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FUNCTIONS OF A COMPLEX VARIABLE

Characteristic Exponents of Rational Functions
by

Anna ZDUNIK
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Summary. We consider two characteristic exponents of a rational function f : C— Cof
degree d > 2. The exponent X, (f) is the average of log || f’|| with respect to the measure
of maximal entropy. The exponent xm(f) can be defined as the maximal characteristic

exponent over all periodic orbits of f. We prove that xa(f) = xm(f) if and only if f(z) is

conformally conjugate to z — 2%

1. Introduction and statement of results. Let f : C — C be a
rational function of degree d > 2. In [BE], M. Barrett and A. Eremenko
considered the value K(f) = maxg ||f'||. Here and below, | f'|| always de-
notes the derivative with respect to the spherical metric,

1)1 = 1f'(2)]

1+ |2|2
L+ [f(z)]*
Among other issues, the authors of [BE] studied the behaviour of the

value K (-) under iterations of a given function. More precisely, denote by
f™ the nth iterate of f, and define

1 n
koo(f) = nh—golo g logK(f )
A slightly different maximum characteristic exponent is defined as
. 1 n
(1) Xm (f) = suplimsup —log || (f")'(2)].
z mn—oo N

Clearly,
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According to a result of Przytycki [P] (reproved in [GPRR]), koo (f) = xm (f)
and one can replace sup_ s in by the supremum over all periodic points:

2) ()= sup  lim log (/7Y (2)].

z€Per(f)NV7O N

Finally, let
(3) Xa(f) = \log || /|| dps

be the average of log || f'|| with respect to the unique measure of maximal
entropy. Denoting o = dimp(p) we can thus write

logd _ logd
4 o) = > _
(®) xalf) = 25 > 28
So, we have the following inequalities:
1
(5) 5 logd < Xa(f) < xm(f) < log K(f).

In the first inequality of () equality holds only for Lattes maps (see [Z]). The
authors of [BE] characterize the maps for which the third inequality becomes
an equality: xm,(f) = log K(f) iff the set M = {z : ||f'(2)|| = K(f)}
contains a periodic orbit of f. They remark that, according to a suggestion
of F. Przytycki, the method of my paper [Z] could probably be used to
prove that the equality x4 (f) = xm(f) holds if and only if f is conformally
conjugate to z —» z+9,

The aim of this note is to provide the proof of this fact. We have the
following

THEOREM 1. Let f : C — C be a rational function of degree d > 2.
Then xm(f) = xa(f) if and only if f is conformally conjugate to one of the
functions: z — 2%, z +— 27,

2. The proof of Theorem The proof is based on the corresponding
arguments in [Z]. We shall refer to several auxiliary facts proved in [Z].
As above, denote

. logd
a =dimyg(p) = .
m(p) Xa(f)
Set
(6) ¢ = alog | f'|| - logd.
Then |¢|P is p-integrable for all p > 0 (see e.g. [PUZ, Lemma 5]). Clearly,
¢ du=o0.

DEFINITION 2. With the notation above, we say that ¢ € L?() is coho-
mologous to zero in L?(y) if there exists u € L?(u) such that ¢ = uo f — u.
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Following [Z] we shall distinguish two cases, depending on whether ¢ is
cohomologous to 0 or not.

DEFINITION 3. A rational function f is called exceptional if ¢ is coho-
mologous to zero in L?(p).

The exceptional maps have been classified in [Z]. It turns out that for
an exceptional map we have o = 1 or a = 2 and the map is critically finite,
with parabolic orbifold (see [Z] for details). The only exceptional maps with
o =1 are (up to a conjugacy by a Mébius transformation): f(z) = 2% and
f(z) = & Chebyshev polynomial. For + Chebyshev polynomial of degree d
it is easy to see that x,,(f) = 2logd > xu(f) = logd. Obviously, we have
Xa(f) = xm(f) for f(z) = 74,

The case a = 2 corresponds to so-called Lattes examples. It has been
treated in [BE]. In this case, %logd =xa(f) < xm(f) = logd.

Thus, the rest of the proof of Theorem [I] relies on the following.

PROPOSITION 4. If a rational function f of degree d > 2 is not excep-
tional then xa(f) < xm(f)-

Proof. We recall the notation and some facts from [Z]. First, J = J(f)
denotes the Julia set of the map f. It can be defined as the topological
support of the measure y of maximal entropy. As in [Z], we work in the

natural extension (J, fi, f). See e.g. [PU] for the definition of the natural ex-

tension and its properties. The set J consists of two-sided infinite sequences
(trajectories)

(o Ty T (f1)s e s TO Ty e ey Thy - - )

such that f(z;) = xj41 for all j € Z. The invertible map f:J— Jis the
left shift. Let 7 : J — J be the projection onto the Oth coordinate. The
measure [ is invariant for the automorphism f and Txfb = L.

Let B = B(p,r) be a ball in C. We denote by 2B the ball B(p, 2r).

Let f,™ be a branch of f~". We say that this branch is (K, J, B)-good if
£, is well-defined in 2B and diam(f,™(B)) < K exp(—nd).

We recall, in a more convenient form, the Basic Lemma from [Z].

