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Summary. We study a model of motion of a passive tracer particle in a turbulent flow
that is strongly mixing in time variable. In [8] we have shown that there exists a prob-
ability measure equivalent to the underlying physical probability under which the quasi-
Lagrangian velocity process, i.e. the velocity of the flow observed from the vintage point of
the moving particle, is stationary and ergodic. As a consequence, we proved the existence
of the mean of the quasi-Lagrangian velocity, the so-called Stokes drift of the flow. The
main step in the proof was an application of the Lasota–York theorem on the existence of
an invariant density for Markov operators that satisfy a lower bound condition. However,
we also needed some technical condition on the statistics of the velocity field that allowed
us to use the factoring property of filtrations of σ-algebras proven by Skorokhod. The
main purpose of the present note is to remove that assumption (see Theorem 2.1). In
addition, we prove the existence of an invariant density for the semigroup of transition
probabilities associated with the abstract environment process corresponding to the pas-
sive tracer dynamics (Theorem 2.7). In Remark 2.8 we compare the situation considered
here with the case of steady (time independent) flow where the invariant measure need
not be absolutely continuous (see [9]).

1. Introduction. A simple model of transport of a passive tracer in a
complicated medium is provided by the Itô stochastic equation

{
dx(t) = u(t,x(t);ω) dt+

√
2κ dw(t),

x(0) = 0,
(1.1)

where u : R × Rd × Ω → Rd is a d-dimensional random field, independent
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of the d-dimensional standard Brownian motion w(·). The random field
u(·) describes the velocity field of a turbulent flow, and the parameter κ > 0
determines the strength of the molecular diffusivity of the medium. It is also
usually assumed (see e.g. [7]) that in the case of fully developed turbulence
the velocity field u(·) is time-space stationary. There exists an extensive
physics literature dedicated to the passive tracer model, and the reader is
referred to e.g. [4] or [12] to gain more insight into the physical aspect of
the subject.

A fundamental question pertaining to the passive tracer motion is to
determine its long time, large scale properties from the statistics of the
drift. For example, one may ask whether the trajectory process x(·) obeys
the law of large numbers, i.e. whether the limit

v∗ := lim
t→+∞

x(t)
t

(1.2)

exists almost surely. This limit is sometimes called the Stokes drift of the
flow.

It has been well known since the work of Lumley (see [11] and also [14])
that the assumption of stationarity and incompressibility of the drift, i.e.
∇x · u(t,x) ≡ 0, implies that the quasi-Lagrangian velocity process η(t) :=
u(t,x(t)), t ≥ 0, is also stationary. Assuming in addition that κ > 0 it can
be concluded that the process η(·) is also ergodic (see e.g. [5, Proposition 1,
p. 758]). In our previous paper [8, Theorem 2.1, p. 639], we have proved that
whenever the field u(·, ·) is sufficiently regular, has finite dependency range
in temporal variable (see condition (FDT) below) and satisfies a certain
regularity condition (see (ACFDD) below), then there exists an absolutely
continuous change of probability measure such that the quasi-Lagrangian
process is both stationary and ergodic under the new measure. The key step
in the proof was an application of the Lasota–York theorem on the existence
of invariant densities for Markov operators that satisfy a certain lower bound
condition (see [10, Theorem 5.6.2]).

The condition (ACFDD) used in our previous paper is of purely tech-
nical nature and we needed it only to apply a certain result on σ-algebra
factorization due to Skorokhod [16]. In the main result of the present paper
(Theorem 2.1), we are able to prove the conclusions of [8] without assuming
(ACFDD).

Additionally, in Theorem 2.7 we prove the existence of an invariant den-
sity for the semigroup of transition probabilities corresponding to an ab-
stract environment process.

2. Notation and formulation of the main results. We let w(·) be
a standard d-dimensional Brownian motion over a probability space T1 :=
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(Σ,A,W ). Suppose also that (Ω, d) is a Polish metric space, and B its Borel
σ-algebra. Let T0 := (Ω,B,P) be a probability space and u : R×Rd×Ω → Rd
a d-dimensional random vector field, i.e. u(t,x;ω) is a random vector for each
(t,x) ∈ R × Rd. In most of the following notation we omit the argument ω
of random elements; E, M denote the expectation operators corresponding
to P, W respectively. We write Lp := Lp(T0), and let B(Ω) stand for the
space of bounded, Borel measurable functions on Ω.

