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Summary. We prove that a compact family of bounded condensing multifunctions has
bounded condensing set-theoretic union. Compactness is understood in the sense of the
Chebyshev uniform semimetric induced by the Hausdorff distance and condensity is taken
w.r.t. the Hausdorff measure of noncompactness. As a tool, we present an estimate for
the measure of an infinite union. Then we apply our result to infinite iterated function
systems.

1. The space of multifunctions. Let (X,d) be a complete metric
space, and let zp € X, r > 0, A, B C X. We denote by B(zg, ) the open
r-ball at xg, by O,(A) = J,ea B(a,r) the r-neighbourhood of A, and by

h(A,B)=inf{r >0: AC O,(B), BC O,(4)}

the Hausdorff semimetric. Moreover, we denote by 2% the family of all
nonempty subsets of X, and by B(X) the family (or hyperspace) of non-
empty bounded subsets of X equipped with the Hausdorff semimetric h. The
symbol ¢ : X — X will stand for a multifunction with nonempty bounded
values. Such a ¢ can be identified with a mapping ¢ : X — B(X). The
image of A under ¢ is the set p(A) = (J,c4 ©(a). The set-theoretic union
of multifunctions ¢y : X — X, t € T, is U ot : X — X, (Ujer 1) () =
User wt(x) for 2 € X. For basic concepts of set-valued analysis see e.g. [HP].
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Let Z be a nonempty set. We introduce the following spaces:
BM(X,X)={¢: X — X :p(X) is bounded in X},
B(Z,B(X))={¢:Z — B(X) : {¢(2)}:ez is bounded in B(X)}.

The second space is furnished with the Chebyshev semimetric

hsup (01, 2) = Sup hlp1(2), pa2(2)]

for p1,92 : Z — B(X). We identify B(X) = B(*,B(X)) for x a singleton
and BM(X,X) = B(X,B(X)). In particular BM(X, X) is equipped with
the Chebyshev semimetric hgyp. Moreover, it is not hard to see the following:

LEMMA 1. If 1,09 : X —o X, then
sup hfp1(z), pa(x)] = sup hlpi(A), p2(A)].
zeX PAACX

Therefore, we have

PROPOSITION 1. The map j : BM(X, X) — B(2%X,B(X)), [j(p)](A4) =
©(A) for all o € BM(X,X) and A € 2%, is an isometric embedding, i.e. it
is an injection preserving the semimetric hgyp.

The operation j is called the united extension (see [W]).

LEMMA 2. Let X1, Xo be semimetric spaces, with X, isometrically em-
bedded in Xo via j : X1 — Xo. Then A C X1 is (pre)compact if and only if
](A) C X9 is.

Let & € BM(X, X) and let j be as in Proposition 1. Then, by Lemma 2,
the family @ is (pre)compact in BM(X, X) iff j(®) is (pre)compact in
B(2%,B(X)). Thus we can speak about hgyp-(pre)compactness with no am-
biguity.

2. Hausdorff measure of noncompactness. We recall that the Haus-
dorff measure of noncompactness on a (semi)metric space X is the functional
B :2% — [0, 00] defined by

k
B(A) = inf{r >0:3dxy,...,x2 € X, UB(mi,r) ) A}.

=1
Notice that §(A) = oo if and only if A is unbounded. In the case of the
hyperspace B(X) we shall write B#(Z,v) = {A € B(X) : h(A,Z) < v}
for the open v-ball with center Z € B(X), and 5% : 28(X) — [0, 00] for the
Hausdorff measure of noncompactness. More on measures of noncompact-
ness can be found in [AKPRS].

We have the following (cf. [CV, Remark after Theorem II-4, p. 41] and

[D, Chapt. 2, Sect. 7.4, pp. 42-43]):
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LEMMA 3 (Estimate for infinite unions). If {A;}ier C B(X), then

sup 3(40) < 5( | 4) < sup B(4) +25% ({Acher).

teT teT

Proof. Let v > % ({Ai}her), 0 > supser B(Ar). Then there exists a
finite family {Z;}}_, € B(X) such that U¥_, B#(Z;,v) D {A:}ier. Decom-
pose T = UfZITZ-, where T; = {t € T : Ay € B¥(Z;,v)}. For t € T; we have
Z; C Oy(Ay), Ay C O,(Z;). Further, pick t; € T; in each T;. Every Ay, can
be covered by balls, Ay, € U;¢ ;) B(#},0), with J(i) finite. As a result we
obtain

j€J
Z; C O,(Ag;) C U B(azé,u—f— o),
jed (@)
A, CcO,(Zi)C | B(aho+2v).
jeJ (@)
Since v, o were arbitrary, the desired inequality follows. =

Hence we infer a generalization of the well known equality 5(A; U Ag) =

max{((A1), 3(As2)}.

