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Summary. In [4, 5, 7] an abstract, versatile approach was given to sequential weak com-
pactness and lower closure results for scalarly integrable functions and multifunctions. Its
main tool is an abstract version of the Komlós theorem, which applies to scalarly inte-
grable functions. Here it is shown that this same approach also applies to Pettis integrable
multifunctions, because the abstract Komlós theorem can easily be extended so as to apply
to generalized Pettis integrable functions. Some results in the literature are thus unified.

1. Introduction. In [4, 5] and subsequently [7] an abstract, versatile
approach was given to sequential weak compactness and lower closure re-
sults for scalarly measurable functions and multifunctions. The main tool
introduced there is an abstract Komlós theorem, which was obtained from
Komlós’s classical theorem [17] by means of a diagonal selection argument
involving point-separation and compactness arguments. Subsequently, the
same technique has been adopted by several authors who studied weak com-
pactness and lower closure for Pettis integrable (multi)functions. Here we
show that, instead of adopting the method of proof of [5], one can also di-
rectly apply the main results of that work. That is to say, we show that
Theorem 2.1 and Corollary 2.2 of [5] apply directly to Pettis integrable
(multi)functions, thanks to a well-known characterization of Pettis integra-
bility [19, 21, 22]. In this way, some results in the literature are unified.
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2. An abstract Komlós theorem and its extension. In Theo-
rem 2.1 of this section we recall the abstract Komlós theorem of [4, 5].
This is followed by a presentation of a generalized notion of Pettis integra-
bility and the extension of Theorem 2.1 to such functions (see Theorem 2.4
below). Let (Ω,F , µ) be a finite measure space and let Y be a convex cone
in the sense of [12] (i.e., (Y,+) is an Abelian semigroup satisfying the usual
laws of multiplication with nonnegative scalars), equipped with a suitable
topology that is compatible with the operation + and with multiplication
by scalars. In the applications presented here Y will be just the hyperspace
cwk(E), consisting of all nonempty convex and weakly compact subsets of
a separable Banach space E, or it will be E itself. Of course, then + is just
set addition. Following [5], we shall say that a sequence (fm) of functions

fm : Ω → Y K-converges to a function f0 : Ω → Y (notation: fm
K→ f0) if

for every subsequence (fmi) of (fm),

lim
N→∞

1
N

N∑

i=1

fmi(ω) = f0(ω) for a.e. ω in Ω.

Here the exceptional null set is allowed to depend on the particular subse-
quence (fmi) (in fact, without this escape valve K-convergence would just
amount to pointwise a.e. convergence on Ω). The above K-convergence no-
tion was inspired by a fundamental paper of Komlós [17]. From [5] we recall
the abstract Komlós theorem (see also additional comments in [4] and [7]).
Let A be a collection of F ×B(Y )-measurable functions a : Ω×Y → R such
that for every ω ∈ Ω,

a(ω, ·) is affine and continuous on Y .

Following [5], a function f : Ω → Y is called A-scalarly measurable if the
scalar function a(·, f(·)) is F-measurable for every a ∈ A. The collection A
is supposed to have a countable subcollection A0 := {aj : j ∈ N} with the
following point-separating property : for every ω ∈ Ω and for every y, z ∈ Y ,

aj(ω, y) = aj(ω, z) for all j ∈ N if and only if y = z.

Let h : Ω × Y → [0,+∞] be a given function such that for every ω ∈ Ω,

h(ω, ·) is convex and sequentially inf-compact on Y .

The latter means that for every ω ∈ Ω and β ∈ R the set {y ∈ Y : h(ω, y)
≤ β} must be sequentially compact. Under the above assumptions the ab-
stract Komlós theorem, obtained in [5, Theorem 2.1], states the following:

Theorem 2.1 (abstract Komlós theorem). Let (fn)n∈N be a sequence of
A-scalarly measurable functions fn : Ω → Y such that

sup
n

�

Ω

|aj(ω, fn(ω))|µ(dω) < +∞ for every j(2.1)
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and
σ := sup

n

� ∗

Ω

h(ω, fn(ω))µ(dω) < +∞.(2.2)

Then there exist a subsequence (fnj ) of (fn) and an A-scalarly measurable
function f∗ : Ω → Y such that

(a) fnj
K→ f∗,

(b) � ∗Ω h(ω, f∗(ω))µ(dω) ≤ σ < +∞.

