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Summary. For any positive power n of a prime p we find a complete set of generating
relations between the elements [r] = rn − r and p · 1 of a unitary commutative ring.

1. Introduction. Let R be a commutative ring with 1. In [2], the author
introduced the ideals In(R) generated by all elements rn− r where r ∈ R. It
follows from [2, Proposition 5.5] that In(R) is precisely the intersection of all
maximal ideals M of R such that |R/M | − 1 divides n− 1. The main result
of [1] determines generating relations for the generators rn − r of In(R),
where n is a power of 2 or n = 3 (Theorem 1).

In [3], the author introduced the ideals I ′p(R) = Ip(R)+pR for prime p. It
follows from [3, Theorem 1.4.8] that I ′p(R) is precisely the intersection of all
maximal ideals M of R such that |R/M | = p. In this paper, we consider the
more general case of ideals I ′n(R) = In(R) + pR, generated by all elements
rn − r for r ∈ R and the element p · 1 ∈ R, where n = pl for l = 1, 2, . . . .
The purpose of this paper is to find a complete set of generating relations
between these elements (Theorem 1), generalizing also (in Corollary 4) a
part of [1, Theorem 1].

2. n-derivations. Recall some ideas of [1]. If f is a mapping between
R-modules and f(0) = 0 then we define

(∆2f)(x, y) = f(x + y)− f(x)− f(y).

Let n be a fixed natural number. By an n-derivation over R we mean
a function f : R −→ M , where M is an R-module, satisfying the following
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condition:

(Dn) f(rs) = rnf(s) + sf(r), r, s ∈ R.

For example, the function f : R → R, f(r) = rn − r, is an n-derivation. On
the other hand, any (ordinary) derivation is a 1-derivation.

The following lemma contains some new properties.

Lemma 1. If f is an n-derivation then for any r, s ∈ R we have

(1) (rn − r)f(s) = (sn − s)f(r),
(2) f(0) = f(1) = 0,
(3) if s is invertible then f(s−1) = −s−n−1f(s),
(4) f(rk) = (rn(k−1)+rn(k−2)+1+rn(k−3)+2+ · · ·+rn+(k−2)+rk−1)f(r),
(5) if n is a positive power of a prime p and p divides k then f(rk) =

af(r) where a ∈ I ′n(R).

Proof. Relation (1) follows from the two symmetric versions of (Dn). The
equalities f(0) = f(1) = 0 follow from (Dn) for r = s = 0 or 1. Using (Dn)
and (2) we obtain 0 = f(1) = f(s · s−1) = snf(s−1) + s−1f(s), and this
gives (3). Property (4) follows from (Dn) by induction.

(5) Since rn ≡ r mod I ′n(R), the coefficient in (4) is congruent to krk−1.
This belongs to I ′n(R) since p | k and p · 1 ∈ I ′n(R).

Let S be a multiplicatively closed set in R.

Proposition 1. For any n-derivation f : R → M there exists a unique
n-derivation fS : RS → MS satisfying the condition fS(i(r)) = i(f(r)) for
r ∈ R. It is given by the formula

fS

(
r

s

)
=

f(r)

s
−
(
r

s

)n f(s)

s
=

sf(r)− rf(s)

sn+1
.

Moreover,

(∆2fS)

(
r

t
,
s

t

)
=

(∆2f)(r, s)

tn
.

3. C ′-functions. Let p be a fixed prime and n a fixed natural number
of the form n = pl, l = 1, 2, . . . . Let M be an R-module with a fixed element
m0 ∈M . We will call an n-derivation f : R→M semi-additive, and denote
f : R→ (M,m0), if it satisfies the additional condition

(C′n) f(r + s) = f(r) + f(s) + N(r, s)m0, r, s ∈ R,

or equivalently

(C′′n) (∆2f)(r, s) = N(r, s)m0, r, s ∈ R,
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where

N(r, s) =

n−1∑
k=1

1

p

(
n

k

)
rn−ksk

(note that 1
p

(
n
k

)
∈ Z for k = 1, . . . , n − 1 because of the shape of n). Using

the generalized Newton symbols

(i1, . . . , ik) =
(i1 + · · ·+ ik)!

i1! . . . ik!