PROPOSITION 2. If {A:}: C B(X) is an h-precompact family, then

B(UJ4r) = sup sy,

3. Uniform Hausdorff upper semicontinuity. This section deals
with the notion of continuity introduced in [L2]. We say that a multifunction
p: X — X is uniformly Hausdorff upper semicontinuous if for each € > 0
and each closed subset A of X,

0lOsA] C Oz p(A)  for some ¢ > 0.

This type of continuity appears in Section 5 (for more details see [L2]; non-
trivial examples can be found in [HP] among those concerned with the differ-
ences between upper semicontinuity and Hausdorff upper semicontinuity).

THEOREM 1. Let {¢t : X — X}ier be an hgup-precompact family of
uniformly Hausdorff upper semicontinuous multifunctions. Then J,cp @t -
X — X is again uniformly Hausdorff upper semicontinuous.

Proof. Fix € > 0 and closed A C X. By hgup-precompactness choose a
finite £/3-net {¢, }¥_,, i.e., for each t there is i such that

hsup(‘Ptv Soti) < 5/3-
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Since @y, , . .., ¢y, are uniformly Hausdorff upper semicontinuous, for each 4
there is d;, > 0 such that ¢, [O5, (A)] C O3 ¢1,(A). Hence

(Pt[o&i(A)] - 05/390&' [05t1(‘4)] - 05/305/3[90152'("4)]
C Ogepp0(4) € Oc || Jor(4)].

Putting § = min{éd;, : i =1,...,k} we get |J, 9:[O5(A4)] C Oc[lUJ; 91 (A)].
Similarly to Theorem 1 one can prove

PROPOSITION 3. The subspace of BM(X, X) consisting of bounded uni-
formly Hausdorff upper semicontinuous multifunctions is closed in the hgup
semimetric.

So the hgup-limit of a sequence of uniformly Hausdorff upper semicon-
tinuous maps is again a map of the same kind.

4. Compact families of condensing maps. We say that a multifunc-
tion p: X —o X is:

e a (-contraction if there exists L < 1 such that
Blp(A)] < L-B(A)
for all A C X with 8(A) < oc;
e a (B-condensing map if
Blp(A)] < B(A)
for all A C X with §(A) < oo and Sp(A)] > 0.

Observe that every (-contraction is S-condensing.
We define, for every A C X, the evaluation map evy : BM(X, X) —
B(X) by eva(yp) = ¢(A) for all p € BM(X,X). From Lemma 1 we obtain:

LEMMA 4. For every A C X the evaluation map evy : BM(X,X) —
B(X) is nonexpansive, i.e.,
hleva(p1), eva(pz)] < hsup(p1, ¢2)-

Recall that the Hausdorff measure of noncompactness 3 : B(X) — [0, 00)
is nonexpansive, i.e., |3(A1) — B(A2)| < h(A1, A2); so, in particular, it is
continuous (e.g. [AKPRS]). Now we can state the main result.

THEOREM 2 (on compact unions of condensing maps). Let
{gOt : X —o X}tET C BM(X,X)

be an hgsup-compact family of bounded [(3-condensing multifunctions. Then
Uier ¢t : X — X is also a bounded (3-condensing map.
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Proof. Boundedness is obvious (just take a finite net of multifunctions).
To verify (-condensity, fix A C X with 8(A) < oco. Since {¢¢}ier is hsup-
compact, the family {¢¢(A)}er C B(X) is h-compact (Lemma 4). By con-
tinuity of 8 the function ¢ — [B[p:(A)] attains its maximum at some ¢.
Finally,

81U ()] = sup Bler(4)] = Bl (A)] < B(A)
teT teT
when the left hand side is > 0; the first equality follows from Proposition 2.

As one might expect, compactness cannot be weakened to precompact-
ness in Theorem 2. More exactly, an hg,p-precompact family of S-contrac-
tions need not have a B-condensing union. To see this, simply take the radial
projection g onto the closed unit ball in an infinite-dimensional Banach space
and the family {L - p}o<r<1 of f-contractive maps.

However, there still remains an open question: does the hg,p-compact
family of B-contractions have a [-contractive union? We only make some
observation in this direction.

One can associate with a multifunction ¢ : X — X its §-contractivity
constant

L(p) =inf{L > 0: Blp(A)] < L-B(A) for all A C X}.
It has the following property:

PROPOSITION 4. The extended real valued function BM(X,X) 3 ¢ —
L(p) € [0, 00] is lower semicontinuous.