2.1. Assumptions on the Eulerian field and the quasi-Lagrangian process.
We assume that the random field satisfies the following hypotheses.

(S) The field is time-space stationary, i.e. for any N ≥ 1, ((t1,x1), . . . ,
(tN ,xN )) ∈ R×Rd and (t,x) ∈ R×Rd the laws of (u(t1,x1), . . . ,
u(tN ,xN )) and of (u(t1+t,x1+x), . . . ,u(tN+t,xN +x)) coincide.

(RH) u(·, ·) and ∇xu(·, ·) are jointly locally Hölder P-a.s. Moreover,
u(·, ·) is deterministically bounded, i.e.

V∞ := ess sup
ω∈Ω

sup
(t,x)∈R×Rd

|u(t,x)| <∞.(2.1)

(C) The field is centered, i.e.

Eu(0,0) = 0.(2.2)

(FDT) (Finite dependence range in the temporal variable) If U ba, −∞ ≤
a ≤ b ≤ ∞, denotes the σ-algebra generated by u(t,x), a ≤ t ≤ b,
x ∈ Rd then there exists T > 0 for which the σ-algebras U t−∞ and
U∞t+T are independent for any t ∈ R.

We set T2 := (Ω,U0
−∞,P).

The solution x(·) of equation (1.1) defines a stochastic process over the
probability space T0⊗T1 := (Ω×Σ,B⊗A,P⊗W ). Our first principal result is

Theorem 2.1. Suppose that u(·, ·) satisfies the hypotheses (S), (RH),
(C), (FDT) and κ > 0. Then there exists a probability measure P∗ on (Ω,B),
equivalent to P, such that the quasi-Lagrangian process η(t) := u(t,x(t)),
t ≥ 0, is stationary and ergodic over the probability space (Ω × Σ,B ⊗ A,
P∗ ⊗W ).

Remark 2.2. Ergodicity here is understood as the absence of non-trivial
(w.r.t. the law of η(·)) shift invariant sets, i.e.

(E) for any Borel subset A of C([0,∞);Rd) satisfying

P∗ ⊗W [[θh(η(·)) ∈ A]4 [η(·) ∈ A]] = 0(2.3)

for all h ≥ 0 we have P∗ ⊗W [η(·) ∈ A] = 0 or 1.

Here 4 denotes the symmetric difference of events and θh is the canonical
shift on C([0,∞);Rd), i.e. θh(x(·)) := x(h+ ·).
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Remark 2.3. An obvious consequence of the above theorem and the
individual ergodic theorem is the existence of the Stokes drift defined by
(1.2) (cf. also [8, Corollary 2.2]).

2.2. The abstract environment process. In this section we introduce an
abstract process, closely related to the passive tracer problem. It is Marko-
vian in the sense of Proposition 2.6 below. Our second principal result,
Theorem 2.7, asserts the existence of an invariant density for this process.

Suppose that on Ω we are given an additive group of transformations
Tt,x : Ω → Ω, (t,x) ∈ R× Rd. We assume that it satisfies the following.

(MP) The group preserves the measure P, i.e. P(Tt,x(A)) = P(A) for all
(t,x) ∈ R× Rd, A ∈ B.

(M) (Measurability) The mapping (t,x, ω) 7→ 1A(Tt,xω), (t,x, ω) ∈ R ×
Rd ×Ω, is jointly measurable for any A ∈ B.

(SC) (Stochastic continuity) We have

lim
|t|+|x|→0

P[|1A(Tt,xω)− 1A(ω)| ≥ η] = 0, ∀η > 0, A ∈ B.

Suppose that ũ : Ω → Rd is a centered random vector. By (MP) the
random field

u(t,x;ω) = ũ(Tt,xω), ∀(t,x) ∈ R× Rd,(2.4)

is time-space stationary and centered. We assume further that it satisfies
conditions (RH) and (FDT).

Definition 2.4. We say that the group T·,· is temporally ergodic if

(ET) any A ∈ B satisfying P[Tt,0(A)4 A] = 0 for some t > 0 is trivial,
i.e. P[A] = 0 or 1.

