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Summary. We give sufficient and necessary conditions for complex extreme points of the
unit ball of Orlicz–Lorentz spaces, as well as we find criteria for the complex rotundity
and uniform complex rotundity of these spaces. As an application we show that the set of
norm-attaining operators is dense in the space of bounded linear operators from d∗(w, 1)
into d(w, 1), where d∗(w, 1) is a predual of a complex Lorentz sequence space d(w, 1), if
and only if w ∈ c0 \ `2.

1. Introduction. The notions of complex rotundity and uniform com-
plex rotundity have been introduced in [22] and [10], respectively. The mo-
tivation came from vector-valued analytic function theory. In [22], it was
proved that for any X-valued analytic function, the strong maximum mod-
ulus theorem holds true whenever X is a complex rotund Banach space.
Furthermore, in [22] it was shown that L1 is complex rotund, and later
on in [10] that it is also uniformly complex rotund. Characterizations of
complex (uniform) rotundity of Orlicz or Musielak–Orlicz spaces were given
in [6], while complex analogues of various moduli of convexity of a normed
space were studied in [7] and [9].

In this paper, we find criteria for complex extreme points of the unit ball
and for the complex rotundity and uniform complex rotundity of Orlicz–
Lorentz spaces. As corollaries we obtain the corresponding criteria for com-
plex rotundity in Lorentz spaces. These results extend the already known
criteria for real extreme points, rotundity and uniform rotundity in Lorentz
or Orlicz–Lorentz spaces (cf. [2, 12, 15, 16, 17]). In the last section we apply
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complex rotundity of Lorentz sequence spaces to provide an answer to the
problem raised in [1], in the case of complex spaces. In fact, employing the
strong maximum modulus theorem in the complex Lorentz sequence space
d(w, 1), we show that the set of norm-attaining operators is dense in the
space of bounded linear operators from d∗(w, 1) into d(w, 1), where d∗(w, 1)
is a predual of d(w, 1), if and only if w ∈ c0 \ `2.

Let R, R+, C and N denote the sets of all real, nonnegative real, complex
and natural numbers, respectively. We assume here that ϕ : R+ → R+ is
a Young function, that is, ϕ is convex, ϕ(0) = 0 and ϕ(u) > 0 for u > 0.
A non-increasing function w : [0, γ)→ (0,∞) locally integrable with respect
to the Lebesgue measure | | on [0, γ), where γ ≤ ∞, is called a weight
function. For f : [0, γ) → C measurable with respect to | |, define the
distribution function df (θ) = |{t ∈ [0, γ) : |f(t)| > θ}| for θ ≥ 0, and its
generalized inverse

f∗(t) = inf{θ > 0 : df (θ) ≤ t}, t ∈ [0, γ),

called the decreasing rearrangement of f . The Orlicz–Lorentz space Λϕ,w is
then defined as the set of all measurable functions f : [0, γ)→ C such that
%ϕ(λf) <∞ for some λ > 0, where

%ϕ(f) =
γ�

0

ϕ(f∗(t))w(t) dt =
γ�

0

ϕ(f∗)w.

The space Λϕ,w equipped with the norm

‖f‖ = inf{λ > 0 : %ϕ(f/λ) ≤ 1}
is a Banach space.

Now, let us define an Orlicz–Lorentz sequence space λϕ,w. Given a com-
plex-valued sequence x = {x(n)} = {x(n)}∞n=1, consider the function f(t) =∑∞

k=1 x(k)χ[k−1,k)(t), t ≥ 0, and define a decreasing rearrangement of x as
follows:

x∗(n) = f∗(n− 1), n ∈ N.
Let further w = {w(n)} be a weight sequence, that is, w(n) > 0 for all n ∈ N,
and {w(n)} is non-increasing with

∑∞
n=1w(n) = ∞. Then analogously to

the non-atomic case, the Orlicz–Lorentz sequence space λϕ,w consists of all
sequences x = {x(n)} such that for some λ > 0,

%ϕ(λx) =
∞∑

n=1

ϕ(λx∗(n))w(n) <∞,

and equipped with the norm ‖x‖ = inf{λ > 0 : %ϕ(x/λ) ≤ 1}, λϕ,w is a
Banach space. Observe here that the condition

∑∞
n=1w(n) = ∞ implies

that λϕ,w ↪→ c0.
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If ϕ(u) = up, 1 ≤ p <∞, then Λϕ,w (resp., λϕ,w) is a Lorentz space Λp,w
(resp., Lorentz sequence space d(w, p)) (cf. [12, 20]) with the norm

‖f‖ =
( γ�

0

(f∗)pw
)1/p (

resp., ‖x‖w,p =
( ∞∑

n=1

x∗(n)pw(n)
)1/p)

.

The spaces Λϕ,w and λϕ,w coincide with the Orlicz space Lϕ and the Orlicz
sequence space `ϕ, respectively ([21]), whenever w ≡ 1.

The functional %ϕ is a modular [21]. In particular %ϕ is convex and or-
thogonally subadditive, that is, for any measurable functions f, g, we have
%ϕ(αf + βg) ≤ α%ϕ(f) + β%ϕ(g) for α + β = 1, α, β ≥ 0 and %ϕ(f + g) ≤
%ϕ(f) + %ϕ(g) if min{|f |, |g|} = 0.

We shall further need several growth conditions on ϕ or w. We say that
ϕ satisfies the ∆w

2 -condition if in the case of � γ0 w < ∞ (resp., � γ0 w = ∞)
there exist K ≥ 1 and x0 ≥ 0 (resp., there is K ≥ 1) such that

ϕ(2x) ≤ Kϕ(x) for all x ≥ x0 (resp. for all x ≥ 0).

Recall also that ϕ satisfies the δ2-condition if there exist x0 > 0 and K > 0
such that

ϕ(2x) ≤ Kϕ(x) for all 0 ≤ x ≤ x0.

