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Summary. Several results on stability in impulsive dynamical systems are proved. The
first main result gives equivalent conditions for stability of a compact set. In particular, a
generalization of Ura’s theorem to the case of impulsive systems is shown. The second main
theorem says that under some additional assumptions every component of a stable set is
stable. Also, several examples indicating possible complicated phenomena in impulsive
systems are presented.

1. Preliminaries. Let X be a metric space. A pair (X,π) is a dynam-
ical system if π : R × X → X is a continuous function with π(0, x) = x
and π(t, π(s, x)) = π(t+ s, x) for every t, s, x; replacing R by R+ we get the
definition of a semidynamical system. For the elementary properties of dy-
namical and semidynamical systems, see [BH], [BS], [NS], [P], [V]. We define
the positive trajectory of x as π+(x) = π([0,+∞), x) = π([0,+∞)× {x}).

In a semidynamical system, for t ≥ 0 and y ∈ X by F (t, y) we mean
{z ∈ X : π(t, z) = y}. In an analogous way we define F (∆,D) for ∆ ⊂ [0,∞)
and D ⊂ X. A point x ∈ X is said to be a start point if F (t, x) = ∅ for all
t > 0.

An impulsive system (X,π,M, I) consists of a semidynamical system
(X,π) (which may be a dynamical system), called the basic system, to-
gether with a nonempty closed subset M of X and a continuous function
I : M → X. We assume that for each x ∈ M there is an εx > 0 such that
π((−εx, 0), x)∩M = ∅ and π((0, εx), x)∩M = ∅ (for dynamical systems), or
F ((0, εx), x)∩M = ∅ and π((0, εx), x)∩M = ∅ (for semidynamical systems).
These conditions mean that the points of M are isolated on every trajectory
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of the system (X,π). We call M the impulse set and I the impulse function.
By M+(x) we mean the set (π+(x) ∩M) \ {x}.

We define a function φ : X → (0,+∞] by

φ(x) =
{
s if π(s, x) ∈M and π(t, x) 6∈M for t ∈ (0, s),

+∞ if M+(x) = ∅
(i.e. φ(x) is the smallest positive time for which the positive trajectory of x
meets M). For x ∈M we call the point π(φ(x), x) the impulse point of x.

The trajectory π̃+(x) of a point x is defined as follows. We start from x.
If M+(x) = ∅ then we put π̃(s, x) = π(s, x) for any s ≥ 0. If M+(x) 6= ∅ then
we put π̃(s, x) = π(s, x) for s < φ(x) and π̃(φ(x), x) = I(π(φ(x), x)). Then
we continue the above procedure starting at π̃(s, x) and so on. For x ∈ X,
we denote by x1 the point π(φ(x), x) and by x1+ the point π̃(φ(x), x) =
I(π(φ(x), x)) = I(x1). By x2 we denote the point π(φ(x1+), x1+) and by
x2+ the point π̃(φ(x1+), x1+) = I(π(φ(x1+), x1+)) = I(x2) and so on. Thus,
for any point x ∈ X precisely one of the following three conditions holds:

(i) M+(x) = ∅,
(ii) for some n ≥ 1: xk+ is defined for k = 1, . . . , n and M+(xn+) = ∅,

(iii) for any k ≥ 1: xk+ is defined and M+(xk+) 6= ∅.
For any x ∈ X we define the escape time ω̃(x) of x as sup{s : π̃(s, x) is

defined}.
Clearly, if x satisfies (i) or (ii) then ω̃(x) = +∞. If x satisfies (iii) then

either ω̃(x) = +∞ or ω̃(x) ∈ (0,+∞). For a more detailed description, see
[K1], [LBS], [C2].

By π̃+(x) we mean the set π̃([0, ω̃(x)), x). By π+(A) we denote the set⋃{π+(x) : x ∈ A}; analogously we define π̃+(A).
In a metric space X with metric d we write B(x, δ) for the ball with ra-

dius δ centred at x. By B(A, δ) we denote {x ∈ X : dA(x) < δ}, where dA(x)
is the distance from x to A ⊂ X. By A(A, δ, ε) we denote the annulus {x ∈
X : δ < dA(x) < ε}. We say that a component E of a closed set A is isolated
in A if there exist disjoint open sets U and V such that E ⊂ U and A\E ⊂ V .

