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Summary. We study strongly exposed points in general Köthe–Bochner Banach spaces
X(E). We first give a characterization of strongly exposed points of the set of X-selections
of a measurable multifunction Γ . We then apply this result to the study of strongly exposed
points of the closed unit ball of X(E). Precisely we show that if an element f is a strongly
exposed point of BX(E), then |f | is a strongly exposed point of BX and f(ω)/‖f(ω)‖ is a
strongly exposed point of BE for µ-almost all ω ∈ S(f).

1. Introduction. Preliminary results. Let E be a separable Banach
space with norm ‖ · ‖, and (Ω,F , µ) be a complete σ-finite measure space.
A Köthe space X over (Ω,F , µ) is an ideal of the vector lattice L0(µ) of real
measurable functions which is equipped with a monotone norm ‖ · ‖X (i.e.
‖f‖X ≤ ‖g‖X whenever f, g ∈ X and |f | ≤ |g|) for which it is a Banach
space. The order dual X ′ associated to X is the space of all functions g in
L0(µ) such that supp(g) ⊂ supp(X) and fg ∈ L1(µ) for all f in X. It is
known that X ′ is a Banach space for the usual norm

‖g‖X′ := sup
{ �

Ω

fg dµ : f ∈ X and ‖f‖X ≤ 1
}
, g ∈ X ′,

and that X ′ is isometrically isomorphic to the topological dual X∗ if X is
order continuous.

Let us define the Köthe–Bochner Banach space X(E): given a vector
function f : Ω → E, we denote by |f | its modulus function defined by ω 7→
‖f(ω)‖. Let X(E) be the vector space of all Bochner measurable functions
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f : Ω → E such that |f | belongs to X. We will identify a function f in X(E)
with its equivalence class under the relation of equality µ-a.e. This leads to
defining a norm in X(E) by setting

‖f‖X(E) :=
∥∥|f |

∥∥
X
, f ∈ X(E).

The space X(E) is a Banach space for this norm.
For any vector function f : Ω → E, we define the support S(f) of f to

be the set of all ω in Ω such that f(ω) 6= 0.
Let K be a nonempty closed convex subset of E. We say that a point

x0 ∈ K is a strongly exposed point of K if there exists a linear form x∗ ∈ E∗
which strongly exposes K at x, that is, supx∗(K) = x∗(x0) and, whenever
{xn} ⊂ K and limn→∞ x∗(xn) = x∗(x), then limn→∞ ‖xn − x‖ = 0. We
will denote by Str-exp(K) the set (possibly empty) of all strongly exposed
points of K.

Strongly exposed points can be described in terms of slices. For K ⊂ E,
the slice of K determined by the functional x∗ in E∗ and δ > 0 is the subset
of K given by

S(x∗,K, δ) = {x ∈ K : x∗(x) > supx∗(K)− δ}.
In [8], Hu and B. L. Lin studied strongly exposed points in Lp-spaces

and proved that if f ∈ Lp(µ,X), ‖f‖ = 1 and f(t)/‖f(t)‖ ∈ Str-exp(BX)
for almost all t ∈ supp f , then f ∈ Str-exp(BLp(µ,X)). In 1998 P. K. Lin and
Sun [13] showed that for an order continuous Köthe Banach space X over
(Ω,F , µ), if an element f of the closed unit ball BX(E) of X(E) satisfies the
conditions:

(i) |f | is a strongly exposed point of BX ,
(ii) f(ω)/‖f(ω)‖ ∈ Str-exp(BE) for µ-almost all ω ∈ S(f),

then f is a strongly exposed point of BX(E).

In this paper, we first give a characterization of strongly exposed points
of the set of X-selections of a measurable multifuction Γ and we show that
the converse of the result of [13] is also true, i.e. if f is a strongly exposed
point of BX(E) then the conditions (i) and (ii) are satisfied.

2. Preliminary lemmas. Let us recall the following lemmas which pro-
vide some nice characterizations and properties of strongly exposed points.