The weight function w is regular if

K = inf
0<x<γ/2

� 2x
0 w

� x0 w
> 1.

Most of the results collected in the next lemma are well known, and they
correspond to the analogous results in Orlicz spaces [6]. We provide the
proof here for the sake of completeness.

Lemma 1.1. Suppose that ϕ satisfies the ∆w
2 -condition and let f, fn

∈ Λϕ,w. Then:

(1) %ϕ(fn)→∞ if and only if ‖fn‖ → ∞.
(2) For any ε ∈ (0, 1), there exists δ > 0 such that if %ϕ(f) ≤ 1− ε then

‖f‖ ≤ 1− δ.
(3) For any ε ∈ (0, 1), there exists δ > 0 such that if %ϕ(f) ≥ 1 + ε then

‖f‖ ≥ 1 + δ.
(4) %ϕ(fn)→ 1 if and only if ‖fn‖ → 1.
(5) Norm and modular convergence are equivalent , i.e., %ϕ(fn) → 0 if

and only if ‖fn‖ → 0.

Proof. (1) Suppose first that � γ0 w =∞. Then the ∆w
2 -condition is satis-

fied for all arguments. If {‖fn‖} is bounded, then there is m ∈ N such that
‖fn‖ ≤ 2m for all n ∈ N. So %ϕ(fn/2m) ≤ 1 for all n ∈ N, and thus for every
n ∈ N,
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%ϕ(fn) ≤ Km%ϕ(fn/2m) ≤ Km,

which shows that {%ϕ(fn)} is bounded. Suppose now that � γ0 w < ∞. As
above, if {‖fn‖} is bounded, then there is m ∈ N such that %ϕ(fn/2m) ≤ 1
for all n ∈ N. Then for x0 from the ∆w

2 -condition and every n ∈ N,

%ϕ(fn) ≤ %ϕ(fnχ{|fn|≤2mx0}) + %ϕ(fnχ{|fn|>2mx0})

≤ ϕ(2mx0)
γ�

0

w +Km%ϕ(fn/2m)

≤ ϕ(2mx0)
γ�

0

w +Km <∞.

This proves that if %ϕ(fn) → ∞ then ‖fn‖ → ∞. The converse implication
is obvious by definition of ‖ ‖.

Suppose that (2) does not hold. Then there is ε > 0 and a sequence {fn}
such that %ϕ(fn) < 1 − ε and 1/2 ≤ ‖fn‖ ↑ 1. Let L = supn{%ϕ(2fn)} and
an = ‖fn‖−1 − 1. By (1), L <∞. Then for every n ∈ N,

1 = %ϕ(fn/‖fn‖) = %ϕ(2anfn + (1− an)fn) ≤ an%ϕ(2fn) + (1− an)%ϕ(fn)

≤ anL+ 1− ε→ 1− ε as n→∞,
which is a contradiction.

Suppose now that (3) does not hold. Then there are ε > 0 and a sequence
{fn} such that %ϕ(fn) > 1 + ε, ‖fn‖ ↓ 1 and 1 ≤ ‖fn‖ ≤ 2, n ∈ N. Setting
now bn = ‖fn‖/(2‖fn‖ − 1), we obtain

1 + ε < %ϕ(fn) = %ϕ

(
bn

fn
‖fn‖

+ (1− bn)2fn

)

≤ bn%ϕ
(

fn
‖fn‖

)
+ (1− bn)%ϕ(2fn)

≤ bn + (1− bn)L→ 1 as n→∞,
which is a contradiction again. The last two claims are easy consequences
of (1)–(3) and properties of %ϕ and ‖ ‖.

Remark 1.2. Notice that Lemma 1.1 also holds in Orlicz–Lorentz se-
quence spaces if we replace the ∆w

2 -condition by the δ2-condition.

Finally, recall the following auxiliary results on geometric properties of
Orlicz–Lorentz spaces.

Theorem 1.3 ([5, 16]). The following conditions are equivalent.

(1) ϕ satisfies the ∆w
2 -condition and � γ0 w = ∞ if γ = ∞ (resp., ϕ sat-

isfies the δ2-condition).
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(2) No isometric copy of `∞ is contained in Λϕ,w (resp., λϕ,w).
(3) Λϕ,w (resp., λϕ,w) is separable.

Recall that a Banach space X contains `np ’s λ-uniformly or contains
λ-uniformly copies of all `np ’s (for λ > 1 and 1 ≤ p ≤ ∞) if for each n ∈ N
there is an n-dimensional subspace E of X together with an isomorphism
Un : `np → E such that ‖Un‖ ‖U−1

n ‖ < λ ([8]).

Theorem 1.4 ([19]). Suppose that the weight function w is not regular.
Then Λϕ,w contains `n∞’s λ-uniformly for all λ > 1.

A measurable function f : [0,∞) → C satisfies condition (+) if there
is θ1 ≥ 0 such that |f(t)| ≥ θ1 a.e. and d|f |−θ1(θ) < ∞ for all θ > 0.
Equivalently, f satisfies condition (+) if for all θ > 0 either df (θ) < ∞ or
|{t : |f(t)| < θ}| = 0.

Lemma 1.5 ([15, 16]). Suppose that f satisfies condition (+) and there
exists A ⊂ [0, γ) with positive measure such that |f(t)| < |g(t)| for all t ∈ A
and |f | ≤ |g|. Then there exists a set B with positive measure such that
f∗(t) < g∗(t) for t ∈ B.

2. Complex rotundity of Orlicz–Lorentz spaces. An element x of
the unit sphere SX of a complex Banach space (X, ‖ ‖) is a complex extreme
point of the unit ball BX of X if {x + ζy : |ζ| ≤ 1, ζ ∈ C} ⊂ BX for some
y ∈ X implies that y = 0. A complex Banach space is complex rotund if
every element of the unit sphere is a complex extreme point of its unit ball.
It has been shown in [22] that L∞ or `∞ are not complex rotund, while
L1 or `1 have this property. This clearly shows that complex rotundity and
rotundity (in the usual real sense) are very different properties.