Remark 2.5. Typically, as in the previous section, we are given a time-
space homogeneous random field u as the starting point. Then Ω is identified
with a suitable space containing all possible realizations of u, for example
Ω := C(R × Rd;Rd). The probability P can be taken to be the law of u
on Ω. It is invariant under the measurable group Tt,xω(·, ·) := ω(·+ t, ·+x),
ω ∈ Ω, (t,x) ∈ R × Rd. We let ũ(ω) := ω(0,0). One can easily show that
T·,· fulfills all the assumptions specified above, provided that u satisfies the
assumptions of Section 2.1.

For each fixed ω ∈ Ω we define an Ω-valued environment process ξ(t) :=
Tt,x(t)ω, where x(·) is a solution to (1.1), with u given by (2.4). It is an
object of interest in the homogenization theory of random media (see e.g.
[13] and the references therein for more insight into the applications of this
process).
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Let (Zt)t≥0 denote the natural filtration for ξ(·). Let pω(s,y; t,x), s <
t, x,y ∈ Rd, be the transition probability densities corresponding to the
diffusion (1.1). For any F ∈ B(Ω) and t ≥ 0 we define

P tF (ω) :=
�
Rd
pω(0,0; t,x)F (Tt,xω) dx.(2.5)

An important property of the environment process is its Markovianity un-
derstood as follows.

Proposition 2.6 ([5, Proposition 1, p. 758]). The process ξ(·) is Mar-
kovian, with (P t) being its semigroup of transition probabilities, i.e.

E[F (ξ(t+ s)) | Zt] = P sF (ξ(t)), ∀t, s ≥ 0,

where F ∈ B(Ω). Moreover , if the field is incompressible, i.e. ∇x ·u(t,x) ≡
0, we have �

P tF dP =
�
F dP for all t ≥ 0, F ∈ B(Ω),

i.e. P is an invariant measure for (P t)t≥0.

To prove the existence of an invariant measure for an environment pro-
cess that is absolutely continuous w.r.t. P, the underlying probability of the
Eulerian flow, is a challenging problem. This is due to the fact that in general
ξ(·) takes values in an infinite-dimensional space Ω. Our result concerning
the environment process can be stated as follows.

Theorem 2.7. Suppose that the group T·,· satisfies assumptions (MP),
(M), (SC) and the random field u given by (2.4) satisfies conditions (RH)
and (FDT). Then there exists an invariant positive density for the semigroup
(P t)t≥0, i.e. an element h∗ ∈ L1 such that

h∗ > 0, � h∗ dP = 1,(2.6)

� h∗P tF dP = � h∗F dP for all t ≥ 0, F bounded U∞0 -measurable.(2.7)

In addition, if the group T·,· satisfies the temporal ergodicity condition (ET),
then the semigroup (P t) is ergodic, i.e. any F satisfying P tF = F P-a.s. for
some t > 0 must be constant P-a.s.

Remark 2.8. At the end of this section we compare the above results
with those of [9]. There we considered motions described by equation (1.1)
with a time independent drift of the form u(x;ω) := v + ũ(x;ω), where
v ∈ Rd is a constant vector and ũ is a zero mean, stationary random field
over T0 whose L∞-norm is bounded by |v|. Assuming some regularity of
the field we have shown (see [8, Theorem 2.2]) that in this case there exists
an invariant measure µ for the Lagrangian velocity u(x(t)), t ≥ 0. This
measure is absolutely continuous w.r.t. P ⊗ W . We can also consider the
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corresponding abstract environment process ξ(t) = Tx(t)ω, t ≥ 0, defined
on a suitable function space Ω. One can show that in this case there also
exists an invariant measure on P∗ defined over (Ω,B(Ω)). It can be easily
concluded from the argument in [9] that the restriction of P∗ to any sub-
σ-algebra VR := σ{u(x) : x · v ≤ −R} for R > 0 is absolutely continuous
w.r.t. the corresponding restriction of P. An example given in [3] for i.i.d.
random walks in random environments suggests, however, that P∗ need not
be absolutely continuous w.r.t. P.

