;], where a;,7; € R.

LEMMA 4. Let p"~ ' —1 be invertible in R and x = Y% a;[r;] € Ker(P),
where one of the r; is p- 1. If all a; belong to I),(R)™ for some m > 0 then
x = Z§:1 bi[ri] where all b; belong to I (R)"™*1.
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Proof. By the assumption Zle a;ry = Zf_l a;r;. Using (*) we obtain

k k
[Zam} = Zazm] + Nyulp-1] = Za, 7 +Z [a;] + Nyu[p - 1],
=1 =1
k k k
[zaz P = Ylart) + Noulp- 1) = Y arri) + Y rilai] + Noulp - 1),
i=1 i=1 i=1

where

1 . 4
. . I3 7 7 (3
Ny = N(ayry, ..., axrg) = g 5(21, codgp)alt coalrl ook,

No = N(arry, ... axrg) = Z 5(11, coig)alt ak ()
and the sums are over all systems of non-negative integers i1,...,4; such

that 47 +--- 4+ 14, = n and at least two ¢; are non-zero. Since

k k
Zaz T +Z [a;] + Nyulp - 1] = Za Z [a;] + Nou[p - 1]
i=1 i=1

we obtain

k
e=> ailn] = za + (N2 = Ny)ulp- 1]
=1

k
= 3" afalr] + (N2 — Niyulp- 1],
=1

where a € I},(R) by Lemma 1(5). Since a; € I,(R)™ it follows that al'a €
I (Ry™.
Moreover, alt az’“ € I;,(R)"™ since a; € I},(R)™ and iy + - + iy = n,
and (ri*...r8)" —rit ... € I (R). Hence
1 . o A , A
Ny—N; = Z ];(z'l, Coodp)att.ar ((7“11 o)t =t 7"2’“) € I;L(R)”mﬂ.
This completes the proof. m

The above lemma immediately gives

COROLLARY 3. Let p"~! — 1 be invertible in R and z = Zle a;[ri]
be an arbitrary element of Ker(P). Let M denote the submodule of C'(R)
generated by [r1], ..., [ri] and [p- 1] (or [*]). Then

x € ﬁ I,(R)™
m=0



Relations between Elements r* — v and p-1 241

6. The main theorem. The purpose of this paper is to prove the fol-
lowing.

THEOREM 1. Let C'(R) = C’(”)(R) where n = p', | = .. Then
P: C'(R) — I(R), P([r]) = ™ —'rforr € R and ([ ]) —p 1 is an
R-isomorphism. In other words, if n = p', 1 = 1,2,..., then the following
are generating relations between the generators [r] =r™ —r and [x] = p-1 of
I (R):

(D) [rs] = r"[s] + s[r], r,s € R,
(€ [r+s]=[r]+[s]+ N(r,s)[x], rs€eR,
where N(r,s) = Y721 %(2) r"ksk and

(E) plrl = (" =7+, rekR

Proof. Our goal is to prove that Ker(P) = 0.

Noetherian case. Assume that R is noetherian. By Proposition [3] we can
assume that R is local and noetherian with quotient field K. Then I,,(R) is
the maximal ideal if |K| — 1 divides n — 1, and I,(R) = R otherwise (see
Introduction). Hence I (R) is the maximal ideal if |K| —1 divides n — 1 and
char(K) = p, and I},(R) = R otherwise. If I,(R) = R then Lemma [3| shows
that Ker(P) = 0, as desired. So let I}, (R) be the maximal ideal of R.

Since p € I/ (R), p"~! — 1 is invertible in R. Let @ € Ker(P). Define the
submodule M as in Corollary [3] and observe that it is finitely generated over
a local noetherian ring. Then the intersection in the corollary is zero by the
Krull intersection theorem, and hence x = 0. This proves that Ker(P) = 0.

General case. Let x = ), a;[r;] + ag[*] € Ker(P). Define S to be the
subring of R generated by all a; and r;. Since S is a finitely generated ring,
and hence noetherian, the previous part of the proof shows that P: C'(S) —
S is injective. Let i: S — R denote the injection. Then x = (C’(4))(y), where
y =Y. ai[ri]+ao[+] € C'(S). Since P(y) = P(x) = 0 we conclude that y = 0
and consequently z = 0. This completes the proof. m

For p = 2 we obtain a part of [I, Theorem 1|:

COROLLARY 4. Ifn =2!1=1,2,... then the following are generating
relations between the generators [r] = 1" —r of I,(R):

(D) [rs] = r"[s] + s[r], r,s € R,
(©) [r+s]=[r] +[s] + N(r,s)[-1], r,s€R.

Proof. Since 2 = (—=1)" — (=1) € I,(R), we obtain I,(R) = I/ (R). On
the other hand, [0] = [1] +[—1] + N(1, —1)[#] in C},(R), and this shows that
[—1] = —=N(1, —1)[*] by Lemma 1(2). It is easy to see that N(1,—1) = —1,
and hence [—1] = [*]. Therefore (C') = (C) and finally (E) follows from (D)
by Lemma 1(1). =
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