Now, we characterize the complex extreme points of the unit ball of Λϕ,w.

Theorem 2.1. A function f ∈ Λϕ,w is a complex extreme point of the
unit ball of Λϕ,w if and only if the following conditions are satisfied :

(1) %ϕ(f) = 1,
(2) f satisfies condition (+).

Proof. First recall [3] that for any measurable functions hi, i = 1, 2, on
[0, γ) we have

γ�

0

(h1 + h2)∗w ≤
γ�

0

h∗1w +
γ�

0

h∗2w.

Now suppose that f satisfies (1) and (2) and assume that ‖f + ζg‖ ≤ 1 for
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all |ζ| ≤ 1 for some g ∈ Λϕ,w. So, in view of the above inequality,

1 =
γ�

0

ϕ(f∗)w ≤
γ�

0

ϕ(|f |)∗w ≤
γ�

0

(
ϕ(|f + ζg|)

2
+
ϕ(|f − ζg|)

2

)∗
w

≤
γ�

0

(
ϕ(|f + ζg|)∗

2
+
ϕ(|f − ζg|)∗

2

)
w ≤ 1.

Hence for any |ζ| ≤ 1,

ϕ(|f |)∗ =
(
ϕ(|f + ζg|)

2
+
ϕ(|f − ζg|)

2

)∗
.

But by condition (+) and Lemma 1.5, the last equality implies that for
|ζ| ≤ 1,

ϕ(|f |) = 1
2(ϕ(|f + ζg|) + ϕ(|f − ζg|)) a.e.

Without loss of generality we may assume that the equality above holds for
all t ∈ [0, γ). Using the convexity of ϕ, for each t ∈ [0, γ), there exist α > 0
and β ∈ R such that

ϕ(|f(t)|) = α|f(t)|+ β,

and for all u ∈ R+,
ϕ(u) ≥ αu+ β.

For fixed t ∈ [0, γ), there exist α > 0 and β ∈ R so that for all |ζ| ≤ 1,

ϕ(|f(t)|) = α|f(t)|+ β = 1
2(ϕ(|f(t) + ζg(t)|) + ϕ(|f(t)− ζg(t)|))

≥ 1
2(α|f(t) + ζg(t)|+ β + α|f(t)− ζg(t)|+ β).

Hence for all |ζ| ≤ 1 and t ∈ [0, γ),

2|f(t)| = |f(t) + ζg(t)|+ |f(t)− ζg(t)|.
This implies that g = 0 and proves the sufficiency.

Assume now that f ∈ SΛϕ,w is a complex extreme point of BΛϕ,w . To
show (1) suppose that %ϕ(f) < 1 and ‖f‖ = 1. By the definition of the
norm, %ϕ(rf) = ∞ for all r > 1. Setting T = supp f = {t : f(t) 6= 0} and
a = 1− %ϕ(f), we have a > 0. First we shall prove that there is A0 ⊂ T so
that |A0| > 0 and %ϕ(fχA0) < a, and %ϕ(rfχA0) <∞ for all r > 1. In fact,
take Bn so that T =

⋃
nBn and |Bn| <∞. We also have T =

⋃
nDn, where

Dn = {t ∈ T : |f(t)| ≤ n}. Clearly, T =
⋃
n,mBn ∩Dm. Since |T | > 0, there

exist n,m ∈ N such that |Dn ∩ Bm| > 0. Denoting by D the set Dn ∩ Bm
we have 0 < |D| <∞, D ⊂ T , and

%ϕ(fχD) ≤
γ�

0

ϕ(nχD)∗w =
γ�

0

ϕ(n)χ[0,|D|)w = ϕ(n)
|D|�

0

w <∞,
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by the local integrability of w. By the absolute continuity of the integral,
there exists A0 ⊂ D such that

%ϕ(fχA0) ≤ ϕ(n)
|A0|�

0

w < a.

For r > 1 we also have

%ϕ(rfχA0) ≤ ϕ(rn)
|A0|�

0

w <∞.

Continuity of the function r 7→ %ϕ(rfχA0), r > 0, yields %ϕ(r1fχA0) = a for
some r1 > 1. Choose δ > 0 so that |z + 1| ≤ r1 for all |z| ≤ δ. Then setting
g = δfχA0, we have for all |ζ| ≤ 1,

%ϕ(f + ζg) = %ϕ(fχT\A0 + (1 + ζδ)fχA0)

≤ %ϕ(f) + %ϕ(r1fχA0) = %ϕ(f) + a = 1.

Hence ‖f + ζg‖ ≤ 1 for all |ζ| ≤ 1, where g 6= 0 a.e., so f is not a complex
extreme point.

In order to show (2) suppose that f does not satisfy condition (+). This
clearly implies that γ = ∞. Then there is θ > 0 such that df (θ) = ∞ and
|{t : |f(t)| < θ}| > 0. Defining A = {t : |f(t)| < θ} we choose a set A1 ⊂ A
with positive measure and a > 0 such that |f(t)| ≤ θ − 2a for all t ∈ A1.
Letting g(t) = aχA1(t), we have (f + ζg)∗ = f∗ for all |ζ| ≤ 1. This shows
that f is not a complex extreme point and completes the proof.

Corollary 2.2. The complex Orlicz–Lorentz space Λϕ,w is complex ro-
tund if and only if (i) ϕ satisfies the ∆w

2 -condition and (ii) � ∞0 w = ∞ if
γ =∞.

Proof. Suppose that (i) or (ii) does not hold. Then by Theorem 1.3,
there is an isometric copy of `∞ contained in Λϕ,w. Since `∞ is not complex
rotund, neither is Λϕ,w.

