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Summary. For every sequence (an) of positive real numbers and an operator acting in a
Banach space, we introduce the families of (an)-analytic and (an)-quasi-analytic vectors.
We prove various properties of these families.

Introduction. Let E be a Banach space, and A an operator (bounded
or unbounded) acting in E. Various sets of vectors, members of E, can be
associated with A. The simplest examples include the domain D(A) of A,
and the set

C∞(A) =
∞⋂

n=1

D(An)

of C∞-vectors for A.
If a given operator has some geometric properties (for example, is sym-

metric acting in Hilbert space) and has a sufficiently large (say, dense) set
of vectors of a special class, then the operator often has useful properties: it
is essentially self-adjoint or generates a strongly continuous group or semi-
group.

Important “classical” classes of vectors are those of analytic vectors,
quasi-analytic vectors, semi-analytic vectors, and Stieltjes vectors.

In this paper we shall consider the following more general sets of vectors.

Definition 1. Let (cn) be a sequence of strictly positive numbers. An
element x ∈ C∞(A) belongs to A(cn)(A) if

∞∑

n=1

‖Anx‖
cn

tn <∞ for some t > 0.
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Definition 2. Let (bn) be a sequence of strictly positive numbers. An
element x ∈ C∞(A) belongs to Q(bn)(A) if

∞∑

n=1

‖Anx‖−1/bn =∞.

Note that the same classes A(cn)(A) can be obtained by using different
sequences (cn). Indeed,

A(cn)(A) =
{
x ∈ C∞(A) : sup

n=1,2,...

‖An‖
cn

tn <∞ for some t > 0
}
,

which implies the following

Proposition 1. Let (cn) and (c′n) be two sequences of positive numbers
such that

cn ≤ c′ndn for some d > 0.

Then
A(cn)(A) ⊂ A(c′n)(A).

Proposition 1 and Stirling’s formulae imply that for example A((n!)p)(A)
= A(npn)(A).

For the sets Q(bn)(A) we have the following

Proposition 2. If 0 < bn ≤ b′n <∞ for every n = 1, 2, . . . , then

Q(bn)(A) ⊂ Q(b′n)(A).

Proof. Indeed, if ‖Anx‖ ≤ 1 for infinitely many n’s, then x ∈ Q(bn)(A)∩
Q(b′n)(A). Furthermore, if ‖Anx‖ > 1, then ‖Anx‖−1/bn ≤ ‖Anx‖−1/b′n,
so that if ‖Anx‖ ≤ 1 for finitely many n’s only and x ∈ Q(bn)(A), then
x ∈ Q(bn)(A).

For unbounded symmetric operators A in a Hilbert space H the dense-
ness of linA(cn)(A) or linQ(bn)(A) in H may imply the essential self-adjoint-
ness of A.

If cn = n! (or nn) then A(cn)(A) coincides with the set of analytic vectors
introduced by Nelson [4], who proved that a symmetric operator with a
linearly dense set of analytic vectors is essentially self-adjoint.

In the case of bn = n we obtain the quasi-analytic vectors introduced by
Nussbaum [5], who showed a more general result stating that a symmetric
operator with a linearly dense set of quasi-analytic vectors is essentially
self-adjoint.

If cn = (2n)!, then A(cn)(A) coincides with the semi-analytic vectors
introduced by Simon [10], who proved that a symmetric semi-bounded op-
erator with a linearly dense set of semi-analytic vectors is essentially self-
adjoint.
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If bn = 2n, thenQ(bn)(A) is equal to the set of Stieltjes vectors introduced
by Nussbaum [6], who showed that a symmetric semi-bounded operator with
a linearly dense set of Stieltjes vectors is essentially self-adjoint.

The following diagram displays the relationships between various classes
of vectors:

analytic ⊂ quasi-analytic

⊃ ⊃

semi-analytic ⊂ Stieltjes vectors

The sets A(cn)(A) also play an important role for unbounded operators A
in Banach spaces. Let p be a positive real number. If cn = npn or cn = (n!)p,
then we obtain the space called in [1] the abstract Gevrey space of order
p associated with A; this space is denoted by G(p) and called the space of
p-analytic vectors in [3] and [8].

In [1] only closed operators were considered and it was proved that un-
der some assumptions on the resolvent, a closed operator A generates a
strongly continuous semigroup in G(p) equipped with some locally convex
topology.

If bn = pn, then we obtain the p-quasi-analytic vectors considered in
[3] and [8]. With this terminology, analytic vectors are simply 1-analytic,
semi-analytic ones are 2-analytic, quasi-analytic ones are 1-quasi-analytic,
and Stieltjes vectors are 2-quasi-analytic.

When E is the space of bounded continuous functions on an interval in R
and A = d/dx, special cases of spaces A(cn)(A) are considered in [7], namely
such that from f ∈ A(cn)(A) and (Anf)(x0) = 0 for n = 0, 1, 2, . . . it follows
that f(x) ≡ 0. Such classes are called quasi-analytic.