3. Construction of the invariant measure

3.1. Fields with absolutely continuous finite-dimensional distributions.
Suppose that the field u has absolutely continuous finite-dimensional distri-
butions (condition (ACFDD)), i.e. all random vectors (u(t1,x1), . . . ,
u(tN ,xN )), where N ≥ 1, (ti,xi) 6= (tj,xj), i 6= j ∈ {1, . . . , N}, are abso-
lutely continuous with respect to the N · d-dimensional Lebesgue measure.
In Section 3.1 of [8] we defined for such fields a density preserving operator
Q : L1(T0)→ L1(T0), called a transport operator, that satisfies

�
MG(ξ(T ))F dP =

�
GQF dP

for any bounded F and G that are U0
−∞ and U∞0 -measurable respectively

(see [8, Proposition 3.1, p. 640]). Here T is the temporal dependence range
introduced in condition (FDT). To show the existence of an invariant den-
sity for this operator we used the classical Nash–Aronson inequalities for
fundamental solutions of parabolic equations (see [1, Theorem 1, p. 891]).
They state that for any T > 0 there exists a positive deterministic con-
stant c1, depending only on T, V∞ and the dimension d, such that for all
−T < s < t < 0 and x,y ∈ Rd we have

(3.1)
1

c1(t− s)d/2 exp
{
−c1|x− y|2

t− s

}
≥ pω(s,x; t,y)

≥ c1

(t− s)d/2 exp
{
− |x− y|2
c1(t− s)

}
.

Here pω(s,x; ·, ·) is the transition probability density of the diffusion sat-
isfying the stochastic differential equation (1.1) with the initial condition
x(s) = x. With the help of estimates (3.1) we concluded ([8, (3.1), p. 640])
that there exists a constant c2 > 0, depending only on T, V∞, such that

QF ≥ c2

�
F dP, ∀F ≥ 0, U0

−∞-measurable.(3.2)

As a consequence of the above estimate and [10, Theorem 5.6.2] we con-
cluded (see [8, Lemma 3.2, p. 642]) the existence of an invariant density H∗
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for Q. Thanks to (3.2) this density satisfies

H∗ ≥ c2.(3.3)

In addition it can be deduced from the formula for the operator Q (see
[8, erratum, formula (3.1), p. 341]) and upper bounds on the transition
probabilities of (3.1) that

H∗ ≤ c3,(3.4)

with c3 depending on the same parameters as c2.
Define

h∗(ω) :=
1
T

0�
−T

�
Rd
pω(t,y; 0,0)H∗(Tt,yω) dy dt,(3.5)

where pω(·, ·; ·, ·) is the transition probability density corresponding to the
diffusion given by (1.1). Note that since H∗ is U0

−∞-measurable, so is h∗.
The following result has been shown in [8, Theorem 2.1, p. 639 and (3.5),
p. 643].

Theorem 3.1. Suppose that the field u(·) satisfies conditions (S), (RH),
(C), (FDT), (ACFDDT) and κ > 0. Then the quasi-Lagrangian process
η(t) := u(t,x(t)), t ≥ 0, is stationary and ergodic over the probability space
(Ω ×Σ,B ⊗A,P∗ ⊗W ), where P∗(dω) := h∗(ω)P(dω).

It is also straightforward to verify (see [8, pp. 643–644]) that h∗ satisfies
the conclusions of Theorem 2.7.

3.2. Approximation of a general flow by fields satisfying (ACFDD). In
this section we will construct a sequence of velocity fields satisfying the
regularity condition (ACFDD) which approximate the velocity field u in an
appropriate sense.

With no loss of generality we suppose that the probability space T0 is
sufficiently rich to support a time-space stationary, Gaussian random field
g : R× Rd ×Ω → Rd that satisfies the following conditions:

(G0) g is independent of u.
(G1) g is centered, i.e. Eg(0,0) = 0.
(G2) Let Gba denote the σ-algebra generated by g(t,x), a ≤ t ≤ b, x ∈ Rd.

Then g(s,x) and g(t,y) are uncorrelated when |t− s| > T , ∀x,y ∈
Rd. This implies in particular (see [15, Theorem 10.2, p. 181]) that
g(·, ·) satisfies (FDT) with Gt−∞ and G∞t+T replacing U t−∞ and U∞t+T ,
respectively.

(G3) g has realizations that are C∞ P-a.s.
(G4) g satisfies condition (ACFDD).