Lemma 2.1. Let K be a closed convex subset of E, x0 ∈ K and x∗ ∈ E∗.
The following assertions are equivalent :

(i) x∗ strongly exposes K at x0.
(ii) For any ε > 0, there exists δ > 0 such that diamS(x∗,K, δ) < ε and

x0 ∈ S(x∗,K, δ), where diamS stands for the diameter of a subset S of E.
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(iii) supx∗(K) = x∗(x0) and for any ε > 0, there exists δ > 0 such that
for all x ∈ K, the condition x∗(x) > x∗(x0)− δ implies ‖x− x0‖ < ε.

Lemma 2.2. Let K0 be a convex closed subset of E and x0 ∈ K0 ⊂ K.
If x∗ strongly exposes K at x0, then x∗ strongly exposes K0 at x0.

The following classical lemma gives conditions under which strong con-
vergence in L1 follows from weak convergence.

Lemma 2.3. Let (fn) ⊂ L1(µ) and f ∈ L1(µ) be such that fn ⇀ f for
σ(L1, L∞) and f(t) ≤ lim infn→∞ fn(t) µ-a.e. Then limn→∞ ‖fn − f‖1 = 0.

We will also need the following theorem which is an extension of the
classical Riesz representation theorem to the case of X(E)∗. For a short
proof see [15].

Theorem 2.1. Suppose that the Köthe space X is order continuous.
Then, for any T ∈ X(E)∗, there exists a weak∗ measurable function g :
Ω → E∗ such that :

(i) The function |g| : t 7→ ‖g(t)‖ is measurable and belongs to X ′.
(ii) For any f ∈ X(E), T (f) = � Ω〈g, f〉 dµ.

(iii) ‖T‖ =
∥∥|g|

∥∥
X′ .

We denote by cc(E) the set of all nonempty closed convex subsets of E.
Let Γ : Ω → cc(E) be a given multifunction.

We shall say that the multifunction Γ is graph-measurable if its graph
gr(Γ ) := {(ω, x) ∈ Ω × E : x ∈ Γ (ω)} belongs to F ⊗ B(E), where B(E) is
the Borel tribe of E. A selection or section of Γ is a function σ : Ω → E
such that σ(ω) ∈ Γ (ω) for every ω ∈ Ω. It is well known (cf. [3], [7]) that
if Γ is graph-measurable, then Γ admits a measurable selection. We shall
denote by L0

Γ (µ) the set of all measurable selections of Γ .
Let X be a Köthe Banach space over (Ω,Σ, µ). We shall say that the

multifunction Γ : Ω → cc(E) is X-bounded if there exists a function g ∈ X+
such that Γ (ω) ⊂ g(ω)BE µ-a.e., where BE is the closed unit ball of E.

Denote by LXΓ (µ) the set of all selections σ of Γ such that σ ∈ X(E)
(that is, LXΓ (µ) = X(E) ∩ L0

Γ (µ)). It is clear that if Γ is graph-measurable
and X-bounded, then LXΓ (µ) is a nonempty closed convex subset of X(E).

In caseX = L1(µ), we speak of integrably bounded multifunctions instead
of X-bounded multifunctions, and write L1

Γ (µ) instead of LXΓ (µ).

3. The main results. We begin this section by stating the following
characterization of strongly exposed selections in X(E) of a measurable
multifunction. Similar results in the case of denting points are given in [1]
and [2].



12 H. Benabdellah and M. H. Lalaoui Rhali

Theorem 3.1. Let Γ : Ω → cc(E) be a graph-measurable and X-bounded
multifunction. Assume that f ∈ LXΓ (µ). Then f is a strongly exposed point
of LXΓ (µ) if and only if f(ω) is a strongly exposed point of Γ (ω) for almost
all ω ∈ Ω.

Proof. By considering Γ ′(ω) = Γ (ω)−f(ω), it suffices to prove the result
for f = 0. We can also suppose that µ is a probability measure and that
supp(X) = Ω. Let then β in X ′ be such that ‖β‖X′ = 1 and β(ω) > 0 for
all ω ∈ Ω. We also assume that Γ (ω) ⊂ α(ω)BE µ-a.e., where α ∈ X+.