=

(
i1 + · · ·+ ik

ik

)(
i1 + · · ·+ ik−1

ik−1

)
· · ·
(
i1 + i2

i2

)
= (i1 + · · ·+ ik−1, ik)(i1, . . . , ik−1)

we define the following generalization of N(r, s):

N(r1, . . . , rk) =
∑ 1

p
(i1, . . . , ik)ri11 . . . rikk ,

where the sum is over all systems of non-negative integers i1, . . . , ik such that
i1 + · · · + ik = n and at least two ij are non-zero (then all the coefficients
in the sum are integers). In particular, for any integers m1, . . . ,mk, the
generalized Newton formula shows that

N(m1 · 1, . . . ,mk · 1) =
1

p
((m1 + · · ·+ mk)n −mn

1 − · · · −mn
k) · 1,

and for m1 = · · · = mk = 1 we get N(1, . . . , 1) = 1
p(kn − k) · 1.

Lemma 2. For any r1, . . . , rk, rk+1 ∈ R we have

(1) N(r1, . . . , rk, rk+1) = N(r1 + · · ·+ rk, rk+1) + N(r1, . . . , rk),

(2) f
( k∑
i=1

ri

)
=

k∑
i=1

f(ri) + N(r1, . . . , rk)m0

provided that f satisfies (C′n).

Proof. (1) The generalized Newton formula shows that

N(r1 + · · ·+ rk, rk+1) =
∑

j1+j2=n
j1,j2>0

1

p
(j1, j2)(r1 + · · ·+ rk)j1rj2k+1

=
∑

j1+j2=n
j1,j2>0

∑
i1+···+ik=j1

1

p
(j1, j2)(i1, . . . , ik)(ri11 . . . rikk )rj2k+1
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=
∑

i1+···+ik+1=n
i1+···+ik>0, ik+1>0

1

p
(i1 + · · ·+ ik, ik+1)(i1, . . . , ik)ri11 . . . rikk r

ik+1

k+1

=
∑

i1+···+ik+1=n
i1+···+ik>0, ik+1>0

1

p
(i1, . . . , ik, ik+1)r

i1
1 . . . r

ik+1

k+1 .

Since (i1, . . . , ik, 0) = (i1, . . . , ik), the above is equal to N(r1, . . . , rk, rk+1)−
N(r1, . . . , rk), as required.

(2) For k = 2 see (C′n). If (2) holds for some k ≥ 2 then, by (C′n) and (1),

f
(k+1∑
i=1

ri

)
= f

( k∑
i=1

ri

)
+ f(rk+1) + N

( k∑
i=1

ri, rk+1

)
m0

=

k∑
i=1

f(ri) + N(r1, . . . , rk)m0 + f(rk+1) + N(r1 + · · ·+ rk, rk+1)m0

=
k+1∑
i=1

f(ri) + N(r1, . . . , rk+1)m0.

Corollary 1. Let f : R → (M,m0) be a semi-additive n-derivation.
Then

(1) f(pr) = pf(r) + (pn−1 − 1)rnm0,
(2) f(p · 1) = (pn−1 − 1)m0.

If pn−1 − 1 is invertible in R and u = (pn−1 − 1)−1 ∈ R then

(3) m0 = uf(p · 1),
(4) pf(r) = (rn − r)m0.

Proof. Setting k = p and ri = r in Lemma 2(2) we obtain (1), since
N(1, . . . , 1) = 1

p(pn − p) · 1. Then Lemma 1(2) gives (2) and (3). It follows
from Lemma 1(1) and from (2) above that

(pn − p)f(r) = (rn − r)f(p · 1) = (rn − r)(pn−1 − 1)m0.

Then multiplication by u gives (4).

By a C ′-function of degree n over R we will mean a semi-additive n-
derivation f : R → (M,m0) satisfying condition (4) of the above lemma. In
other words, it is assumed that the following conditions are fulfilled:

f(rs) = rnf(s) + sf(r), r, s ∈ R,(Dn)
f(r + s) = f(r) + f(s) + N(r, s)m0, r, s ∈ R,(C′n)
pf(r) = (rn − r)m0, r ∈ R.(En)
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Example 1. The function f : R → (R, p · 1), f(r) = rn − r, is a
C ′-function of degree n. Indeed, it is an n-derivation, (C′n) is satisfied since

(r + s)n − (r + s)− (rn − r)− (sn − s) =
n∑

k=0

(
n

k

)
rn−ksk − rn − sn

= p
n−1∑
k=1

1

p

(
n

k

)
rn−ksk = N(r, s)(p · 1)

by the Newton binomial formula, and (En) is obvious. Later, we prove that
it is a universal C ′-function of degree n (Theorem 1).