Here � ∗Ω refers to outer integration with respect to the measure µ. That is
to say, for a possibly nonmeasurable function ψ : Ω → [−∞,+∞] we define

� ∗

Ω

ψ dµ := inf
{ �

Ω

φdµ : φ ∈ L1
R(Ω,F , µ), φ ≥ ψ a.e.

}
,

with the understanding that the infimum over the empty set equals +∞.
Corollary 2.2 of [5] contains the following lower semicontinuity result:

Corollary 2.2. In Theorem 2.1 the inequality

lim inf
m

�

Ω

g(ω, fm(ω))µ(dω) ≥
�

Ω

g(ω, f∗(ω))µ(dω)

is valid for every F × B(Y )-measurable g : Ω × Y → (−∞,+∞] such that
g(ω, ·) is convex and lower semicontinous and {g−(·, fm(·)) : m ∈ N} is
uniformly integrable, where g− := max(0,−g).

The following addendum to (a) of Theorem 2.1 is elementary; here
seq-clC stands for the set of all y ∈ Y for which there is a sequence (ck) ⊂ C
with ck → y.

Corollary 2.3. In Theorem 2.1,

(c) f∗(ω) ∈ ⋂∞p=1 seq-cl co{fm(ω) : m ≥ p} for a.e. ω in Ω.

Let A1 be a given fixed subset of A. Define an A-scalarly measurable
function f : Ω → Y to be of class UI(A1) if

{a(·, f(·)) : a ∈ A1} is uniformly integrable.

In the next section we shall see that Pettis integrable (multi)functions are
captured by this notion. The main result of this note is as follows. It is a
straightforward consequence of Theorem 2.1 and the above two corollaries
(conversely, it also implies them, as is seen by artificially including the null
function 0 on Ω × Y into A and setting A1 := {0}).

Theorem 2.4. Let (fn)n∈N be a sequence of A-scalarly measurable func-
tions fn : Ω → Y of class UI(A1) such that (2.1)–(2.2) hold and

{a(·, fn(·)) : a ∈ A1, n ∈ N} is uniformly integrable.
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Then there exist a subsequence (fnj ) of (fn) and an A-scalarly measurable
function f∗ : Ω → Y of class UI(A1) such that (a)–(b) of Theorem 2.1
and (c) of Corollary 2.3 hold , as well as

(d) limj→∞ � B a(ω, fnj (ω))µ(dω)= � B a(ω, f∗(ω))µ(dω) for every a∈A1,
B ∈ F .

Proof. (a), (b), (c) follow as in Theorem 2.1 and Corollary 2.3, and (d)
is obtained directly by applying Corollary 2.2 to both g = a and g = −a,
so only the fact that f∗ is of class UI(A1) must be demonstrated. By the
theorem of de la Vallée Poussin [10, II.22] there exists a convex, continuous
nondecreasing function h′ : R+ → R+ with limξ→∞ h′(ξ)/ξ = +∞ such that

γ := sup
a∈A1, n∈N

�

Ω

h′(|a(ω, fn(ω))|)µ(dω) < +∞.

For every a ∈ A1 the formula g(ω, y) := h′(|a(ω, y)|) defines a function
g : Ω × Y → R+ which clearly satisfies the conditions of Corollary 2.2 (in
particular, here g− = 0). This gives

�

Ω

h′(|a(ω, f∗(ω))|)µ(dω) =
�

Ω

g(ω, f∗(ω))µ(dω) ≤ γ

for every a ∈ A1. So by the reverse part of de la Vallée Poussin’s theorem
it follows that {|a(·, f∗(·))| : a ∈ A1} is uniformly integrable. Hence, f∗ is of
class UI(A1).

3. Applications to Pettis integration. In this section we shall apply
Theorem 2.4 to Pettis integrable (multi)functions, very much in the same
way as was done for Bochner integrable (multi)functions by Balder and Hess
to obtain [7, Theorem 7.1] as a direct application of Theorem 2.1.