Proof. Let hsup(¢n, ) — 0 as n — oo and A C X be bounded, i.e.
B(A) < oo. For every € > 0 there exists m such that ¢(A) C O.¢,(A) for
all n > m. Therefore

Ble(A)] < nigfnﬂ[son(/l)} +e< TjgfnL(sOn)-ﬁ(A) +¢,
Ble(A)] < SlntpgrzlfnL(son) - B(A);

so L(p) < liminf,, o L(py), which shows the lower semicontinuity (see e.g.
[HP]). m

Thus every hgup-compact family of 3-contractions contains one with the
minimal §-contractivity constant. We do not know any counterexample to
the conjecture that the maximal constant is also attained.

5. Application to iterated function systems. Iterated function sys-
tems (IF'S) have been extensively studied at various levels of generality ([Hu],
[SV], [Ha], [JGP], [H], [AF], [AG], [W], [E], [LM], [K]). Two streams of re-
search could be singled out: set-theoretical and topological. However, such
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divisions would be unsuitable, because of the natural interplay between or-
der and topology (see [CoV]).

Below we collect some necessary definitions from [L1] and [L2]. A family
{ot : X —o X}ier of multifunctions is said to be a multivalued iterated
function system, and the operator F : 2% — 2% F(A) = (J,cp p1(A) for
A € 2% is called its Barnsley—Hutchinson operator. In the case of a finite
family {¢1,...,¢k : X — X} one can always replace it with a singleton
{¢: X — X}, where ¢p(z) = Ule @i(x). Many properties of multifunctions,
like compactness and contractivity, are preserved under finite unions. Notice
also that a fixed point A, of F' generated by ¢ : X — X need not be
completely invariant under ¢, although ¢(A,) = A..

We say that a set M attracts A C X under ¢ if for every € > 0 there exists
ng such that F"(A) C O.M for all n > ng (F™ denotes the n-fold composi-
tion of F'). A minimal closed set M attracting all subsets of X (equivalently:
attracting the whole space X) is called an attractor (see [L2]). We point out
that the attractor M always has the form M = [, .y F"(X), and that our
notion differs slightly from the usual concept of global attractor. (The inter-
section [, F"(X) is not always an attractor: to see this, just consider the
time one map for an appropriate continuous flow on a halfplane).

A good example of a condensing map is provided by multivalued weak
contraction with compact values. This enables us to apply our results to
weakly contractive IFS’s (comp. [H], [W], [AF]).

Let n : [0,00) — [0,00) be a nondecreasing right-continuous function
such that n(0) =0, n(r) < r for r > 0.

A multifunction ¢ : X — X is a weak contraction provided there exists
a function 1 as above such that

hlo(x1), (x2)] < n(d(xz1,z2)) for all z1, zg € X.

PROPOSITION 5. If p : X —o X is a multivalued weak contraction with
compact values, then it is B-condensing.

Proof. Fix r > 3(A) > 0 and ¢ > 0. Next, find a finite r-net for A, i.e.,
U; B(zi,r) D A. Observing that ¢[B(x;,7)] C Oy )4ep(wi) We obtain

p(A) C U@[B(%’a?")] C UOU(THESD(SU@')-

Now, put K = |J,; ¢(x;), and cover it by a finite family of balls, K C
U; B(zj,¢). Hence we infer B[p(A4)] < n(r) + 2e. Finally, since r and ¢
were arbitrary,

Ble(A)] < dim n(r) =n[B(A)] < B(A).

r—B(A)
Additionally, if 3(A) = 0 then S[¢(A)] = 0, by continuity of . =
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We will need

THEOREM 3 (on attractors of condensing maps). Let X be a complete
space, o : X — X a bounded (-condensing multifunction, and F the
Barnsley—Hutchinson operator associated with ¢. Then there exists a com-
pact attractor M and a mazximal fixed point A, of F such that A, C M. If
additionally ¢ is uniformly Hausdorff upper semicontinuous, then Ay, = M.

This improvement on [L1] and [L2] can be obtained by applying the
observations made in [S] and Lemma 1.6.11 of [AKPRS].

Now, combining Theorems 3 and 2 we arrive at the following theorem
which is an improvement and partial generalization of some results from [W]
and [K].

THEOREM 4 (on attractors of compact families of condensing maps). Let
P ={pt: X — X} C BM(X,X) be an heup-compact family of bounded
B-condensing multifunctions, and let F' be the Barnsley—Hutchinson operator
associated with @. Then @ has a compact attractor M and F has a maximal
fized point A, such that A, C M. Moreover, if all p; are uniformly Hausdorff
upper semicontinuous, then A, = M.

Finally, note that all the results from Sections 1, 3 and 4 can be refor-
mulated for multifunctions which are not necessarily selfmaps.
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