Example 2. A C ′-function of degree 3 is a 3-derivation f : R→ (M,m0)
such that 3f(r) = (r3− r)m0 and f(r+ s) = f(r) + f(s) + (r2s+ rs2)m0 for
r, s ∈ R. Then f(2) = 2m0 and it is easy to check that f satisfies conditions
(C1)–(C3) of [1], showing that f is a so called C-function of degree 3.

Example 3. Let R be the polynomial ring Z2[X],M = Z2 = Z2[X]/(X)
and m0 = 1 + (X). Then for any g =

∑
i giX

i ∈ Z2[X], m ∈ M and
k = 1, 2, . . . we have gkm = gk0m = g0m. Define f : Z2[X] → M by f(g) =
g1 + (X). Since

f(gh) = g0h1 + h0g1 + (X) = gnf(h) + hf(g)

it follows that f is an n-derivation for any n. Let now n be a power of an
odd prime p. Then N(g, h)m0 = N(g0, h0)m0 = 0 for any g, h ∈ Z2[X]
since N(1, 1) = 1

p(2n − 2) is even. Moreover, f is additive, and hence it is
semi-additive (actually, it is the only semi-additive n-derivation f : Z2[X]→
(M,m0) satisfying f(X) = 1+(X)). On the other hand, (En) is not fulfilled,
since pf(X) = 1+(X) 6= 0 and (Xn−X)m0 = 0. Hence f is not a C ′-function
of degree n.

4. The functors C ′ = C ′(n). Let n = pl, l = 1, 2, . . . Denote by C ′(R) =
C ′(n)(R) the R-module generated by elements denoted by [r], r ∈ R, and an
extra element [∗], with the following relations:

[rs] = rn[s] + s[r], r, s ∈ R,(D)
[r + s] = [r] + [s] + N(r, s)[∗], r, s ∈ R,(C′)
p[r] = (rn − r)[∗], r ∈ R.(E)

Any unitary ring homomorphism i : R → R′ induces a module homomor-
phism C ′(i) : C ′(R)→C ′(R′) over i such that C ′(i)([r])=[i(r)] and C ′(i)([∗])
= [∗]. This shows that C ′ is a functor to the category of modules (over all
commutative rings) with fixed elements. Observe that C ′(R) is a univer-
sal object with respect to C ′-functions of degree n over R, meaning that
any C ′-function of degree n can be uniquely expressed as the composition
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of the canonical C ′-function c′ : R → (C ′(R), [∗]), c′(r) = [r], and an R-
homomorphism defined on C ′(R) and preserving the fixed elements.

In particular, the C ′-function f : R→ (R, p · 1), f(r) = rn − r, gives

Corollary 2. There exists an R-homomorphism P : C ′(R) → I ′n(R)
such that P ([r]) = rn − r for r ∈ R and P ([∗]) = p · 1.

Our goal is to show that P is an isomorphism (Theorem 1). As a first
step, we prove that C ′ commutes with localizations. Let S be a multiplica-
tively closed set in R and let i : R → RS and i : M → MS be the canonical
homomorphisms, i(r) = r

1 , i(m) = m
1 .

Proposition 2. If f : R → (M,m0) is a C ′-function of degree n (or a
semi-additive n-derivation) then so is the function

fS : RS →
(
MS ,

m0

1

)
, fS(i(r)) = i(f(r)),

defined in Proposition 1.

Proof. Using Proposition 1 we compute that

(∆2fS)

(
a

s
,
b

s

)
=

(∆2f)(a, b)

sn
=

N(a, b)m0

sn
= N

(
a

s
,
b

s

)
m0

1
,(C′′n)

pfS

(
r

s

)
=

s(p(f(r))− r(pf(s))

sn+1
(En)

=
s(rn − r)m0 − r(sn − s)m0

sn+1
=

((
r

s

)n

− r

s

)
m0

1
.

Proposition 3. There exists an RS-isomorphism C ′(R)S ≈ C ′(RS)
such that

[r]

s
↔ 1

s

[
r

1

]
,

[∗]
1
↔ [∗].