A point x is stationary if π(t, x) = x for all t ≥ 0 (which is equivalent to
π̃(t, x) = x for all t ≥ 0). A point x is periodic with respect to π (or periodic
in the system (X,π)) if π(t, x) = x for some t > 0 and x is not stationary.
A set A ⊂ X is:

• positively π-invariant if π+(A) ⊂ A;
• π-stable if for every ε > 0 and x ∈ A there exists a δ > 0 such that

π([0,+∞), B(x, δ)) ⊂ B(A, ε);
• π-orbitally stable if for every neighbourhood U of A there exists a

positively π-invariant (not necessarily open) neighbourhood V of A with
V ⊂ U ;
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• π-stable in the sense of Bhatia and Hajek if for every x ∈ A and y 6∈ A
there are a neighbourhood V of x and a neighbourhood W of y such that
W ∩ π([0,+∞), V ) = ∅;
• a π-attractor if there exists an ε > 0 such that limt→+∞ dA(π(t, x)) = 0

for any x ∈ B(A, ε).

The π-prolongation of x ∈ X is the set D+(x) = {y ∈ X : there are se-
quenes (xn), (tn) such that xn → x, tn ≥ 0 for each n and π(tn, xn) → y}.
We put D+(B) =

⋃{D+(x) : x ∈ B}. In an analogous way we define the
corresponding notions for π̃.

We say that an impulsive system satisfies (STC) (Strong Tube Condition)
if for any point x ∈ M there exists a section S through x with a tube U
such that S = M ∩ U (cf. [BS], [NS], [C1], [C2], [K1]).

We say that A is I-invariant in the impulsive system if I(x) ∈ A for
each x ∈ M ∩ A; and A is I-stable if for every ε > 0 there exists a δ > 0
such that I(M ∩B(A, δ)) ⊂ B(A, ε).

Throughout this paper we assume that (X,π,M, I) (written as (X, π̃))
is the impulsive system given by a semidynamical system (X,π) (which may
be a dynamical system) on a metric space X.

2. Invariance. We start from some remarks on invariance. It can be eas-
ily checked that none of three types of invariance: π-invariance, π̃-invariance
and I-invariance implies any other one. It is enough to consider a system
on R such that π(t, x) = t + x, M = {1}, I(1) = −1. Taking the sets
[0,+∞), [−1, 1), [−1, 1], [−2, 2] and [1,+∞) we get all the required exam-
ples. However, we have

2.1. Proposition. Any positively π-invariant and I-invariant set A is
positively π̃-invariant.

Proof. Let x ∈ A. Then π̃([0, φ(x)), x) = π([0, φ(x)), x) ⊂ A and x1 =
π(φ(x), x) ∈ A. Therefore x1+ = I(x1) ∈ A as A is I-invariant. In the same
manner we get π̃([φ(x), φ(x)+φ(x1)), x) = π([0, φ(x1)), x1) ⊂ A and x2 ∈ A.
We continue in this fashion obtaining π̃+(x) ⊂ A.

2.2. Proposition. Any positively π̃-invariant closed set is positively π-
invariant.

Proof. Let x ∈ A. Suppose that π(s, x) 6∈ A for some A and define t =
inf{s : π(s, x) 6∈ A}. Then t > 0 as π̃([0, φ(x)), x) = π([0, φ(x)), x) ⊂ A. We
have π([0, t), x) ⊂ A and π(t, x) ∈ A = A. However, π([0, φ(π(t, x))), π(t, x))
= π̃([0, φ(π(t, x))), π(t, x)) ⊂ A, so π([0, t+δ), x) ⊂ A for some δ > 0, which
contradicts the definition of t.