Suppose now that conditions (i) and (ii) are satisfied. Then by Lem-
ma 1.1, ‖f‖ = 1 if and only if %ϕ(f) = 1. If γ < ∞ then clearly every
element in Λϕ,w satisfies condition (+). Then by Theorem 2.1, Λϕ,w is com-
plex rotund. If γ =∞, then for every θ > 0 and every f ∈ Λϕ,w,

∞�

0

ϕ(θ(χ{t : |f(t)|>θ})
∗)w = ϕ(θ)

|{|f |>θ}|�

0

w ≤
∞�

0

ϕ(f)∗w <∞.

So |{t : |f(t)| > θ}| < ∞. Therefore every element in Λϕ,w satisfies con-
dition (+). Again Theorem 2.1 shows that Λϕ,w is complex rotund. This
completes the proof.
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Corollary 2.3. An element of the unit sphere of a Lorentz space Λp,w,
1 ≤ p < ∞, is a complex extreme point if and only if it satisfies condi-
tion (+).

Corollary 2.4. The Lorentz space Λp,w, 1 ≤ p <∞, is complex rotund
if and only if � ∞0 w =∞ when γ =∞.

We finish this section with a result on complex rotundity in the sequence
Orlicz–Lorentz space.

Theorem 2.5. The Orlicz–Lorentz sequence space λϕ,w is complex ro-
tund if and only if ϕ satisfies the δ2-condition.

Proof. If ϕ does not satisfy the δ2-condition, then by Theorem 1.3 there
is an isometric copy of `∞ in λϕ,w, and so λϕ,w cannot be complex rotund.
Conversely, suppose that ϕ satisfies the δ2-condition. Take x ∈ Sλϕ,w and
y ∈ λϕ,w such that ‖x + ζy‖ ≤ 1 for all |ζ| ≤ 1. Then by the δ2-condition,
Lemma 1.1 and Remark 1.2, %ϕ(x) = 1. Moreover, there exists a permutation
σ : N → N such that x∗(n) = |x(σ(n))|, since limn→∞ x(n) = 0. Then, by
the Hardy–Littlewood inequality [3] for each |ζ| ≤ 1,
∞∑

n=1

ϕ(|x(σ(n))+ζy(σ(n))|)w(n) ≤
∞∑

n=1

ϕ((x+ζy)∗(n))w(n) = %ϕ(x+ζy) ≤ 1.

Hence for each |ζ| ≤ 1,

1 = %ϕ(x) =
∞∑

n=1

ϕ(|x(σ(n))|)w(n)

≤ 1
2

∞∑

n=1

(ϕ(|x(σ(n)) + ζy(σ(n))|) + ϕ(|x(σ(n))− ζy(σ(n))|))w(n) ≤ 1.

This implies that for each |ζ| ≤ 1 and n ∈ N,

ϕ(|x(σ(n))|) = 1
2(ϕ(|x(σ(n)) + ζy(σ(n))|) + ϕ(|x(σ(n))− ζy(σ(n))|)).

By the same argument as in the proof of Theorem 2.1, we infer that y = 0
and this completes the proof.

Corollary 2.6. The Lorentz sequence space d(w, p) is complex rotund
for all 1 ≤ p <∞.

3. Uniform complex rotundity of Orlicz–Lorentz spaces. We say
that a complex Banach space (X, ‖ ‖) is uniformly complex rotund , called
further uniformly c-convex , if for any ε > 0, there exists δ = δ(ε) > 0
such that if x, y ∈ X, ‖y‖ > ε and ‖x + ζy‖ ≤ 1 for all |ζ| ≤ 1 then
‖x‖ ≤ 1 − δ. Notice that every uniformly convex complex Banach space is
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uniformly c-convex. But in general the converse is not true, since it is well
known that L1 is uniformly c-convex [10].

The following moduli of complex convexity for a Banach space X were
introduced in [7]. For 0 < p <∞ and 0 ≤ ε ≤ 2, we define

HX
p (ε) = inf

{(
1

2π

2π�

0

‖x+ eiθy‖pdθ
)1/p

− 1 : ‖x‖ = 1, ‖y‖ = ε

}
,

HX
∞(ε) = inf{sup{‖x+ eiθy‖ : 0 ≤ θ ≤ 2π} − 1 : ‖x‖ = 1, ‖y‖ = ε}.

Let f and g be non-negative, non-decreasing functions on [0, 2]. We shall
write f 4 g if there is K ≥ 1 such that f(ε/K) ≤ Kg(ε) for all 0 < ε < 1/K.
We write f ∼ g (f and g are then said to be equivalent at zero) if f 4 g
and g 4 f . It has been showed in [7] that for 0 < p < ∞, the moduli HX

p

are all equivalent at zero.
We shall say that a complex Banach space (X, ‖ ‖) is uniformly PL-

convex (resp., uniformly HX
∞-convex ) if HX

1 (ε) > 0 for all ε > 0 (resp.,
HX
∞(ε) > 0 for all ε > 0). It is clear that X is uniformly c-convex if and only

if it is HX
∞-convex. Moreover, HX

∞(ε) ≥ HX
1 (ε), and in [9] it was showed

that there exists A > 0 such that for every complex Banach space X,
A(HX

∞(ε))2 ≤ HX
1 (ε) for all 0 < ε ≤ 1. This implies that for complex

Banach spaces the notions of uniform c-convexity, uniform HX
∞-convexity

and uniform PL-convexity coincide.
We will next investigate uniform c-convexity of Orlicz–Lorentz spaces.

Recall the following useful facts about uniform c-convexity.

Lemma 3.1 ([6]). Let X be a complex Banach space. Then the following
conditions are equivalent.