Proof. Proposition 2 applied to the canonical C ′-function c′ : R →
(C ′(R), [∗]), c′(r) = [r], gives an C ′-function c′S : RS→

(
C ′(R)S ,

[∗]
1

)
over RS ,

where

c′S

(
r

s

)
=

[r]

s
−
(
r

s

)n [s]

s
.

The universal property yields an RS-homomorphism g : C ′(RS) → C ′(R)S
such that

g

([
r

s

])
= c′S

(
r

s

)
=

[r]

s
−
(
r

s

)n [s]

s
, g([∗]) =

[∗]
1
.
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On the other hand, the homomorphism C ′(i) : C ′(R) → C ′(RS) over
i : R → RS , defined by C ′(i)([r]) =

[
r
1

]
, C ′(i)([∗]) = [∗], gives an RS-homo-

morphism

h : C ′(R)S → C ′(RS), h

(
[r]

s

)
=

1

s

[
r

1

]
, h

(
[∗]
1

)
= [∗].

Observe that h = g−1. Indeed,

g

(
h

(
[r]

s

))
=

1

s
g

([
r

1

])
=

1

s

(
[r]

1
−
(
r

1

)n [1]

1

)
=

[r]

s

by Lemma 1(2). On the other hand, using Lemma 1(3) and (D) we compute
that

h

(
g

([
r

s

]))
= h

(
[r]

s
−
(
r

s

)n [s]

s

)
=

1

s

[
r

1

]
− rn

sn+1

[
s

1

]
=

1

s

[
r

1

]
+

(
r

1

)n[1

s

]
=

[
r

1

1

s

]
=

[
r

s

]
.

Hence h is an isomorphism, as required.

5. The main lemmas. We consider the kernel of the R-epimorphism
P : C ′(R)→ I ′n(R), P ([r]) = rn − r for r ∈ R and P ([∗]) = p · 1.

Lemma 3.

(1) P (x)y = P (y)x for any x, y ∈ C ′(R),
(2) I ′n(R) Ker(P ) = 0.

Proof. (1) For x = [r], y = [s] apply Lemma 1(1), and for x = [r], y = [∗]
apply (E).

(2) If r ∈ I ′n(R) and y ∈ Ker(P ) then r = P (x) and hence ry = P (x)y =
P (y)x = 0 by (1).

Let now pn−1 − 1 be invertible in R. Hence [∗] = u[p · 1] (Corollary 2)
and Lemma 2(2) gives the following formula:

(∗)
[ k∑

i=1

ri

]
=

k∑
i=1

[ri] + N(r1, . . . , rk)[∗] =

k∑
i=1

[ri] + N(r1, . . . , rk)u[p · 1].

Moreover, any element of C ′(R) is of the form
∑

i ai[ri], where ai, ri ∈ R.

Lemma 4. Let pn−1−1 be invertible in R and x =
∑k

i=1 ai[ri] ∈ Ker(P ),
where one of the ri is p · 1. If all ai belong to I ′n(R)m for some m ≥ 0 then
x =

∑k
i=1 bi[ri] where all bi belong to I ′n(R)nm+1.
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Proof. By the assumption
∑k

i=1 air
n
i =

∑k
i=1 airi. Using (∗) we obtain[ k∑

i=1

airi

]
=

k∑
i=1

[airi] + N1u[p · 1] =
k∑

i=1

ai[ri] +
k∑

i=1

rni [ai] + N1u[p · 1],

[ k∑
i=1

air
n
i

]
=

k∑
i=1

[air
n
i ] + N2u[p · 1] =

k∑
i=1

ani [rni ] +
k∑

i=1

rni [ai] + N2u[p · 1],

where

N1 = N(a1r1, . . . , akrk) =
∑ 1

p
(i1, . . . , ik)ai11 . . . aikk ri11 . . . rikk ,

N2 = N(a1r
n
1 , . . . , akr

n
k ) =

∑ 1

p
(i1, . . . , ik)ai11 . . . aikk (ri11 . . . rikk )

n
,

and the sums are over all systems of non-negative integers i1, . . . , ik such
that i1 + · · ·+ ik = n and at least two ij are non-zero. Since

k∑
i=1

ai[ri] +
k∑

i=1

rni [ai] + N1u[p · 1] =
k∑

i=1

ani [rni ] +
k∑

i=1

rni [ai] + N2u[p · 1]

we obtain

x =

k∑
i=1

ai[ri] =

k∑
i

ani [rni ] + (N2 −N1)u[p · 1]

=
k∑

i=1

ani a[ri] + (N2 −N1)u[p · 1],

where a ∈ I ′n(R) by Lemma 1(5). Since ai ∈ I ′n(R)m it follows that ani a ∈
I ′n(R)nm+1.