If cn = (n!)p and E, A are as above and p ∈ (1,∞), then A(cn)(A) is the
classical space of Gevrey functions of order p (see [2]), and if p ∈ (0, 1], then
A(cn)(A) is a quasi-analytic class.

A(cn)(A) vectors and Q(bn)(A) vectors. We shall show some connec-
tions between the two classes of vectors defined above. We start with the
following result.

Theorem 1. Let (cn) and (bn) be sequences of positive numbers such
that for some a > 0,

bn ≥ max
(
an,

ln cn
lnn

)
(n ∈ N).

Then, for any operator A,

A(cn)(A) ⊂ Q(bn)(A).
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Proof. Let x ∈ A(cn)(A). Then
∞∑

n=1

‖Anx‖
cn

tn

has a positive radius of convergence equal to 1/r, where

r = lim sup
n→∞

n
√
‖Anx‖/cn <∞.

Let M > max(1, r). Then there exists n0 such that for n > n0,
n
√
‖Anx‖/cn < M.

Hence

‖Anx‖−1/bn >
1

Mn/bn(cn)1/bn
.

Since bn ≥ an, we see that Mn/bn ≤ M1/a, and since bn ≥ ln cn/lnn, we
have (cn)1/bn ≤ n. Finally,

‖Anx‖−1/bn > 1/M1/an,

which implies
∑∞

n=1 ‖Anx‖−1/bn =∞.

As a simple corollary, we establish the horizontal inclusions in the di-
agram above. Indeed, it suffices to let cn = nn and bn = n to obtain the
upper inclusion, and cn = n2n and bn = 2n to obtain the lower inclusion.

Remark. The condition bn ≥ an is a very natural one if the denseness
of Q(bn)(A) for a bounded A is to be ensured. Suppose that each (bn) is
slightly less than an, for example bn = n1−ε. Let A be the scalar operator
Ax = 2x and let x be an arbitrary non-zero vector from E. Then ‖Anx‖ =
2n‖x‖, whence ‖Anx‖−1/bn = 2−(nε)‖x‖1−ε. Since 2n

ε
> n2 for large n, we

see that the series
∑∞

n=1 ‖Anx‖−1/bn is convergent, and consequently that
x 6∈ Q(bn)(A).

If we let cn = nn and bn = n and consider analytic vectors and quasi-
analytic vectors, then the expected growth of (‖Anx‖) is similar. The main
difference is that in the latter case this growth can be much more irregu-
lar. Therefore results concerning vectors in Q(bn)(A) are in general stronger
than those for A(cn)(A). This phenomenon is demonstrated by the following
theorem which is the main result of this paper.

Theorem 2. Let (cn) and (bn) be sequences of strictly positive numbers
with bn ≥ an for some a > 0. There exists a symmetric operator A acting
in a Hilbert space H such that the set Q(bn)(A) is dense in H and the set
A(cn)(A) comprises only the zero vector.

Proof. Without loss of generality we may assume that cn ≥ 1 for n =
1, 2, . . . Let H = l2 be the Hilbert space of all square-summable complex
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sequences. Let ek = (0, . . . , 0, 1, 0, . . .) (1 at the kth place) be the stan-
dard basis in H. Let m0 be the linear subspace of H spanned by e1, e2, . . .
Of course, m0 is dense in H.

For a sequence (ak) (k = 1, 2, . . .), let additionally a0 = 0 and consider
the operator A defined on m0 as follows:

Aek = ak−1ek−1 + akek+1 for k = 1, 2, . . .

In matrix form, A is given by the Jacobi matrix

(∗)




0 a1 0 0 0 . . .

a1 0 a2 0 0 . . .

0 a2 0 a3 0 . . .

0 0 a3 0 a4 . . .
. . . . . . . . . . . . . . . . . . . . . . . . .



.

If the ak are real numbers, then A is symmetric.
First we shall prove the following

Lemma 1. If aj > 0 for each j = 1, 2, . . . , then

Anek =
n+k∑

i=1

αn,ki ei,

and
(1) αn,ki ≥ 0,
(2) αn,kn+k = akak+1 . . . an+k−1,

(3) for any q ≤ n+k, αn,kq ≤ 2nMn, where M = sup{ai : 1 ≤ i ≤ n+k}.
Proof. We proceed by induction on n. For n = 1 conditions (1)–(3) result

from the definition of A. Suppose that (1)–(3) hold for some n, all k and all
q ≤ k + n. We have

(∗∗) An+1ek = AAnek = A
( n+k∑

i=1

αn,ki ei

)
=

n+k∑

i=1

αn,ki (ai−1ei−1 + aiei+1).

This establishes condition (1) for n+ 1.
The vector en+k+1 occurs in (∗∗) only once, for i = k+1, with coefficient

αn,kn+k · an+k. Hence we get (2) for n+ 1 and (3) for q = n+ k + 1.
Now let q < n+ k + 1. The vector eq occurs in (∗∗) twice: for i = q − 1

and i = q + 1. The coefficient αn+1,k
q is equal to aq−1α

n,k
q−1 + aqα

n,k
q+1. Hence,

by the inductive hypothesis, αn+1,k
q ≤ 2M2nMn = 2n+1Mn+1.