LEMMA 5 (Basic Lemma). Let f be a rational function of degree d > 2.
There exist 6 > 0 such that for every € > 0 there exist M € Z, and
K > 0 such that the following holds. If B is a ball in C and there are
no critical values of fM in 2B then there is a subset Ky C B = n~'(B)
of fi-measure greater than (1 — &)u(B) such that, for every k € Z4 and for
every (v.., Ty T i1y L0y T1,...) € Kp, we have

z_i, = f, " (20)

for some (K, 8, B)-good branch of f~F.
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To every € > 0 one can associate a family B of balls in the following
way: Choose some € > 0 and let M be the value assigned to € in the Basic
Lemma. Let p1,...,ps be the critical values of f™, and let By,..., B, be
the balls centred at p;’s with some radius 7. Let B be a cover of C \Ui, B
with balls of radius r/4. Clearly, we can assume that for every B € B,

(7) 2Bm{p17"')ps}:®a
so that for each B € B Lemma [5| applies. Moreover, since the measure p is
atomless, we can require that r is small enough, so that
(8) #(U f(B) >1- 22
BeB

Note that the family B, the radius r and the set | Jgcz Kp depend on &.

Recall that the function ¢ is given by @ Since ¢ is not cohomologous to 0
in L%(p), we know that the sequence ¢, ¢o f,¢o f2, ... satisfies the Central

Limit Theorem. This means that if we set Sp¢:= @+ ¢o f+---+po [~ L
the sequence of random variables defined in the measure space ((C B(C), p) by

Sno
ovn
tends to N(0,1) in distribution. Here, o # 0 is the so-called asymptotic
variance. See e.g. [PUZ, Section 4] for the proof of the Almost Sure Invariance
Principle in this context, or [DPU] for the proof of CLT relying on Gordin’s
method, or [Du] for a higher dimensional generalisation.

It follows that for every A > 0,

p({E e J: Sp(2) > Aoy/n} = 1—W(A) >0
where ¥ is the distribution function of the normal distribution N (0, 1).
Now, we fix some positive A. Next, we fix £ satisfying 1 — W(A) > 4é.
Let B be the family of balls assigned to € as described above. Using and

the invariance of the measure u we see that there exists a ball B € B such
that the inequality

a({E e J: 8,4(%) > Aoy/n and f*(z) € Kg}) > 5> 0

holds with some fixed § > 0 and for infinitely many n’s.

We now fix such a ball B. By the topological exactness of the map
f:J— J we have fl(iB) D J for some [ € N. Let ¢1, ..., gn be the critical
values of f!, and put D; = B(g;, p) for i = 1,...,m. Choose p small enough
to have

9) g({aée j:r(a?)géGDi, Sn16(7) > Aoy —1, P U(E )eKB}) >4
=1

Xn =

for some positive 5’ and infinitely many n’s.
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Let n € N be such that @D holds. Note that since @ is satisfied for
infinitely many n’s, we can require n to be as large as we wish. So we
assume additionally that n is so large that

(10) K exp(—(n — 1)8) < g

where the constants d, K come from Lemma [5| More conditions on n will
appear below.

For every & = (..., %—n,T_(n_1)s--+,T—1,T0,T1,--.,Tn,...) satisfying
@ one can choose a preimage of zy = 77( ) under f, lying in 1B We denote
this preimage by z!. We claim that there is a branch f; " Well defined in B,

such that f~"(z,—;) = 2. Indeed, let f; ™= be the (K, (5 M)-good branch
sending z,_; = 7(f" (%)) to zo = 7(Z). By definition of a good branch and

by (10| . we have

diam(f~ "D (B)) < K exp(—(n — 1)) < g
Since xo ¢ | D;,
<m, ) LJL)_@
Consequently,
(11) zo € f7"0(B) c B(xo, ) C C\U =

Therefore, branches of f~! are well defined in f, (n=0) (B). Let f, ! be the
branch mapping g to z'. The required branch f; ™ is the composition In bo

I

Set

S S ! <
2 fi(=)¢U L D; 1/ )1l

Then ||(f,*)]| < S, and using we get

(12)  diam f,;™(B) < § - diam f-""Y(B) < SK exp(—(n —1)6))
1

1
<"1 radius(B)

if n has been chosen large enough.

Since z! € fr M (B)N 1B we conclude from that f,"(B) C £ B. This
implies that there exists a fixed point of f, i.e. a periodic point of f, in %B.
Denote it by y.
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We shall estimate the derivative ||(f™)'(y)|| from below:

13) 1= 1 I 1D )l

1
- inf n—I\/ >
SN (i (IR

1
BH(f”*l)/(wo)ll
Here, D stands for the distortion estimate, in the ball B, of a spherical
derivative of the good branch f; (n_l); recall that this branch is defined on
the twice larger ball 2B. See e.g. [BKZ] or [PU] for a precise formulation of
the Spherical Koebe Distortion Theorem.

Consequently, we have

(14) log |(f*) ()|l = —log(SD) +log [|(f*~") (o) |

Aovn — -1l
> _log(SD) + ovn l+(n [)logd
! a
and
1 n 1 Aovn—1 n—1 logd
(15) —log [|(f")' ()l = ——log(SD) + + :
n n no n o
1
- ogd
a

if n was chosen large enough. Applying we see that

1 n
xXm(f) = —log ||(f") (y)ll > Xa(f)-
This ends the proof of Proposition {4 m

logd
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