Moreover, ai11 . . . aikk ∈ I ′n(R)nm since ai ∈ I ′n(R)m and i1 + · · ·+ ik = n,

and (ri11 . . . rikk )n − ri11 . . . rikk ∈ I ′n(R). Hence

N2−N1 =
∑ 1

p
(i1, . . . , ik)ai11 . . . aikk

(
(ri11 . . . rikk )n−ri11 . . . rikk

)
∈ I ′n(R)nm+1.

This completes the proof.

The above lemma immediately gives

Corollary 3. Let pn−1 − 1 be invertible in R and x =
∑k

i=1 ai[ri]
be an arbitrary element of Ker(P ). Let M denote the submodule of C ′(R)
generated by [r1], . . . , [rk] and [p · 1] (or [∗]). Then

x ∈
∞⋂

m=0

In(R)mM.
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6. The main theorem. The purpose of this paper is to prove the fol-
lowing.

Theorem 1. Let C ′(R) = C ′(n)(R) where n = pl, l = 1, 2, . . . . Then
P : C ′(R) → I ′n(R), P ([r]) = rn − r for r ∈ R and P ([∗]) = p · 1, is an
R-isomorphism. In other words, if n = pl, l = 1, 2, . . . , then the following
are generating relations between the generators [r] = rn− r and [∗] = p · 1 of
I ′n(R):

[rs] = rn[s] + s[r], r, s ∈ R,(D)
[r + s] = [r] + [s] + N(r, s)[∗], r, s ∈ R,(C′)

where N(r, s) =
∑n−1

k=1
1
p

(
n
k

)
rn−ksk, and

(E) p[r] = (rn − r)[∗], r ∈ R.

Proof. Our goal is to prove that Ker(P ) = 0.
Noetherian case. Assume that R is noetherian. By Proposition 3 we can

assume that R is local and noetherian with quotient field K. Then In(R) is
the maximal ideal if |K| − 1 divides n − 1, and In(R) = R otherwise (see
Introduction). Hence I ′n(R) is the maximal ideal if |K| − 1 divides n− 1 and
char(K) = p, and I ′n(R) = R otherwise. If I ′n(R) = R then Lemma 3 shows
that Ker(P ) = 0, as desired. So let I ′n(R) be the maximal ideal of R.

Since p ∈ I ′n(R), pn−1 − 1 is invertible in R. Let x ∈ Ker(P ). Define the
submodule M as in Corollary 3 and observe that it is finitely generated over
a local noetherian ring. Then the intersection in the corollary is zero by the
Krull intersection theorem, and hence x = 0. This proves that Ker(P ) = 0.

General case. Let x =
∑

i ai[ri] + a0[∗] ∈ Ker(P ). Define S to be the
subring of R generated by all ai and ri. Since S is a finitely generated ring,
and hence noetherian, the previous part of the proof shows that P : C ′(S)→
S is injective. Let i : S → R denote the injection. Then x = (C ′(i))(y), where
y =

∑
i ai[ri]+a0[∗] ∈ C ′(S). Since P (y) = P (x) = 0 we conclude that y = 0

and consequently x = 0. This completes the proof.

For p = 2 we obtain a part of [1, Theorem 1]:

Corollary 4. If n = 2l, l = 1, 2, . . . then the following are generating
relations between the generators [r] = rn − r of In(R):

[rs] = rn[s] + s[r], r, s ∈ R,(D)
[r + s] = [r] + [s] + N(r, s)[−1], r, s ∈ R.(C)

Proof. Since 2 = (−1)n − (−1) ∈ In(R), we obtain In(R) = I ′n(R). On
the other hand, [0] = [1] + [−1] +N(1,−1)[∗] in C ′n(R), and this shows that
[−1] = −N(1,−1)[∗] by Lemma 1(2). It is easy to see that N(1,−1) = −1,
and hence [−1] = [∗]. Therefore (C′) = (C) and finally (E) follows from (D)
by Lemma 1(1).
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