Any π-stable compact set is positively π-invariant (cf. [BH], [BS],
[NS], [P]). For π̃-stability we have
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2.3. Theorem. Any compact π̃-stable set A is π̃-invariant and π-invar-
iant. If there is no start point in M ∩ A, then A is also I-invariant.

Proof. Take an ε > 0. For any x ∈ A there is a δ > 0 such that
π̃+(B(x, δ)) ⊂ B(A, ε), so π̃+(x) ⊂ ⋂{B(A, ε) : ε > 0} = A = A.

The second property follows from the previous one and Proposition 2.2.
Now let x ∈M∩A; there are y ∈ X, t > 0 and u > t such that π(t, y) = x

and π([0, u], y) ∩M = {x}. Take any ε > 0. There exists a δ > 0 such that
π̃+(B(x, δ)) ⊂ B(A, ε). We can find an s ∈ [0, t) such that π(s, y) ∈ B(x, δ).
Thus I(x) = I(π(t − s, π(s, y))) = π̃(t − s, π(s, y)) ∈ B(A, ε). Therefore
I(x) ∈ ⋂{B(A, ε) : ε > 0} = A = A.

2.4. Remark. In particular, the condition on start points is always ful-
filled in the case of dynamical systems. Even for semidynamical systems, the
situation where there is a start point in M ∩ A is rather strange; however,
it may happen. In that case I is formally defined for such a point but in
fact has practically nothing in common with the impulsive system as the
movement of this point in the system (X, π̃) is given by π; moreover, there
is no way to get to this point.

2.5. Theorem. Assume that a component E of a compact positively
π̃-invariant set A is I-invariant. Then E is positively π̃-invariant.

Proof. Let x ∈ E. Then π([0, φ(x)), x) ⊂ A, as according to Theorem 2.3,
A is positively π-invariant. Therefore π([0, φ(x)), x) ⊂ E. If φ(x) = +∞,
the proof is finished. If φ(x) < +∞, then x1 = π(φ(x), x) ∈ E = E and
I(x1) ∈ E. We proceed in this manner to get π̃+(x) ⊂ E.

3. Stability in impulsive systems and basic systems. We start
from some examples which show that the connection between stability in a
basic system and in an impulsive system can be very week.

3.1. Example. We show an example of a π̃-stable and π-invariant set
which is not π-stable. TakeX = {(r, θ) : r ≥ 1} ⊂ R2 with polar coordinates.
Consider the system given by the equations r′ = (r − 1)/100, θ′ = 1 with

M = [1,+∞)×
{
π

2

}
, I(r, 0) =

(
r + 99

100
,

3π
2

)

(see Figure 1). The unit circle A = {(r, θ) : r = 1} is not π-stable as the
trajectories of the basic system go spirally from the unit circle to infinity.
However, A is π̃-stable because in the impulsive system a moving point
“jumps down” from the upper vertical half-line onto the lower vertical half-
line; after an impulse it is closer to the unit circle; when it comes again
to the upper half-line it is closer to the circle than at the moment of the
previous jump; then it jumps again.
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Fig. 1

3.2. Example. We exhibit a set A which is not π̃-stable, although it
is π-stable, π̃-positively invariant, I-invariant, I-stable and it is even a
π̃-attractor (in particular, there is an ε > 0 such that dA(xn) → 0 and
dA(xn+)→ 0 for any x ∈ B(x, ε) with infinite number of impulses).

Take X = {(r, θ) : 1 ≤ r ≤ 2} ⊂ R2 with polar coordinates. Consider the
system given by the equations r′ = 0, θ′ = 1 and take M1 = [1, 3/2]×{π/2},
M2 = [1, 2] × {3π/2} and M = M1 ∪M2. For x ∈ M1 we put I(r, π/2) =
(2r− 1, 0) and for x ∈M2 we put I(r, 3π/2) = ((r + 1)/2, π) (see Figure 2).