Let E be a separable Banach space, whose dual is denoted by E∗. Let
cwk(E) be the collection of all nonempty, convex and weakly compact sub-
sets of E. A multifunction F : Ω → cwk(E) is called scalarly integrable if
for every x∗ ∈ E∗ the scalar function s(x∗ |F (·)) is in L1

R(Ω,F , µ). Here
s(x∗ |C) := supx∈C〈x∗, x〉 denotes the support function of C ∈ cwk(E).
From now on cwk(E) will be equipped with the initial topology for the
functionals s(x∗ | ·), x∗ ∈ E∗, i.e., the coarsest topology on cwk(E) for
which those functionals are continuous. Recall from [11] that a multifunc-
tion F : Ω → cwk(E) is said to be Pettis integrable if it is scalarly integrable
and if for every B ∈ F there exists CB ∈ cwk(E) such that

s(x∗ |CB) =
�

B

s(x∗ |F (ω))µ(dω) for every x∗ ∈ E∗;

see Theorem 5.4 of [11] for a number of equivalent definitions. The follow-
ing characterization of Pettis integrability is due to Ziat [21, Theorem 3.2]
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(see [22] for a corrected proof of this result and see [11] for much more
general characterizations). This extends a well known Pettis integrability
criterion for ordinary functions [19]. Below U ∗ stands for the closed unit
ball in E∗.

Proposition 3.1. For every scalarly integrable multifunction F : Ω →
cwk(E) the following are equivalent :

(i) F is Pettis integrable,
(ii) the collection {s(x∗ | F (·)) : x∗ ∈ U∗} is uniformly integrable.

In view of this criterion, we now have the following corollary of Theo-
rem 2.4:

Theorem 3.2. Let (Fn) be a sequence of Pettis integrable multifunctions
Fn : Ω → cwk(E) such that there exists h : Ω × cwk(E)→ [0,+∞] with

sup
n

� ∗

Ω

h(ω, Fn(ω))µ(dω) < +∞,

h(ω, ·) is convex and inf-compact on cwk(E) for a.e. ω in Ω,

and such that

{s(x∗ |Fn(·)) : x∗ ∈ U∗, n ∈ N} is uniformly integrable.

Then there exist a subsequence (Fnj) of (Fn) and a Pettis integrable F∗ :
Ω → cwk(E) such that

(a′) Fnj
K→ F∗,

(b′) � ∗Ω h(ω, F∗(ω))µ(dω) < +∞,
(c′) F∗(ω) ⊂ ⋂∞p=1 cl co

⋃
j≥p Fnj (ω) for a.e. ω in Ω,

(d′) limj→∞ � B s(x∗ | Fnj (ω))µ(dω) = � B s(x∗ | F∗(ω))µ(dω) for every
x∗ ∈ E∗ and B ∈ F .

Proof. Let Y := cwk(E). For x∗ ∈ E∗ define ax∗(ω,C) := s(x∗ | C). Let
A := {ax∗ : x∗ ∈ E∗} and A1 := {ax∗ : x∗ ∈ U∗}. Then A-scalar measura-
bility is just scalar measurability as defined above, and by Proposition 3.1
a scalarly measurable F : Ω → cwk(E) is of class UI(A1) if and only if
it is Pettis integrable. Also, it is well known that there exists a countable,
Mackey dense subset (x∗j) of E∗ that separates the sets in cwk(E) [16]. Form
A0 := {ax∗j : j ∈ N} to obtain a point-separating collection of affine, con-
tinuous functions on Y = cwk(E). After this one can apply Theorem 2.4,
which gives (a′), (b′) and (d′) immediately. To obtain (c′) from (c), one ap-
plies the following basic facts: (1) for any collection {Ci : i ∈ I} in cwk(E)
each element of the convex hull co{Ci : i ∈ Ci} (i.e., the convex hull taken in
the cone cwk(E)) is a set that is contained in the subset co(

⋃
i∈I Ci) of E,
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(2) if a sequence (Ck) in cwk(E) scalarly converges to C ∈ cwk(E) (i.e.,
limk s(x∗ | Ck) = s(x∗ | C) for every x∗ ∈ E∗), then C ⊂ cl co

⋃
k Ck (apply

the Hahn–Banach theorem).

Corollary 3.3. Let (Fn) be a sequence of Pettis integrable multifunc-
tions Fn : Ω → cwk(E) such that there exists Γ : Ω → cwk(E) with

⋃
n
Fn(ω) ⊂ Γ (ω) for a.e. ω in Ω

and such that

{s(x∗ |Fn(·)) : x∗ ∈ U∗, n ∈ N} is uniformly integrable.

Then (a′), (c′) and (d′) of Theorem 3.2 hold. Moreover , (c′) then amounts
to

(c′′) F∗(ω) ⊂ cl co w-LsFn(ω) for a.e. ω in Ω.