(1) X is uniformly c-convex.
(2) For every ε > 0, there is δ(ε) > 0 such that x, y ∈ X, ‖y‖ > ε,

‖x+ ζy‖ ≤ 1 for all ζ = ±1,±i implies ‖x‖ ≤ 1− δ(ε).
(3) For every ε > 0, there is δ(ε) > 0 such that for any x, y ∈ X,

‖y‖ ≥ εmax{‖x+ y‖, ‖x− y‖, ‖x+ iy‖, ‖x− iy‖}
implies

‖x‖ ≤ 1− δ(ε)
4

(‖x+ y‖+ ‖x− y‖+ ‖x+ iy‖+ ‖x− iy‖).
Notice that C with the absolute value as a norm is a uniformly c-convex

space.
The following lemma will allow us to reduce the investigations of the

norm in Λϕ,w to the modular %ϕ.

Lemma 3.2. Suppose ϕ satisfies the ∆w
2 -condition. Then the Orlicz–

Lorentz space Λϕ,w is uniformly c-convex if and only if %ϕ is uniformly
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c-convex , i.e. for any ε > 0, there exists δ = δ(ε) > 0 such that if f, g ∈ Λϕ,w
and

%ϕ(g) > ε, %ϕ(f + ζg) ≤ 1 for all |ζ| ≤ 1

(or equivalently for all ζ = ±1,±i), then %ϕ(f) ≤ 1− δ.

Proof. Suppose ϕ satisfies the ∆w
2 -condition and assume Λϕ,w is not

uniformly c-convex. Then there are ε0 > 0 and sequences {fn}, {gn} in Λϕ,w
so that for every n ∈ N and every |ζ| ≤ 1,

‖fn + ζgn‖ ≤ 1, ‖gn‖ ≥ ε0, lim
n
‖fn‖ = 1.

By definition of ‖ ‖ it follows that %ϕ(fn + ζgn) ≤ 1. Moreover, by Lem-
ma 1.1(4), limn %ϕ(fn) = 1, and by Lemma 1.1(5), there exists ε1 > 0 such
that %ϕ(gn) ≥ ε1 for every n ∈ N. So %ϕ is not uniformly c-convex. The
converse can be proved by a similar argument.

For a regular weight w we obtain the following lemma (cf. [12]).

Lemma 3.3. Suppose that the weight function w is regular , so that

K = inf
0<x<γ/2

� 2x
0 w

� x0 w
> 1.(3.1)

Then for fixed m ∈ N, there is θ = θ(m) > 0 such that for every σ ∈
(0, γ/(2m + 1)),

(2m+1)σ�

2mσ

w ≥ θ
σ�

0

w.(3.2)

If γ <∞ then for each 0 < a < 1, there is θ = θ(a) > 0 such that for every
σ ∈ [aγ, γ],

γ�

γ−σ
w ≥ θ

σ�

0

w.(3.3)

Proof. Let 0 < σ < γ/2m+1. Since w is non-increasing,
(2m+1)σ�

2mσ

w ≥ 1
2m

2m+1σ�

2mσ

w.

Then

� (2m+1)σ
2mσ w

� σ0 w
=

� (2m+1)σ
2mσ w

� 2mσ
0 w

� 2mσ
0 w

� σ0 w
≥ Km � (2m+1)σ

2mσ w

� 2mσ
0 w

≥
(
K

2

)m � 2m+1σ
2mσ w

� 2mσ
0 w

=
(
K

2

)m � 2m+1σ
0 w − � 2mσ

0 w

� 2mσ
0 w

≥
(
K

2

)m
(K − 1) > 0.
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So θ = (K/2)m(K − 1) > 0 satisfies (3.2) if γ = ∞. Now if γ < ∞ and
γ/2m+1≤ σ < γ/(2m+1), then θ = min{(K/2)m(K−1), � γ(1−2−m−1)γ w/ � γ0 w}
> 0 satisfies (3.2) if γ < ∞. For the last claim, if γ < ∞ then notice that
the function σ 7→ � γγ−σ w/ � σ0 w is positive and continuous on [aγ, γ]. So there
is θ = θ(a) > 0 such that for every aγ ≤ σ ≤ γ,

γ�

γ−σ
w ≥ θ

σ�

0

w,

which completes the proof.

Theorem 3.4. The Orlicz–Lorentz space Λϕ,w is uniformly c-convex if
and only if the following conditions are fulfilled :

(1) ϕ satisfies the ∆w
2 -condition;

(2) the weight function w is regular.

Proof. Suppose that ϕ satisfies the ∆w
2 -condition and w is regular, but

Λϕ,w is not uniformly c-convex. By Lemma 3.2, %ϕ is not uniformly c-convex.
So there are ε > 0 and sequences {fn}, {gn} in Λϕ,w so that for every n ∈ N
and every |ζ| ≤ 1,

%ϕ(fn + ζgn) ≤ 1, %ϕ(gn) ≥ 2ε, lim
n
%ϕ(fn) = 1.

By Theorem 1.3, Λϕ,w is separable. Then the family of all simple functions
with supports of finite measure is dense in Λϕ,w. So we may assume that
for each n ∈ N there is ξn > 0 so that both fn and gn are constant on each
interval of the form [(k−1)ξn, kξn) ∈ [0, γ), k ∈ N, and both fn and gn have
supports of finite measure.

For n ∈ N, let

En =
{
t ∈ [0, γ) : |gn(t)| ≥ ε

4
max{|fn(t) + ζgn(t)| : ζ = ±1,±i}

}
.

Then
%ϕ(gnχEc

n
) ≤ ε

4

∑

ζ=±1,±i
%ϕ(fn + ζgn) ≤ ε,

where Ec
n = [0, γ)\En. Hence 2ε ≤ %ϕ(gn) ≤ %ϕ(gnχEn)+%ϕ(gnχEc

n
) implies

that
%ϕ(gnχEn) ≥ ε.(3.4)

Setting

sn =
1
4

∑

ζ=±1,±i
ϕ(|fn + ζgn|) =

1
4

∑

ζ=±1,±i
ϕ(|gn + ζfn|),

by the uniform convexity of C there is δ1 > 0 such that for all n ∈ N and
all t ∈ En,
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ϕ(|fn(t)|) ≤ 1− δ1

4

∑

ζ=±1,±i
ϕ(|fn(t) + ζgn(t)|) = (1− δ1)sn(t).