The unit circle A = {(r, θ) : r = 1} is π-stable and I-stable. Each
point of X is attracted to A, because after some time it falls into M2 and
then it will approach A. However, A is not π̃-stable since all the points of
{(r, θ) : 1 < r < 3/2, 0 < θ < π/2} fall after some time into the annulus
{(r, θ) : 3/2 ≤ r ≤ 2}.

Fig. 2
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To get a system fulfilling (STC) it is enough to take M = M1∪M2∪M3,
where M3 = [3/2, 2]×{π/2} and to map M3 onto I(M3) = {2}× [0, π] with
I(3/2, π/2) = (2, 0).

However, some results can be proved. We have

3.3. Theorem. Assume that X is locally compact and A is a compact
π-stable subset of X. Assume also that there is a % such that for every
x ∈ B(A, %) the following conditions hold :

(a) if x ∈M then dA(I(x)) ≤ dA(x),
(b) if x ∈ I(M) and φ(x) < +∞, then dA(π(φ(x), x)) ≤ dA(x).

Then A is π̃-stable.

Proof. Take an ε > 0; we may assume that ε < %. To prove the π̃-stability
of A it is enough to show that there is a δ > 0 such that π̃+(x) ⊂ B(A, ε)
for any x ∈ B(A, δ).

From the π-stability of A we can find an η > 0 such that π(B(A, η)) ⊂
B(A, ε), since A is compact. Similarly, there is a δ > 0 such that π(B(A, δ))
⊂ B(A, η/2). Now take an x ∈ B(A, δ). If there is no impulse point in π̃+(x)
we have π̃+(x) = π+(x) ⊂ B(A, ε). Assume then that φ(x) < +∞. We
have π̃([0, φ(x)), x) = π([0, φ(x)), x) ⊂ B(A, η/2) ⊂ B(A, ε) ⊂ B(A, %) so
x1 = π(φ(x), x) ∈ B(A, η/2) and dA(x1) ≤ η/2 < η < %. Thus dA(x1+) ≤
η/2 and x1+ ∈ B(A, η), so π̃([φ(x), φ(x1+)), x) = π([0, φ(x1+)), x1+) ⊂
B(A, ε) and dA(π(φ(x1+), x1+)) ≤ dA(x1+) ≤ η/2. Therefore dA(x2+) ≤
dA(x2) ≤ η/2. We continue in this fashion to obtain dA(xn) ≤ η/2, dA(xn+)
≤ η/2, π([0, φ(xn+)), xn+) ⊂ B(A, ε). We conclude that π̃+(x) ∈ B(A, ε).

We also have a simple

3.4. Proposition. Assume that A is a compact π-stable subset of X
and A ∩M = ∅. Then A is π̃-stable.

Proof. There is a β > 0 such that B(A, β) ∩M = ∅ as A is compact
and M is closed. Take any ε > 0. For any x ∈ A there is a δ′ > 0 with
π+(B(x, δ′)) ⊂ B(A, ε). If we take δ = min{δ′, β) we have π̃+(B(x, δ′)) ⊂
B(A, ε).

The stability of stationary and periodic trajectories is of particular in-
terest. We have the immediate

3.5. Corollary. If x 6∈ M is a stationary point and {x} is a π-stable
set then {x} is a π̃-stable set.

3.6. Corollary. If x is periodic with respect to π̃, π+(x)∩M = ∅ and
π+(x) is a π-stable set , then π+(x) = π̃+(x) is a π̃-stable set.

We also have
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3.7. Theorem. Assume that a compact set A is π-stable and there exists
a % > 0 such that I(M ∩B(A, %)) ⊂ A. Then A is π̃-stable.

Proof. Take an ε > 0; we may assume that ε < %. From the compactness
and stability of A there is a δ > 0 such that π+(B(A, δ)) ⊂ B(A, ε). We
show that π̃+(B(A, δ)) ⊂ B(A, ε). Take an x ∈ B(A, δ). If there is no impulse
point in π̃+(x) we have π̃+(x) = π+(x) ⊂ B(A, ε).

