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Summary. An example of a nonzero σ-finite Borel measure µ with everywhere dense lin-
ear manifold Iµ of admissible (in the sense of invariance) translation vectors is constructed
in the Hilbert space `2 such that µ and any shift µ(a) of µ by a vector a ∈ `2 \ Iµ are
neither equivalent nor orthogonal. This extends a result established in [7].

We first recall some standard notions from measure theory. Let E be a
complete metric linear space, by which we mean a vector space with a com-
plete metric for which addition and scalar multiplication are continuous. Let
B(E) be the σ-algebra of Borel subsets of E, and µ be a nonzero nonnega-
tive measure defined on B(E). We write X + a for the translation of a set
X ⊆ E by a vector a ∈ E. The measure µ(a) defined by µ(a)(X) = µ(X − a)
for X ∈ B(E) is called the shift of the measure µ by a.

Definition 1. A vector a ∈ E is called an admissible translation vec-
tor for µ in the sense of quasiinvariance if the measures µ and µ(a) are
equivalent. We denote the set of all such vectors by Qµ.

Definition 2. A vector a ∈ E is called an admissible translation vector
for µ in the sense of invariance if µ = µ(a). We denote by Iµ the set of all
such vectors.

Remark 1. It is obvious that Iµ ⊆ Qµ for every µ. One can easily show
that in the case of Lebesgue measure the above-mentioned sets coincide.
If we consider the canonical Gaussian measure γ on the topological vector
space RN, then according to Kakutani’s [10] well known result the set Qγ
coincides with `2, while Iγ consists only of the zero vector.
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Among the main works devoted to quasiinvariance of measures in general
linear spaces one should mention especially the classical work of S. Kaku-
tani [10], where equivalence and orthogonality of infinite product measures
are investigated. It is shown that if one has equivalent probability mea-
sure µi and νi on a σ-algebra Li of subsets of a set Ωi, i = 1, 2, . . . , and
if µ and ν denote respectively the infinite product measures

∏
i∈N µi and∏

i∈N νi on the infinite product σ-algebra generated on Ω =
∏
i∈NΩi, then

µ and ν are either equivalent or orthogonal. Similar dichotomies have re-
vealed themselves in the study of Gaussian stochastic processes. C. Cameron
and W. E. Martin proved in [4] that if one considers the measures induced
on the path space by two Wiener processes on the unit interval, and the
variances of the processes are different, then the measures are orthogonal.
Results of this sort were generalized by many authors (cf. [2], [3], [6], [8], [13],
[15] and others). Their techniques allow us to construct Gaussian measures
in general linear spaces with everywhere dense linear manifolds of admis-
sible translation vectors in the sense of quasiinvariance. In the context of
the above-mentioned results, I. I. Gikhman and A. V. Skorokhod [7, p. 556]
considered the following

Problem. Does there exist a probability Borel measure µ in `2 which
satisfies the following conditions:

(i) the group Qµ is an everywhere dense linear manifold in `2,
(ii) there exists a ∈ `2 \Qµ such that µ is not orthogonal to µ(a)?

Their solution depended on the technique of Gaussian measures in infinite-
dimensional separable Hilbert space.

The purpose of the present paper is to extend Gikhman–Skorokhod’s
above-mentioned result to invariant Borel measures in `2.

We will construct nonzero σ-finite Borel measures in RN which are in-
variant with respect to everywhere dense linear manifolds.

Let RN be the space of all sequences of real numbers equipped with
the Tikhonov topology. Denote by B(RN) the σ-algebra of all Borel subsets
in RN. Let (ai)i∈N and (bi)i∈N be sequences of real numbers such that ai < bi
for every i ∈ N. Put

An = R0 × . . .× Rn ×
(∏

i>n

∆i

)
(n ∈ N),

where

Ri = R, ∆i = [ai, bi[, ∀i ∈ N.
For i ∈ N, consider the Lebesgue measure µi on Ri with µi(∆i) = 1. Denote
by λi the normalized Lebesgue measure defined on ∆i.
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For n ∈ N, denote by νn the measure defined by

νn =
∏

1≤i≤n
µi ×

∏

i>n

λi,

and by νn the Borel measure in RN defined by

νn(X) = νn(X ∩ An) for X ∈ B(RN).

We need the following lemmas, proved in [12]:

Lemma 1. For every Borel set X ⊆ RN the limit

ν∆(X) = lim
n→∞

νn(X)

exists. Moreover , the functional ν∆ is a nontrivial σ-finite measure on
B(RN).

Lemma 2. The set Iµ∆ consists of all g = (g1, g2, . . .) for which the series∑∞
i=1 |gi|/(bi − ai) converges.

Remark 2. The construction of the measure ν∆ belongs to A. B. Khara-
zishvili [11].

The main result can now formulated as follows.

Theorem. There exists a nonzero σ-finite Borel measure µ in `2 which
satisfies the following conditions:

(i) The group Iµ is an everywhere dense linear manifold in `2.
(ii) There exists a ∈ `2 \ Iµ such that the measure µ(a) is not orthogonal

to µ.

Proof. Clearly,

`2 =
⋃

n∈N

⋂

m∈N

{
(xk)k∈N :

m∑

k=1

x2
k ≤ n

}
.

Since {(xk)k∈N :
∑m

k=1 x
2
k ≤ n} ∈ B(RN) for m,n ∈ N, we conclude that

`2 ∈ B(RN). Hence, B(`2) ⊆ B(RN). For X ∈ B(`2), we put

µ1(X) = ν∆1(X), µ2(X) = ν∆2(X),

where

∆1 =
∏

i∈N

[
0,

1
i+ 1

[
, ∆2 =

∏

i∈N

[
0,

1
(i+ 1)2i

[
.

According to Lemma 2, we have

Iµ1 =
{

(gi)i∈N ∈ `2 :
∑

i∈N
|gi|(i+ 1) <∞

}
,

Iµ2 =
{

(hi)i∈N ∈ `2 :
∑

i∈N
|hi|2i(i+ 1) <∞

}
.
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It is clear that Iµ2 ⊂ Iµ1 . Morover, the measures µ1 and µ2 are orthogonal.
Indeed, µ2 is concentrated on the set

F2 =
⋃

n∈N
Rn ×

∏

i>n

[
0,

1
(i+ 1)2i

[

and µ1(F2) = 0.
We set µ = µ1 + µ2. Note that the group Iµ coincides with Iµ2 . It is also

clear that Iµ is a linear manifold. The fact that Iµ is everywhere dense in `2
is a simple consequence of the fact that the linear manifold of all sequences
with a finite number of nonzero terms is everywhere dense in `2. Consider

a =
(

1
(1 + i)2i

)

i∈N
∈ Iµ1 \ Iµ2 .

Then the measure µ is not orthogonal to µ(a), because µ(a) has an absolutely
continuous component µ(a)

2 with respect to µ.

Remark 3. If we consider probability measures λ1 and λ2 which are
equivalent to the measures µ1 and µ2, respectively, then the measure λ =
1
2(λ1+λ2) is a solution of the above-mentioned problem. Hence, the Theorem
may be regarded as a generalization of the result obtained in [7].
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