Notice that for every t ∈ [0, γ),

ϕ(|fn(t)|) ≤ sn(t), ϕ(|gn(t)|) ≤ sn(t).

Let
hn = (1− δ1)snχE + ϕ(|fn|)χEc

n
.

We use here the method invented in [12]. For convenience, we further omit
the index n. Thus, until the end of the proof, f, g, h, s, E and ξ will stand
for fn, gn, hn, sn, En and ξn, respectively. Since f and g are constant on each
interval [(k − 1)ξ, kξ) and have supports of finite measure, it follows that h
as well as hχE are constant on each interval [(k− 1)ξ, kξ) and have a finite
number of values. Thus, for some j, r ∈ N,

h∗ =
j∑

i=1

hiχ[(i−1)ξ,iξ), (hχE)∗ =
r∑

k=1

hikχ[(k−1)ξ,kξ),

(sχE)∗ =
1

1− δ1

r∑

k=1

hikχ[(k−1)ξ,kξ) =
r∑

k=1

skχ[(k−1)ξ,kξ),

where h1 ≥ . . . ≥ hj > 0, hi1 ≥ . . . ≥ hir > 0 and sk = 1
1−δ1h

ik . Notice that
for each t ∈ [(ik − 1)ξ, ikξ),

h∗(t) +
δ1

1− δ1
h∗(t) = hik +

δ1

1− δ1
hik = sk.

Hence by the Hardy–Littlewood inequality [3],
γ�

0

h∗w +
δ1

1− δ1

r∑

k=1

ikξ�

(ik−1)ξ

h∗w

=
r∑

k=1

ikξ�

(ik−1)ξ

(
h∗w +

δ1

1− δ1
h∗w

)
+

∑

j∈{1,...,n}
j 6∈{i1,...,ir}

jξ�

(j−1)ξ

h∗w

≤
r∑

k=1

sk
ikξ�

(ik−1)ξ

w +
∑

j∈{1,...,n}
j 6∈{i1,...,ir}

jξ�

(j−1)ξ

s∗w

≤
γ�

0

s∗w =
γ�

0

1
4

( ∑

ζ=±1,±i
ϕ(|f + ζg|)∗w

)

=
1
4

∑

ζ=±1,±i
%ϕ(|f + ζg|) ≤ 1.
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Since h∗ ≥ ϕ(|f |)∗,
γ�

0

h∗w ≥ %ϕ(f)→ 1.(3.5)

Thus
r∑

k=1

ikξ�

(ik−1)ξ

h∗w → 0.(3.6)

Moreover, in view of (3.4) we get
γ�

0

(hχE)∗w = (1− δ1)
γ�

0

(sχE)∗w(3.7)

≥ (1− δ1)
γ�

0

ϕ(|g|χE)∗w = (1− δ1)%ϕ(gχE) ≥ (1− δ1)ε.

By regularity of w, suppose further that K > 1 is a constant in (3.1).
Applying the definition of h, in view of (3.6) and (3.7), and letting ε3 =

(1− δ1)ε > 0, αk = hik , βr = αr, and βk = αk − αk+1 for k < r, we obtain
the following formulas:

(3.8) β1
i1ξ�

0

w + β2
i2ξ�

0

w + . . .+ βr
irξ�

0

w

=
i1ξ�

0

hi1w +
i2ξ�

i1ξ

hi2w + . . .+
irξ�

ir−1ξ

hirw ≤
γ�

0

h∗w ≤ 1,

(3.9) β1
ξ�

0

w + β2
2ξ�

0

w + . . .+ βr
rξ�

0

w =
γ�

0

(hχE)∗w ≥ ε3 > 0,

(3.10) β1
i1ξ�

(i1−1)ξ

w+. . .+βr
( i1ξ�

(i1−1)ξ

w+. . .+
irξ�

(ir−1)ξ

w
)

=
r∑

k=1

ikξ�

(ik−1)ξ

h∗w → 0.

Choose m so that Kmε3/2 > 1. Now in view of (3.8) and regularity of w,

1 ≥
∑

ik>2mk

βk
ikξ�

0

w ≥
∑

ik>2mk

βk
2mkξ�

0

w ≥ Km
∑

ik>2mk

βk
kξ�

0

w,

where k = 1, . . . , r. This implies that

∑

ik>2mk

βk
kξ�

0

w ≤ 1
Km

<
ε3

2
.
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Hence by (3.9),

∑

ik≤2mk

βk
kξ�

0

w ≥ ε3

2
.

Assume first that γ = ∞. In view of monotonicity of w, by Lemma 3.3,
there is θ > 0 depending only on m, such that

∑

ik≤2mk

βk
( i1ξ�

(i1−1)ξ

w + . . .+
ikξ�

(ik−1)ξ

w
)

≥
∑

ik≤2mk

kβk
ikξ�

(ik−1)ξ

w ≥
∑

ik≤2mk

kβk
(2mk+1)ξ�

2mkξ

w

≥
∑

ik≤2mk

βk
(2m+1)kξ�

2mkξ

w ≥
∑

ik≤2mk

θβk
kξ�

0

w ≥ θε3

2
.