Assume now that φ(x) < +∞. Then π̃([0, φ(x)), x) ⊂ B(A, ε), x1 =
π(φ(x), x) ∈ B(A, %) and x1+ ∈ A ⊂ B(A, δ). We continue in this fashion
obtaining π̃([0, φ(x1+)), x1+) ⊂ B(A, ε) and x2+ ∈ A ⊂ B(A, δ). We proceed
analogously to get π̃+(x) ⊂ B(A, ε).

4. Conditions for stability of compact sets. For dynamical sys-
tems, there are some criteria for stability of compact sets. Impulsive systems
may have more complicated motion, even for simple systems. Surprisingly
enough, some results analogous to those for dynamical systems hold. In
particular, Ura’s famous theorem connecting the stability of a compact set
with a property of the prolongation is true. The proof is not a simple anal-
ogy of that for dynamical systems. This is, in particular, the case for the
implication (4)⇒(1) of the following theorem.

4.1. Theorem. Assume that X is locally compact and A is a compact
subset of X. Then the following conditions are equivalent :

(1) A is π̃-stable.
(2) A is π̃-orbitally stable.
(3) A is π̃-stable in the sense of Bhatia and Hajek.

(4) D̃+(A) = A.

(The equivalence (1)⇔(4) is Ura’s Theorem for impulsive systems.)

Proof. (1)⇒(2). Take a neighbourhood U of A. There is a neighbour-
hood V of A with V ⊂ π̃+(V ) ⊂ U . Then π̃+(V ) is the required positively
invariant neighbourhood of A.

(2)⇒(3). Take x ∈ A and y 6∈ A. We can find open sets W and V with
W ⊃ A, y ∈ V , W ∩ V = ∅. From (2) we can find a positively invariant
neighbourhood U of A such that U ⊂ W . The sets IntU and V fulfill the
conditions of the definition of stability in the sense of Bhatia and Hajek.

(3)⇒(4). Clearly, A ⊂ D̃+(A). We show that D̃+(A) ⊂ A. Take y 6∈ A
and x ∈ A. There are neighbourhoods U of x and V of y with π̃+(U)∩V = ∅.
Then for any sequences (xn) and (tn) such that xn → x and tn ≥ 0 we have
xn ∈ U, π̃(tn, xn) ∈ U, π̃(tn, xn) 6∈ V for n ≥ n0 and thus π̃(tn, xn) 9 y. This
shows that for any x ∈ A we have y 6∈ D̃+(x) and finally y 6∈ D̃+(A).
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(4)⇒(1). Suppose to the contrary that there are ε > 0 and sequences
(xn), (tn) such that xn → x, tn ≥ 0 and π̃(tn, xn) 6∈ B(A, ε). We may assume
that B(A, ε) is compact as X is locally compact.

Assume that tn < ω̃(xn) for infinitely many n. Taking a subsequence we
may assume that tn < ω̃(xn) for every n. Then π̃(tn, xn) = π(tn, xn) and
for each n there is an sn ∈ [0, tn] with π̃(sn, xn) = π(sn, xn) ∈ ∂B(A, ε).
The last set is compact, so π̃(snk , xnk) → y ∈ ∂B(A, ε) for some sub-
sequence (nk). Thus y ∈ D̃+(A) \ A, which is a contradiction. We now
need to prove the theorem in the case where tn < ω̃(xn) only for finitely
many n.

We may assume that ω̃(xn) ≤ tn for all n (in other words, each π̃(tn, xn)
appears on the trajectory π̃+(xn) later than the impulse point of xn).

Set ∆n = {s ≥ 0 : π̃(s, xn) ∈ B(A, ε)}. Note that 0 ∈ ∆n. Thus we
may define sn = inf [0, ω̃(xn)) \∆n. Notice that π̃(sn, xn) 6∈ B(A, ε) as the
function π̃(·, xn) is right-continuous.