Let now (cn) and (bn) be sequences of positive numbers with bn ≥ an
(a > 0). We inductively define a Jacobi matrix of the form as in (∗), some
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increasing sequences (kn) and (k′n) of natural numbers and also a sequence
(Q2n+1) of positive numbers.

First let k1 = k′1 = 1, k2 = 3, k′2 = 2 and let a1 = a2 = a3 = Q1 =
Q3 = Q5 = 1. Suppose that we have defined k1 < k2 < . . . < k2n−1 < k2n;
k′2 < k′4 < . . . < k′2n; Q1, Q3, . . . , Q2n−1 and a1, a2, . . . , ak2n such that for
i = 0, 1, . . . , n− 1 the following three conditions are satisfied:

(a) ap = cp+1(p+ 1)p+1 for p = k2i+1, i = 0, 1, . . . , n− 1.
(b) ap = 1 for p 6= k2i+1, i = 0, 1, . . . , n− 1.
(c) k′2i+2 − k2i+1 > (2Q2i+1)1/a.

Let k2n+1 = k2n + 1 and let ak2n+1 = cpp
p with p = k2n+1 + 1. Define

Q2n+1 = sup{ai : 1 ≤ i ≤ k2n+1}, choose k′2n+2 large enough so that
k′2n+2 − k2n+1 > (2Q2n+1)1/a, and let k2n+2 = k′2n+2 + n. Finally, for i =
k2n + 2, k2n + 3, . . . , k2n+2, let ai = 1. Directly from the construction it
follows that conditions (a), (b), (c) hold for every i = 0, 1, . . .

We now prove two lemmas.

Lemma 2. Each x ∈ m0 belongs to Q(bn)(A).

Proof. Let

x =
K∑

k=1

dkek, L = sup{|dk| : k = 1, . . . ,K}.

Let n > K and p be such that k2n+1 < p ≤ k′2n+2. Then

Apx =
K∑

k=1

dkA
pek.

By (3) and Lemma 1,

‖Apx‖ ≤ KL2pMp, where M = sup{ai : 1 ≤ i ≤ p+K}.
Since p + K ≤ k′2n+2 + K < k′2n+2 + n < k2n+2, we see that ai = 1 for
i > k2n+1, and ai ≤ Q2n+1 for i ≤ k2n+1. Hence, for k2n+1 < p ≤ k′2n+2,

‖Apx‖1/bp≤(KL2pQp2n+1)1/bp≤(KL2pQp2n+1)1/ap=(KL)1/ap(2Q2n+1)1/a.

Obviously, k2n+1 > n for each n. Thus, for n > K,

k′2n+2∑

p=k2n+1+1

‖Apx‖−1/bp ≥ k′2n+2 − k2n+1

(KL)1/an(2Q2n+1)1/a
>

1
(KL)1/an

=
1

n
√

(KL)1/a
.

Since n
√

(KL)1/a tends to 1 as n→∞, there exists n0 such that for n > n0
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the above sum is greater than 1/2. Therefore
∞∑

p=1

‖Apx‖−1/bp ≥
∞∑

p=k2n0

‖Apx‖−1/bp

≥
∞∑

n=n0

k′2n+2∑

p=k2n+1+1

‖Apx‖−1/bp >

∞∑

n=n0

1/2 =∞.

Lemma 3. No nonzero x ∈ m0 belongs to A(cn)(A).

Proof. Let x =
∑K

k=1 dkek, and |dK | > 0. We shall estimate ‖Apx‖ for
p = k2n+1 with p > K. Since

Apx =
K∑

k=1

dkA
pek,

it follows from Lemma 1 that

Apx =
K∑

k=1

dk

p+k∑

i=1

αp,ki ei.

The vector ep+K occurs in this sum only once: when k = K and i = p+K.
Thus by condition (2) of Lemma 1, the corresponding coefficient is equal to
αp,Kp+K = aKaK+1 . . . ap+K−1. As K < p ≤ p + K − 1, one of the factors of
this product is ap = cpp

p. Since cn ≥ 1 for every n, the remaining factors
are not less than 1, and it follows that

‖Apx‖ ≥ |dK | · cppp.
Thus

p

√
‖Apx‖/cp ≥ p

√
|dK | p,

and so

lim sup
p→∞

p

√
‖Apx‖/cp =∞.

The theorem results immediately from the last two lemmas.

As a corollary, we obtain

Corollary 1. For any strictly positive sequence (cn) there exists an
essentiallly self-adjoint operator A for which A(cn)(A) consists only of the
zero vector.

Proof. An application of Theorem 2 with bn = n for each n ∈ N yields a
symmetric operator A with a linearly dense set of quasi-analytic vectors and
with A(cn)(A) = {0}. This operator is essentially self-adjoint by Nussbaum’s
theorem.
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