Recall here from [14] that for any sequence (Cn) of sets Cn ⊂ E the
w-sequential upper limit (alias w-limes superior in the sense of Kuratowski),
denoted by w-Ls Cn, is defined as the collection of all points x ∈ E for
which there exist a subsequence (Cnj) and associated points xnj ∈ Cnj with
x = limj xnj .

Proof. Define h(ω,C) := 0 if C ⊂ Γ (ω) and h(ω,C) := +∞ otherwise.
Then the convexity of h(ω, ·) is immediate and its inf-compactness follows
by Blaschke-type results, such as [7, Lemma 3.3] or [13, Lemma 5.1]). The
equivalence of (c′) and (c′′), given the condition involving Γ , follows by
Lemma 3.3 of [7] (see [14] for the original result).

This corollary generalizes Theorems 4.1 and 4.2 of [21]. Part (d′) gen-
eralizes Theorem 2.6 of [8]. Recall that a function f : Ω → E is said to
be scalarly integrable (respectively Pettis integrable) if the corresponding
cwk(E)-valued multifunction ω 7→ {f(ω)} is scalarly integrable (respectively
Pettis integrable) [19].

Theorem 3.4. Let (fn) be a sequence of Pettis integrable functions fn :
Ω → E such that there exists h : Ω ×E → [0,+∞] with

(3.3) sup
n

� ∗

Ω

h(ω, fn(ω))µ(dω) < +∞,

(3.4) h(ω, ·) is convex and inf-compact on E for a.e. ω,

and such that

{〈x∗, fn(·))〉 : x∗ ∈ U∗, n ∈ N} is uniformly integrable.

Then there exist a subsequence (fnj ) of (fn) and a Pettis integrable f∗ :
Ω → E such that
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(α) fnj
K→ f∗,

(β) � ∗Ω h(ω, f∗(ω))µ(dω) < +∞,

(γ) f∗(ω) ∈ ⋂∞p=1 cl co
⋃
j≥p fnj (ω) for a.e. ω in Ω,

(δ) limj→∞ � B〈x∗, fnj (ω)〉µ(dω) = � B〈x∗, f∗(ω)〉µ(dω) for every x∗∈E∗
and B ∈ F .

For Y := E instead of Y = cwk(E) the proof is an obvious analogue of
the proof of Theorem 3.2 by means of Theorem 2.4. Note that there is no
need to formulate an analogue for functions of Corollary 3.3, since this is
already contained in the latter (specialize to single-valued multifunctions).

Until now, we supposed that E was a separable Banach space. For a
quasi-complete locally convex Suslin vector space Ẽ the above definition
of Pettis integrability of a function f : Ω → Ẽ can be repeated verbatim
(recall that a Hausdorff topological space is Suslin if it is the continuous
surjective image of a Polish space). In this more general setting the criterion
contained in Proposition 3.1 has a version for functions (we do not know of
a similar counterpart for multifunctions). The following result comes from
[18, Theorem 1]:

Proposition 3.5. Let f : Ω → Ẽ be scalarly integrable such that

(a) for every equicontinuous set K ⊂ Ẽ∗ the collection {〈x∗, f〉 : x∗ ∈ K}
is uniformly integrable,

(b) there exists a sequence (fn) of Pettis integrable functions fn : Ω → Ẽ
such that

lim
n

�

B

〈x∗, fn〉 dµ =
�

B

〈x∗, f〉 dµ for every x∗ ∈ Ẽ∗ and every B ∈ F .

Then f is Pettis integrable.

We now have the following extension of Theorem 3.4 for functions taking
values in the quasi-complete locally convex Suslin vector space Ẽ:

Theorem 3.6. Let (fn) be a sequence of Pettis integrable functions fn :
Ω → Ẽ such that (3.3)–(3.4) hold (for Ẽ instead of E) and such that for
every equicontinuous K ⊂ Ẽ∗,

{〈x∗, fn(·)〉 : x∗ ∈ K, n ∈ N} is uniformly integrable.

Then there exist a subsequence (fnj ) of (fn) and a Pettis integrable f∗ :
Ω → Ẽ such that

(α′) fnj
K→ f∗,

(β′) � ∗Ω h(ω, f∗(ω))µ(dω) < +∞,
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(γ′) f∗(ω) ∈ ⋂∞p=1 cl co
⋃
j≥p fnj (ω) for a.e. ω in Ω,

(δ′) limj→∞ � B〈x∗, fnj(ω)〉µ(dω) = � B〈x∗, f∗(ω)〉µ(dω) for every x∗∈E∗
and B ∈ F .