Now take a δ ∈ (0, ε). We show that there is an n0 such that for any
n ≥ n0 we can find pn ∈ π̃(∆n, xn) and qn ∈ A such that d(pn, qn) <
δ. Suppose not. Then for infinitely many n we can find a un ∈ ∆n with
π̃(un, xn) ∈ A(A, δ, ε). The last set is compact, so for some subsequence (unk)
of (un) we have π̃(unk , xnk)→ y 6∈ A, which is impossible as D̃+(A) = A.

For any fixed n ≥ n0 we have π̃([0, sn), xn) ⊂ B(A, δ) and π̃(sn, xn) 6∈
B(A, ε), which means that π̃(·, xn) is not continuous at sn, so π̃(sn, xn) =
I(yn) for some yn ∈ M . Moreover, yn ∈ B(A, δ), because π̃(s, xn) → y as
s↗ sn. Note also that yn is not a start point as sn > 0.

Using the compactness of B(A, δ) we may assume that yn → y ∈ B(A, δ).
From the continuity of I we get I(yn)→ I(y), which gives I(y) 6∈ A, because
I(yn) 6∈ B(A, ε) for every n. On the other hand, I(yn) = π̃(sn, xn), which
means that I(yn) = limn→∞ π̃(sn, xn) ∈ D̃+(x) ⊂ D̃+(A). This contradicts
the assumption D̃+(A) = A and finishes the proof.

5. Stability of components. For a dynamical system, a compact set
A is stable if and only if each component of A is stable. This does not hold
for impulsive systems.

5.1. Example. Consider the planar dynamical system given by the equa-
tions x′ = −y, y′ = x. Here each point is periodic except (0, 0) which is a
stationary point. Let A1 = {(x, y) : x2+y2 = 1}, A2 = {(x, y) : x2+y2 = 4},
A = A1 ∪ A2. Let M = {(0,−2), (0,−1)}, I((0,−2)) = (0, 1), I((0,−1))
= (0, 2). It is easy to see that A is stable, but no component of A (i.e.
neither A1 nor A2) is stable.



Stability in Impulsive Dynamical Systems 89

5.2. Example. It is easy to modify the above example to get a sys-
tem satisfying (STC). Consider the restriction of the basic system from the
previous example to the set X = {(x, y) : 1 ≤ x2 + y2 ≤ 4} and take
M = {0} × [−2,−1] with I((0, y)) = (0, y + 3). Here again A is stable, but
neither A1 nor A2 is. Note that in this impulsive system for x ≤ 0 any point
(x, y) is periodic, while for x > 0 a point (x, y) is eventually periodic. This
example shows that the condition (STC), though important in the theory
of impulsive systems for several reasons, has nothing to do with stability of
components.

However, we have an easy

5.3. Proposition. Assume that A is compact and any component of A
is π̃-stable. Then A is π̃-stable.

Proof. Let U be a neighbourhood of A. Take any x ∈ A. Let Ax be a
component of A such that x ∈ Ax. Of course U is a neighbourhood of Ax.
Thus there exists a neighbourhood Vx of x such that π̃+(Vx) ⊂ U . This
finishes the proof.

Examples 5.1 and 5.2 suggest that the reason why a π̃-stable set need
not have stable components is that the component need not be I-invariant.
Indeed, we have

5.4. Theorem. Let X be locally compact. Assume that an isolated com-
ponent E of a compact π̃-stable set A is I-invariant. Then E is π̃-stable.

Proof. We may assume that U is compact. Suppose to the contrary that
there exist a neighbourhood W of B, an x ∈ E and a sequence (xn) such that
xn → x and π̃+(xn) is not contained in W . We may assume that W ⊂ U
(thus, W is compact).

There exists an ε > 0 such that B(E, ε) ⊂ W as E is compact. Hence
B(E, ε) is compact.

First notice that M+(xn) 6= ∅ for each such n. If not, for any n there is a
un ≥ 0 such that π̃(un, xn) = π(un, xn) ∈ ∂ B(E, ε). Taking a subsequence
we have π̃(un, xn) → y ∈ ∂ B(E, ε); so y ∈ D̃+(x) ⊂ D̃+(A) and y 6∈ A.
This is impossible according to Theorem 4.1.