By assumption, we have 0 ∈ Str-expΓ (ω) µ-a.e. Let us prove that 0 ∈
Str-expLXΓ (µ). For p ≥ 1 we put Ωp := {x ∈ Ω : p − 1 ≤ β(x) < p}. Then
we get a measurable partition {Ωp}p≥1 of Ω. Denote by pBσ

E∗ the closed
ball pBE∗ of E∗ equipped with the weak∗ topology, and recall that pBσ

E∗ is
a compact metric space. Let {σn}n≥0 be a Castaing representation of the
multifunction Γ . For every n, the function γpn : Ω × pBσ

E∗ → R, (ω, x∗) 7→
x∗(σn(ω)), is F ⊗B(pBσ

E∗)-measurable. It follows that the function γp : Ω×
pBσ

E∗ → R, (ω, x∗) 7→ supx∗(Γ (ω)) = supn γ
p
n(ω, x∗), is also F ⊗ B(pBσ

E∗)-
measurable. Consider the multifunction Σp : Ωp ⇒ pBσ

E∗ defined by

Σp(ω) := {x∗ ∈ E∗ : ‖x∗‖ ≤ β(ω) and

∀ε ∈ Q∗+,∃δ ∈ Q∗+ such that supx∗(Γ (ω)) < δ and

∀x ∈ Γ (ω), (x∗(x)> supx∗(Γ (ω))−δ ⇒ ‖x‖ ≤ ε)}.
From our hypothesis and Lemma 2.1, it is clear that for almost all ω ∈ Ωp,
the set Σp(ω) is nonempty. Moreover it is easy to check that

gr(Σp) =
⋂

ε∈Q∗+

⋃

δ∈Q∗+

Φp(ε, δ),

where

Φp(ε, δ) := {(ω, x∗) ∈ Ω × pBσ
E∗ : ‖x∗‖ ≤ β(ω), γ(ω, x∗) < δ and ∀n ≥ 0,

(x∗(σn(ω)) > γ(ω, x∗)− δ ⇒ ‖σn(ω)‖ ≤ ε)}.
It follows that gr(Σp) belongs to F ⊗ B(pBσ

E∗). By the Aumann selection
theorem ([3, Chap. III]), we can choose a measurable selection hp : Ωp →
pBσ

E∗ of the multifunction Σp. Putting h(ω) := hp(ω) for all p ≥ 1 and
ω ∈ Ωp, we get a weak∗ measurable function h from Ω to E∗ such that
µ-a.e., h(ω) strongly exposes Γ (ω) at 0. Moreover, |h| belongs to X ′ since
by construction ‖h(ω)‖ ≤ β(ω) on Ω. Consider the continuous linear form
h∗ on X(E), defined by

h∗(f) :=
�

Ω

h(ω)(f(ω))µ(dω), f ∈ X(E).

To complete the proof of the direct part of our theorem we shall prove that

(A) suph∗(X(E)) = 0.
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(B) For every sequence (gn) in LXΓ (µ),

lim
n→∞

h∗(gn) = 0 implies lim
n→∞

‖gn‖X(E) = 0.

Thus h∗ strongly exposes the closed convex set LXΓ (µ) at 0.
Let us prove (A). Since µ-a.e., h(ω) strongly exposes Γ (ω) at 0, we have

suph(ω)(Γ (ω)) = 0 µ-a.e.

Hence for every g ∈ LXΓ (µ),
�

Ω

h(ω)(g(ω))µ(dω) ≤ 0.

Thus suph∗(LXΓ (µ))≤ 0. As 0∈LXΓ (µ), we conclude that suph∗(LXΓ (µ)) = 0.
Let us prove (B). Assume that (gn) does not converge strongly to 0 in

X(E). Then we may suppose that, along a subsequence, ‖gn‖X(E) ≥ η for
some η > 0. Notice now that the sequence (〈h, gn〉)n≥0 of scalar functions
is uniformly integrable in L1(µ) since |〈h(ω), gn(ω)〉| ≤ α(ω) µ-a.e. It fol-
lows that it is relatively weakly compact in L1(µ). By the Eberlein–Šmulian
theorem we may assume that, along a subsequence, 〈h, gn〉 ⇀ φ weakly in
L1(µ) for some φ in L1(µ). Mazur’s theorem yields a sequence of convex
combinations g̃n ∈ co{gk : k ≥ n}, n ∈ N, such that

lim
n→∞

〈h(ω), g̃n(ω)〉 = φ(ω) µ-a.e.