Proof. Let Y := Ẽ. For x∗ ∈ Ẽ∗ we set ax∗(ω, x) := 〈x∗, x〉. Let
A := {ax∗ : x∗ ∈ E∗}; then, clearly, A-scalar measurability is ordinary scalar
measurability. By [9, III.32] there exists a countable Mackey dense subset
(x∗j ) of Ẽ∗ that separates the points of Ẽ. Setting A0 := {ax∗j : j ∈ N},
we can now apply Theorem 3.2. This gives (α′), (β′), (γ′) and (δ′), so
it only remains to prove that f∗ is Pettis integrable. We do this by in-
voking Proposition 3.5. For any equicontinuous set K ⊂ Ẽ∗ the proof of
Theorem 2.4 can be repeated, with {ax∗ : x∗ ∈ K} in the role of A1.
This gives that {〈x∗, f〉 : x∗ ∈ K} is uniformly integrable. Hence con-
dition (a) of Proposition 3.5 holds. Let x∗ ∈ E∗. By the uniform inte-
grability of {〈x∗, fn(·))〉 : n ∈ N} it follows from applying Corollary 2.2
two times (set g(ω, x) := 1B(ω)〈x∗, x〉 and g(ω, x) := −1B(ω)〈x∗, x〉) that
limj � B〈x∗, fnj 〉 dµ = � B〈x∗, f∗〉 dµ for every B ∈ F . Hence, also condi-
tion (b) of Proposition 3.5 holds.

This generalizes the first part of Theorem 3.4 in [1]; the second part of
that result is a Fatou-type lemma. Such Fatou-type results can also be given
in the context of this section and the previous one. However, Fatou-type
results that strictly apply to Pettis integrable (multi)functions (as opposed
to those for Bochner integrable (multi)functions [3, 6, 7, 20]) are difficult to
formulate, for somehow they must involve uniform L1-bounds. Recent results
on this subject can be found in [15], where a countable partition figures, on
each of whose parts a Bochner Fatou-type result from [7, Theorem 2.5] is
applied.

Acknowledgments. We are grateful to an anonymous referee who
made several helpful suggestions, and to Christian Hess (Paris) for send-
ing us a copy of [15] after this paper was completed.
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[1] A. Amrani, Lemme de Fatou pour l’intégrale de Pettis, Publ. Mat. 42 (1998), 67–79.
[2] A. Amrani and C. Castaing, Weak compactness in Pettis integration, Bull. Polish

Acad. Sci. Math. 45 (1997), 139–150.
[3] E. J. Balder, Fatou’s lemma in infinite dimensions, J. Math. Anal. Appl. 136 (1988),

450–465.
[4] —, Unusual applications of a.e. convergence, in: Almost Everywhere Convergence,

G. A. Edgar and L. Sucheston (eds.), Academic Press, New York, 1989, 31–53.
[5] —, New sequential compactness results for spaces of scalarly integrable functions,

J. Math. Anal. Appl. 151 (1990), 1–16.



Pettis Integrable (Multi)Functions 61

[6] E. J. Balder and C. Hess, Fatou’s lemma for multifunctions with unbounded values,
Math. Oper. Res. 20 (1995), 175–188.

[7] —, —, Two generalizations of Komlós’ theorem with lower closure-type applications,
J. Convex Anal. 3 (1996), 25–44.

[8] C. Castaing, Weak compactness and convergences in Bochner and Pettis integration,
Vietnam J. Math. 24 (1996), 1–40.

[9] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lec-
ture Notes in Math. 580, Springer, Berlin, 1977.

[10] C. Dellacherie et P.-A. Meyer, Probabilités et Potentiel , Hermann, Paris, 1975.
[11] K. El Amri and C. Hess, On the Pettis integral of closed valued multifunctions,

Set-Valued Anal. 8 (2000), 329–360.
[12] B. Fuchssteiner and W. Lusky, Convex Cones, North-Holland, Amsterdam 1981.
[13] C. Hess, On multivalued martingales whose values may be unbounded: martingale

selectors and Mosco convergence, J. Multivariate Anal. 39 (1991), 175–201.
[14] —, Measurability and integrability of the weak upper limit of a sequence of multi-

functions, J. Math. Anal. Appl. 153 (1990), 226–249.
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