There is a neighbourhood Gx of x such that π̃+(Gx) ⊂ B(E, ε) ∪ V , be-
cause B(E, ε)∪V is a neighbourhood of the stable set A. For n large enough
we have xn ∈ Gx. Using the property shown above we know that for each
n the set {t : π̃(t, xn) ∈ V } is nonempty. Define tn = inf{t : π̃(t, xn) ∈ V }.
Thus π̃([0, tn), xn) ⊂ B(E, ε). According to the construction of impulsive
trajectories and the property that the points of M are isolated on every
trajectory of the system (X,π) we have π̃(tn, xn) ∈ V and π̃(tn, xn) = xkn+

for some kn. Thus π̃(tn, xn) = I(qn) for some qn ∈ B(E, ε). Moreover, for
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each such n there exists a vn < tn such that there is no impulse point in the
segment of trajectory π̃((vn, tn), xn).

For each n take an sn ∈ (vn, tn) such that tn − sn → 0. Define pn =
π̃(sn, xn) ∈ B(E, ε). We may assume (taking a subsequence if necessary)
that pn → p ∈ B(E, ε). On the other hand, qn = π(tn−sn, pn)→ π(0, p) = p.
Thus p ∈M , since qn ∈M for every n and M is closed.

However, p = limn→∞ π̃(sn, xn) and xn → x, so p ∈ D̃+(x) ⊂ D̃+(A).
According to Theorem 4.1, p ∈ A and p ∈ E as B(E, ε) ∩ (A \ E) = ∅.
But E is I-invariant, so I(p) ∈ E; on the other hand, I is continuous, hence
I(qn) → I(p) and I(qn) ∈ V , so I(p) ∈ V and I(p) 6∈ E. The contradiction
finishes the proof.

The assumption that E is an isolated component is essential, as can be
seen in the following

5.5. Example. Consider the space X = {(x, y) : 1 ≤ x2 + y2 ≤ 2}
and the dynamical system given by the equations x′ = −y, y′ = x. Define
Aα = {(x, y) : x2 + y2 = α2}. Take A = A1 ∪

⋃{A1+1/n : n = 1, 2, . . .}.
Note that A1 is not isolated from A \ A1. We take M = {(0, 1)} ∪ {0} ×
{1 + 1/n : n = 1, 2, . . .}. We now put I((0, 1)) = (0,−1), I((0, 2)) = (0,−2)
and I((0, 1 + 1/n)) = (0,−1− 1/(n− 1)). Then A is stable, its component
A1 is I-invariant but A1 is not stable. It is also easy to modify this example
to have (STC) fulfilled; we take M = {0} × [1, 2].

In Theorem 5.4 the assumption of I-invariance of E cannot be replaced
neither by the weaker assumption of π̃-invariance nor by the condition that
E is a π̃-attractor. We have the following

Fig. 3
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5.6. Example. Consider the space X = R2 × {0, 1} and the dynamical
system given by the equations x′ = −x, y′ = −y on R2 × {0} and R2 × {1},
independently. Now letM0 = {(x, y, z) : x2+y2 = 1, z = 0},M1 = {(x, y, z) :
x2 + y2 = 1/4, z = 1},M = M0 ∪M1. We define I(x, y, 0) = (x, y, 1) for
(x, y, 0) ∈ M0 and I(x, y, 1) = (x, y, 0) for (x, y, z) ∈ M1 (see Figure 3).
Take A0 = {(x, y) : x2 + y2 ≤ 1} × {0}, A1 = {(x, y) : x2 + y2 ≤ 1} × {1},
A = A0 ∪A1. The set A is π̃-stable, the component A0 is a π̃-attractor and
is positively π̃-invariant but it is not π̃-stable.

From Theorem 5.7 we have an immediate

5.8. Corollary. Assume that X is locally compact , a compact set A
is π̃-stable and A has a finite number of components. Then any component
E of A is π̃-stable provided it is I-invariant.
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