Set g̃n :=
∑νn

i=n λ
n
i gi, where νn ≥ n, λni ≥ 0 and

∑νn
i=n λ

n
i = 1. We have

〈h(ω), g̃n(ω)〉 =
νn∑

i=n

λni 〈h(ω), gi(ω)〉 ≤ 0 µ-a.e.

Hence

φ(ω) ≤ 0 µ-a.e.(3.1)

On the other hand, by assumption we have � Ω〈h, gn〉dµ→ 0 and � Ω〈h, gn〉dµ
→ � Ω φdµ as n → ∞. Hence � Ω φdµ = 0 and from (3.1) it follows that
φ(ω) = 0 µ-a.e. Thus

lim
n→∞

〈h(ω), g̃n(ω)〉 = 0 µ-a.e.

Now we have µ-a.e.,

0 ≥ lim sup
n→∞

〈h(ω), gn(ω)〉 ≥ lim sup
n→∞

νn∑

i=n

λni 〈h(ω), gi(ω)〉

= lim
n→∞

〈h(ω), g̃n(ω)〉 = 0.

Hence

lim sup
n→∞

〈h(ω), gn(ω)〉 = lim inf
n→∞

−〈h(ω), gn(ω)〉 = 0 µ-a.e.
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Since 〈h, gn〉 → 0 weakly in L1(µ), we deduce by Lemma 2.3 that

lim
n→∞

�

Ω

|〈h, gn〉| dµ = 0.

Let (gnk) be a subsequence of (gn) such that limk→∞〈h(ω), gnk(ω)〉 = 0
µ-a.e. Since µ-a.e. h(ω) strongly exposes Γ (ω) at 0, we deduce that

lim
k→∞

‖gnk(ω)‖ = 0 µ-a.e.

Since X is order continuous we also deduce that ‖gnk‖X(E) → 0 as k →∞.
This contradicts the fact that ‖gn‖X(E) ≥ η for n ∈ N and finishes the proof
of the sufficiency part of the theorem.

Necessity. Assume that 0 is a strongly exposed point of LXΓ (µ). Without
loss of generality we can assume that 1Ω ∈ X. Indeed, there exists γ ∈ X+
such that ‖γ‖X = 1 and γ > 0 on Ω; then X is isometrically isomorphic
to the Köthe space (X1, ‖ · ‖X1), where X1 = (1/γ)X and ‖g‖X1 := ‖γg‖X .
Then, by Theorem 2.1, there exists a weak∗ measurable function h : Ω → E∗

such that |h| belongs to X ′ and the linear form h̃ : f 7→ � Ω〈h, f〉 dµ strongly
exposes the subset LXΓ (µ) of X(E) at 0. Given ε > 0 there exists δ > 0 such
that for every g ∈ LXΓ (µ),

�

Ω

〈h, g〉dµ > −δ ⇒ ‖g‖X(E) < ε.(3.2)

Let us first prove that

suph(ω)(Γ (ω)) = 0 µ-a.e.(3.3)

For n ∈ N and ω ∈ Ω, we set

An(ω) := {x ∈ Γ (ω) : suph(ω)(Γ (ω))− 2−n < h(ω)(x)}.
It is clear that the multifunction An : Ω ⇒ E is nonempty-valued and
its graph gr(An) belongs to F ⊗ B(E). Let un : Ω → E be a measurable
selection of An. We have

∀ω ∈ Ω, un(ω) ∈ Γ (ω), suph(ω)(Γ (ω))− 2−n < h(ω)(un(ω)).