To construct such a field let W (dt, dx) be an R-valued space-time white
noise over T0 that is independent of u, and g : R× Rd → R be a compactly
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supported C∞ function with support in (0, T )×BR(0) for someR > 0, where
BR(x) is the ball of radius R > 0 centered at x. Set ∆(x) := (−∞, x1] ×
. . .× (−∞, xd] and

g1(t,x;ω) :=
t�
−∞

�
. . .

�
∆(x)

g(t− s,x− y)W (ds, dy)

and let g2, . . . , gd be independent copies of g1. The field g = (g1, . . . , gd)
satisfies assumptions (G0)–(G4).

We define the velocity field un by

un(t,x) := u(t,x) +
1
n
φ(g(t,x)),

where φ : Rd → Rd is given by φ(x) := (1+|x|2)−1/2x. Thanks to (G0)–(G4)
it is easy to check that un satisfies all the conditions (S), (RH), (C), (FDT),
(ACFDD). It is also easy to check that un and ∇xun converge to u and
∇xu respectively, as n→∞, uniformly on compact sets, P-a.s.

Since the fields u, g are jointly homogeneous, without any loss of gener-
ality we may assume that there exists a group Tt,x : Ω → Ω, (t,x) ∈ R×Rd,
satisfying assumptions (MP), (M), (SC) of Section 2.2 such that

u(t,x;ω) = u(0,0;Tt,xω), g(t,x;ω) = g(0,0;Tt,xω),(3.6)

for all (t,x) ∈ R× Rd. Hence, in particular,

un(t,x;ω) = un(0,0;Tt,xω) for all n ≥ 1 and (t,x) ∈ R× Rd.(3.7)

4. The proof of Theorem 2.1. Denote by Q(n) the transport opera-
tor corresponding to the field un. Let H(n)

∗ be the corresponding invariant
density and P(n)

∗ (dω) := h
(n)
∗ (ω)P(dω), where

h
(n)
∗ (ω) :=

1
T

0�
−T

�
Rd
pωn(t,y; 0,0)H(n)

∗ (Tt,yω) dy dt(4.1)

and pωn(·, ·; ·, ·) denotes the transition probability density corresponding to
the diffusion with drift un. Thanks to (3.4) and the upper bound on the
transition probability density in (3.1) one can find a deterministic constant
c4 > 0 independent of n such that

1/c4 ≤ h(n)
∗ ≤ c4.(4.2)

From (4.2) we conclude that (h(n)
∗ ) is L2-weakly pre-compact. In the same

fashion we deduce that there exists a constant c5 independent of n such that

H
(n)
∗ ≤ c5,(4.3)
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hence (H(n)
∗ ) is weakly pre-compact in L2. Choose a subsequence (nk), still

denoted by (n), such that

lim
n→∞

h
(n)
∗ = h∗, lim

n→∞
H

(n)
∗ = H∗,(4.4)

weakly in L2. Note that since all h(n)
∗ are U0

−∞-measurable, so also is h∗.

Lemma 4.1. We have

h∗(ω) =
1
T

0�
−T

�
Rd
pω(t,y; 0,0)H∗(Tt,yω) dy dt.(4.5)

Proof. Denote the right hand side of (4.5) by h̃∗(ω). From the Banach–
Saks theorem (see [2, Theorem 1.8.4]) we conclude that there exists a sub-
sequence (H(nk)

∗ ) whose Cesàro means converge in the L2-norm to H∗,

lim
m→∞

∥∥∥∥
1
m

m∑

k=1

H
(nk)
∗ −H∗

∥∥∥∥
L2

= 0.(4.6)

Hence, there exists a subsequence (m′) ⊂ N such that

lim
m′→∞

1
m′

m′∑

k=1

H
(nk)
∗ = H∗ P-a.s.(4.7)

Repeating the same procedure we can choose a subsequence such that, in
fact,

lim
m′→∞

1
m′

m′∑

k=1

h
(nk)
∗ = h∗ P-a.s.(4.8)

Recalling that pωn(·, ·; ·, ·) denotes the transition probability density corre-
sponding to the diffusion with drift un, we can write

(4.9)
�
|h̃∗(ω)− h∗(ω)|P(dω)