But this contradicts (3.10), proving the sufficiency for γ =∞. Now suppose
that γ < ∞. Since w is non-increasing and i1 < . . . < ir, we have the
following inequalities:

∑

ik≤2mk

βk
( i1ξ�

(i1−1)ξ

w + . . .+
ikξ�

(ik−1)ξ

w
)

≥
∑

ik≤2mk
(2m+1)kξ<γ

βk
( (2mk+1)ξ�

2mkξ

w + . . .+
(2mk+1)ξ�

2mkξ

w
)

+
∑

ik≤2mk
(2m+1)kξ≥γ

βk
( i1ξ�

(i1−1)ξ

w + . . .+
ikξ�

(ik−1)ξ

w
)

≥
∑

ik≤2mk
(2m+1)kξ<γ

kβk
(2mk+1)ξ�

2mkξ

w +
∑

ik≤2mk
(2m+1)kξ≥γ

βk
( γ−(k−1)ξ�

γ−kξ
w + . . .+

γ�

γ−ξ
w
)

≥
∑

ik≤2mk
(2m+1)kξ<γ

kβk
(2mk+1)ξ�

2mkξ

w +
∑

ik≤2mk
(2m+1)kξ≥γ

βk
γ�

γ−kξ
w.

Then by (3.2) there is θ > 0 depending only on m and such that
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∑

ik≤2mk

βk
( i1ξ�

(i1−1)ξ

w + . . .+
ikξ�

(ik−1)ξ

w
)

≥
∑

ik≤2mk
(2m+1)kξ<γ

kβk
(2mk+1)ξ�

2mkξ

w +
∑

ik≤2mk
(2m+1)kξ≥γ

βk
γ�

γ−kξ
w

≥
∑

ik≤2mk
(2m+1)kξ<γ

βk
(2m+1)kξ�

2mkξ

w +
∑

ik≤2mk
(2m+1)kξ≥γ

βk
γ�

γ−kξ
w

≥
∑

ik≤2mk
(2m+1)kξ<γ

θβk
kξ�

0

w +
∑

ik≤2mk
γ/(2m+1)≤kξ≤γ

βk
γ�

γ−kξ
w,

and by (3.3), we find θ1 > 0 depending only on m so that

∑

ik≤2mk

βk
( i1ξ�

(i1−1)ξ

w + . . .+
ikξ�

(ik−1)ξ

w
)

≥
∑

ik≤2mk
(2m+1)kξ<γ

θβk
kξ�

0

w +
∑

ik≤2mk
γ/(2m+1)≤kξ≤γ

βk
γ�

γ−kξ
w

≥
∑

ik≤2mk
(2m+1)kξ<γ

θβk
kξ�

0

w +
∑

ik≤2mk
γ/(2m+1)≤kξ≤γ

θ1β
k
kξ�

0

w

≥ min{θ, θ1}
∑

ik≤2mk

βk
kξ�

0

w ≥ min{θ, θ1}ε3

2
.

Again this contradicts (3.10) and the sufficiency is proved.
Conversely, if Λϕ,w is uniformly c-convex, then it is clearly complex ro-

tund, and by Corollary 2.2, ϕ satisfies the ∆w
2 -condition. Notice also that

a Banach space which contains `n∞’s λ-uniformly for all λ > 1 cannot be
uniformly c-convex. Hence, in view of Theorem 1.4, w is regular. The proof
is complete.

Theorem 3.5. Let Λϕ,w be a complex Orlicz–Lorentz space. The follow-
ing conditions are equivalent.

(1) Λϕ,w is uniformly c-convex.
(2) ϕ satisfies the condition ∆w

2 and the weight function w is regular.



34 C. S. Choi et al.

(3) Λϕ,w is of cotype q for some 2 ≤ q <∞.
(4) Λϕ,w has an equivalent q-uniformly PL-convex norm for some 2 ≤

q <∞.
(5) Λϕ,w is uniformly PL-convex.

Proof. By Theorem 3.4 we know that (1) is equivalent to (2). The equiv-
alences (3)⇔(4) and (1)⇔(5) have been proved in Corollaries 7.1 and 7.4
of [7] and Theorem 2.1 of [9], respectively. If (1) is satisfied then Λϕ,w can-
not contain `n∞’s λ-uniformly for all λ ≥ 1, and by the well known result of
Pisier (Theorem 14.1 in [8]), Λϕ,w has finite cotype, and so (3) is satisfied.

Finally, we will show that (3)⇒(2). Suppose that (2) is not true. If ϕ
does not satisfy the ∆w

2 -condition, then by Theorem 1.3, Λϕ,w contains an
isometric copy of `∞, and so it cannot be of finite cotype. If w is not regular,
then by Theorem 1.4, Λϕ,w contains `n∞’s λ-uniformly for all λ > 1, and again
by Pisier’s result, it cannot have any finite cotype.

The next result on uniform c-convexity in Lorentz spaces is an immediate
corollary of the previous theorem.

Corollary 3.6. Let Λp,w, 1 ≤ p <∞, be a complex Lorentz space. The
following conditions are equivalent.

(1) Λp,w is uniformly c-convex.
(2) The weight function w is regular.
(3) Λp,w is of cotype q for some 2 ≤ q <∞.
(4) Λp,w has an equivalent q-uniformly PL-convex norm for some 2 ≤

q <∞.
(5) Λp,w is uniformly PL-convex.

4. Applications to norm-attaining operators. Let {w(n)} ∈ c0 \ `1
be a decreasing sequence of positive numbers, and let Ψ(n) =

∑n
k=1w(k).

For a complex sequence x = {x(n)}, define the functional

‖x‖Ψ = sup
n≥1

∑n
k=1 x

∗(k)
Ψ(n)

,

where {x∗(n)} is a decreasing rearrangement of x = {x(n)}. The Marcinkie-
wicz sequence space mΨ is the space of all sequences x with ‖x‖Ψ < ∞. Its
order continuous subspace d∗(w, 1) = m0

Ψ is the subspace of mΨ consisting
of all x = {x(n)} with

lim
n→∞

∑n
k=1 x

∗(k)
Ψ(n)

= 0.