Notice that the function γ : ω 7→ suph(ω)(Γ (ω)) is µ-integrable since
Γ (ω) ⊂ α(ω)BE µ-a.e. Moreover

�

Ω

γ(ω)µ(dω)− 2−n ≤
�

Ω

h(ω)(un(ω))µ(dω) ≤
�

Ω

γ(ω)µ(dω)

and letting n→∞, we get

lim
n→∞

�

Ω

h(ω)(un(ω))µ(dω) =
�

Ω

γ(ω)µ(dω).
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On the other hand, as un ∈ LXΓ (µ) and sup h̃(LXΓ (µ)) = 0 we have

0 ≥
�

Ω

h(ω)(un(ω))µ(dω),

so by passing once again to the limit as n→∞, we get

0 ≥
�

Ω

suph(ω)(Γ (ω))µ(dω) ≥ sup h̃(LXΓ (µ)) = 0.

Hence �

Ω

suph(ω)(Γ (ω))µ(dω) = 0.

As suph(ω)(Γ (ω)) ≥ 0 µ-a.e., we deduce that suph(ω)(Γ (ω)) = 0 µ-a.e.
To complete the proof of the theorem, we shall prove that

(C) For µ-almost every ω ∈ Ω, h(ω) strongly exposes Γ (ω) at 0.

Let Ω̃ denote the set of all ω ∈ Ω such that h(ω) strongly exposes Γ (ω)
at 0. By (3.3), we have

Ω̃ = {ω ∈ Ω : ∀ε ∈ Q∗+, ∃δ ∈ Q∗+ such that

∀x ∈ Γ (ω), (h(ω)(x) > −δ ⇒ ‖x‖ ≤ ε)}.
Using a Castaing representation of the multifunction Γ , we can prove, as in
the sufficiency step, that Ω̃ ∈ F . Condition (C) will be proved if we establish
that

(D) For every ε > 0, µ(Ω \ Ω̃) ≤ ε.
Let ε > 0. For n ≥ 1, set

Ω(ε, n) := {ω ∈ Ω : ∀δ ∈ Q∗+, ∃x ∈ Γ (ω) such that

h(ω)(x) > −δ and ‖x‖ > ε/2n}.
Using a Castaing representation of Γ , we can easily prove that Ω(ε, n) ∈ F .
Moreover,

Ω \ Ω̃ ⊂
∞⋃

n=1

Ω(ε, n).(3.4)

Fix η = ε/2n. Since h̃ strongly exposes LXΓ (µ) at 0, there is δ0 > 0 such that

∀g ∈ LXΓ (µ),
�

Ω

〈h, g〉dµ > −δ0 ⇒ ‖g‖X(E) ≤ η2.(3.5)

Set

Ωη := {ω ∈ Ω : ∃x ∈ Γ (ω) \ ηBE such that h(ω)(x) > −δ0}.
It is clear that Ωη ∈ F . Let us prove that

‖χΩη‖X ≤ η.(3.6)
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Assume otherwise. Then the set

M(ω) := {x ∈ Γ (ω) \ ηBE : h(ω)(x) > −δ0}
is nonempty for every ω ∈ Ωη. Moreover standard arguments shows that
the multifunction M : Ω ⇒ E has measurable graph in F ⊗ B(E). Let
v : Ωη → E be a measurable function such that v(ω) ∈ M(ω) for every
ω ∈ Ωη. Extend v to Ω by setting v(ω) := 0 for ω ∈ Ω\Ωη. Then v ∈ LXΓ (µ).
Moreover �

Ω

〈h, v〉 dµ >
�

Ωη

−δ0 dµ ≥ −δ0

(recall that µ(Ω) = 1 !) and

‖v‖X(E) =
∥∥χΩη |v|

∥∥
X(E) ≥ ‖ηχΩη‖X > η2.

Hence v ∈ LXΓ (µ), � Ω〈h, v〉 dµ > −δ0 and ‖v‖X(E) > η2. But this contradicts
(3.5). So condition (3.6) is proved.

Now we remark that Ω(ε, n) ⊂ Ωη and hence ‖χΩ(ε,n)‖X ≤ η = ε/2n.
Using (3.4) we get

‖χΩ\Ω̃‖X ≤
∞∑

n=1

‖χΩ(ε,n)‖X ≤ ε.

Since ε > 0 is arbitrary we get χΩ\Ω̃ = 0. This completes the proof of the
theorem.

We are now able to state the following theorem.

Theorem 3.2. Suppose that X is an order continuous Köthe Banach
space over (Ω,F , µ). Let f be in the closed unit ball BX(E) of X(E). If f
is a strongly exposed point of BX(E), then:

(i) |f | is a strongly exposed point of BX ;
(ii) f(ω)/‖f(ω)‖ ∈ Str- exp(BE) for µ-almost all ω ∈ S(f).

Proof. We may assume without loss of generality that supp(X) = Ω.
Suppose that f is a strongly exposed point of BX(E). To prove (i) and (ii),
consider the multifunction Γ defined on Ω by

Γ (ω) := ‖f(ω)‖BE for ω ∈ Ω.
It is obvious that LXΓ (µ) is a closed convex subset of BX(E) and that f lies in
LXΓ (µ). Hence f is also a strongly exposed point of LXΓ (µ). By Theorem 3.1,
f(ω) is a strongly exposed point of ‖f(ω)‖BE for µ-almost every ω ∈ Ω.
Thus (ii) is satisfied.

Let us prove (i). First, by assumption, there exists a linear form T in
X(E)∗ which strongly exposes BX(E) at f . We can suppose that ‖T‖ = 1.
Let g : Ω → E∗ given by Theorem 2.1 be such that T = 〈g, ·〉. We will prove
that the linear form T := 〈|g|, ·〉 strongly exposes BX at |f |.
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It is obvious that
∥∥|g|

∥∥
X′ = ‖f‖X(E) = 1. Moreover

1 = supT (BX(E)) = T (f) ≤
�

Ω

|g| |f | dµ ≤ 1.

Hence
T (|f |) = 1 = ‖T‖ = supT (BX).

Let (hn) be a sequence in BX such that limn→∞ T (hn) = 1. We will prove
that

∥∥|f | − hn
∥∥
X
→ 0 as n → ∞. First assume that the functions hn are

nonnegative. Note that

|g|(ω)hn(ω) = sup
u∈SE

〈g(ω), hn(ω)u〉 for ω ∈ Ω,(3.7)

where SE is the unit sphere of E. Since the measure µ is σ-finite, let γ : Ω
→ R+ be a measurable function such that γ(ω) > 0 on Ω and � Ω γ dµ = 1.
By (3.7) the set

Φn(ω) := {u ∈ SE : |g|(ω)hn(ω)− 2−nγ(ω) ≤ 〈g(ω), hn(ω)u〉}
is nonempty for all ω in Ω. The multifunction ω 7→ Φn(ω) from Ω to the
closed bounded subsets of E is obviously measurable. Let un : Ω → SE be
a measurable selection of Φn. Then

|g|(ω)hn(ω)− 2−nγ(ω) ≤ 〈g(ω), hn(ω)un(ω)〉,(3.8)

‖un(ω)‖ = 1 for ω ∈ Ω.
Set fn(ω) := hn(ω)un(ω) for ω ∈ Ω. Then (fn) is a sequence in X(E) such
that |fn| = hn and limn→∞ T (fn) = 1. Indeed, from (3.8) it is clear that

�

Ω

|g|hn dµ− 2−n ≤
�

Ω

〈g, fn〉 dµ

so the result follows. Now, since T strongly exposes BX(E) at f , we deduce
that

lim
n→∞

‖f − fn‖X(E) = 0.

By remarking that ∣∣|f | − hn
∣∣ ≤ |f − fn|

we finally deduce that limn→∞
∥∥|f | − hn

∥∥
X

= 0.
Suppose now that the functions hn are arbitrary (not necessarily non-

negative). Then the condition limn→∞ T (hn) = 1 implies obviously that

lim
n→∞

T (h+
n ) = lim

n→∞
T (|hn|) = 1.

So applying the preceding step to the sequences (h+
n ) and (|hn|) we deduce

that
lim
n→∞

∥∥|f | − h+
n

∥∥
X

= lim
n→∞

∥∥|f | − |hn|
∥∥
X

= 0.
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Hence hn = 2h+
n − |hn| converges strongly in X to |f |. This proves that T

strongly exposes BX at |f | and completes the proof of the theorem.
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