It is well known [14, 18, 20] that d∗(w, 1) is a predual of the Lorentz sequence
space d(w, 1) equipped with the norm ‖ ‖w,1.
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Let X and Y be Banach spaces, and let L(X,Y ) be the space of all
bounded linear operators from X to Y , and NA(X,Y ) ⊂ L(X,Y ) be the set
of all norm-attaining operators. Recall that a bounded operator T : X → Y
is norm-attaining if ‖Tx‖ = ‖T‖ for some x ∈ BX . When Y = R, Bishop
and Phelps [4] showed that NA(X,Y ) is dense in L(X,Y ). Since then there
have been many attempts to prove or disprove for what X or Y , NA(X,Y )
is dense in L(X,Y ). In [11], Gowers showed that NA(G, `p), 1 < p < ∞,
is not dense in L(G, `p), where G = d∗(w, 1) and w = {n−1}∞n=1. Using the
same space G, the authors of [1] showed that NA(G,G∗) is not dense in
L(G,G∗) if G is equipped with a proper equivalent norm. They also raised
the question whether this is also true for G with its original norm. Here we
answer their question in the affirmative for complex spaces G. Let us start
with the following elementary lemma.

Lemma 4.1. The identity operator I : d∗(w, 1) → d(w, 1) is a bounded
operator if and only if the weight sequence {w(n)} is in `2.

Proof. Suppose that the identity operator I : d∗(w, 1) → d(w, 1) is
bounded. Recall that d(w, 1) is a Köthe dual of d∗(w, 1) ([20, 18]), that is,

‖x‖w,1 = sup
{
〈x, y〉 =

∞∑

n=1

x(n)y(n) : ‖y‖Ψ ≤ 1
}
.

Hence for each n ≥ 1, taking xn =
∑n

k=1w(k)ek, where ek are the standard
unit vectors, we have ‖xn‖Ψ ≤ 1 and so,

〈Ixn, xn〉 =
n∑

k=1

w(k)2 ≤ ‖I‖.

Thus {w(n)} ∈ `2.
For the converse, suppose that {w(n)} ∈ `2. By definition of ‖ ‖Ψ , for

any x ∈ d∗(w, 1) and each n ∈ N,
n∑

k=1

x∗(k) ≤ ‖x‖ΨΨ(n).

Now, by summation by parts, if we set Ψ(0) = 0 and S(n) =
∑n

k=1 x
∗(k)

for each n ∈ N and S(0) = 0, then
n∑

k=1

x∗(k)w(k) =
n∑

k=1

(S(k)− S(k − 1))w(k)

=
n−1∑

k=1

S(k)(w(k)− w(k + 1)) + S(n)w(n)
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≤ ‖x‖Ψ
n−1∑

k=1

Ψ(k)(w(k)− w(k + 1)) + ‖x‖ΨΨ(n)w(n)

≤ ‖x‖Ψ
n∑

k=1

(Ψ(k)− Ψ(k − 1))w(k) = ‖x‖Ψ
n∑

k=1

w(k)2 ≤ ‖x‖Ψ
∞∑

k=1

w(k)2.

Therefore the identity operator I is well defined and bounded. This com-
pletes the proof.

Recall the result ([13, 18, 14]) characterizing the geometric structure of
the ball in Marcinkiewicz spaces.

Lemma 4.2. For each x ∈ Bd∗(w,1), there exist n ∈ N and ε > 0 such
that ‖x + λy‖ ≤ 1 for each y ∈ Bd∗(w,1) with y = (0, . . . , 0, y(n + 1), . . .),
and for each |λ| ≤ ε.

Theorem 4.3. Let d(w, 1) and d∗(w, 1) be complex spaces. Then the set
NA(d∗(w, 1), d(w, 1)) is not dense in L(d∗(w, 1), d(w, 1)) if {w(n)} ∈ `2.

Proof. First we shall show that every norm-attaining operator from
d∗(w, 1) into d(w, 1) has a finite rank. Suppose T ∈ NA(d∗(w, 1), d(w, 1))
and ‖T‖ = ‖Tx0‖w,1 for x0 ∈ Bd∗(w,1). By Lemma 4.2, there are n ≥ 1 and
ε > 0 such that for each y = (0, . . . , 0, y(n+ 1), . . .) ∈ Bd∗(w,1) and for each
|ζ| < ε,

‖x0 + ζy‖Ψ ≤ 1.

Hence

‖T‖ = ‖Tx0‖w,1 ≥ ‖T (x0 + ζy)‖w,1 = ‖Tx0 + ζTy‖w,1.
Notice that the complex Lorentz space d(w, 1) is complex rotund by Corol-
lary 2.6. Therefore the strong maximum modulus theorem holds in d(w, 1)
(see [22]). This implies that ‖Tx0 + ζTy‖w,1 is constant for every |ζ| < ε,
and so Ty = 0. Thus every norm-attaining operator has a finite rank. Now,
for any T ∈ NA(d∗(w, 1), d(w, 1)) there exists n ∈ N such that Tem = 0 for
all m > n. Hence

‖I − T‖ ≥ w(1)‖em‖w,1 = w(1)2 > 0.

ThusNA(d∗(w, 1), d(w, 1)) is not dense in L(d∗(w, 1), d(w, 1)), and this com-
pletes the proof.

In fact we can say more. In [14], it is proved that the condition w ∈ `2
holds if and only if the space AL2(d∗(w, 1)) of norm-attaining continuous
bilinear forms is not dense in the space L2(d∗(w, 1)) of continuous bilinear
forms on d∗(w, 1). If we identify, in a natural way, the space L2(d∗(w, 1)) with
L(d∗(w, 1), d(w, 1)), then AL2(d∗(w, 1)) ⊂ NA(d∗(w, 1), d(w, 1)) (see [1]).
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This implies that if w ∈ c0 \ `2, then NA(d∗(w, 1), d(w, 1)) is dense in
L(d∗(w, 1), d(w, 1)). Summarizing these facts we obtain the following re-
sult.

Corollary 4.4. Let d(w, 1) and d∗(w, 1) be complex spaces. Then the
set NA(d∗(w, 1), d(w, 1)) is dense in L(d∗(w, 1), d(w, 1)) if and only if
{w(n)} 6∈ `2.
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