=
� ∣∣∣∣ lim
m′→∞

1
T

0�
−T

�
Rd

1
m′

m′∑

k=1

[pω(t,y; 0,0)H∗(Tt,yω)

− pωnk(t,y; 0,0)H(nk)
∗ (Tt,yω)] dy dt

∣∣∣∣P(dω)

≤
�
lim sup
m′→∞

1
T

T�
0

�
Rd

1
m′

m′∑

k=1

|pω(0,0; t,y)− pωnk(0,0; t,y)|H∗(ω) dy dtP(dω)

+
�
lim sup
m′→∞

1
T

T�
0

�
Rd

∣∣∣∣
1
m′

m′∑

k=1

pωnk(0,0; t,y)[H∗(ω)−H(nk)
∗ (ω)]

∣∣∣∣ dy dtP(dω).
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In the last expression we used the homogeneity of the random field. Denote
by I1, I2 respectively the first and second expressions on the right hand side
of (4.9).

Changing H∗(ω) and Hnk∗ (ω) on a set of measure 0 if necessary, we can
assume that they are bounded for all ω ∈ Ω. The sequence (pωnk(0,0; t,y))
converges to pω(0,0; t,y) for all ω ∈ Ω and t ∈ (0, T ], y ∈ Rd. Applying
the Lebesgue dominated convergence theorem we see that I1 = 0. Recalling
(4.7) and applying the Lebesgue theorem again implies that I2 also vanishes.

We define

P∗(dω) := h∗(ω)P(dω).(4.10)

Our next goal is to show that P∗ satisfies the conclusions of Theorem 2.1.
Since (un(·, ·))n≥0 converges uniformly on compact sets to u(·, ·) to-

gether with appropriate spatial derivatives we conclude that (xn(·))n≥0
converges uniformly on compact intervals to x(·) for P-a.e. ω. Thus, also
(un(·,xn(·)))n≥0 converges uniformly on compact intervals to u(·,x(·)).

Take 0 < t1 < . . . < tk, x1, . . . ,xk ∈ Rd and f1, . . . , fk : Rd → R bounded
continuous functions. Since un(·, ·) satisfies condition (ACFDD), we can use
(3.6) and (3.7) of [8] to deduce that for any h ≥ 0,

(4.11)
�
Ω

M
k∏

i=1

fi(un(ti + h,xi + xn(ti + h)))P(n)
∗ (dω)

=
�
Ω

M
k∏

i=1

fi(un(ti,xi + xn(ti)))P
(n)
∗ (dω).

Recall that M is the expectation w.r.t. the probability measure W corre-
sponding to Brownian paths w(·). Therefore, letting n→∞ gives

(4.12)
�
Ω

M
k∏

i=1

fi(u(ti + h,xi + x(ti + h)))P∗(dω)

=
�
Ω

M
k∏

i=1

fi(u(ti,xi + x(ti)))P∗(dω).

Hence, P∗ is stationary. The proof of ergodicity is postponed until Section
5.3 after we present the proof of ergodicity of the abstract environment
process.

5. The proof of Theorem 2.7

5.1. Stationarity. Let U denote the sub-σ-algebra of B generated by
u(t,x), (t,x) ∈ R×Rd. Let h∗ of Theorem 2.7 be given by (4.4). Thanks to
(4.2) we conclude that h∗ ≥ 1/c4, so (2.6) holds. Moreover, (4.12) implies
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that (2.7) holds for all F that are bounded and U∞0 -measurable. We also
have the following.

Lemma 5.1. Suppose that F ∈ B(Ω) and t ≥ 0. Let FU ∈ B(Ω) be such
that FU = E[F | U ] P-a.s. Then

E[P tF | U ] = P tFU P-a.s.

Proof. Suppose that G is bounded and U-measurable. Then�
E[P tF | U ]GdP =

�
P tFGdP(5.1)

(2.5)
=

� �
Rd
pω(0,0; t,x)F (Tt,xω)G(ω) dxP(dω)

=
� �
Rd
pT−t,−xω(0,0; t,x)F (ω)G(T−t,−xω) dxP(dω)

the last expression being the consequence of the homogeneity of P. Since
pω(0,0; t,x) is U-measurable, being a fundamental solution of the Kol-
mogorov forward equation with U-measurable coefficients, the left hand side
of (5.1) equals� �

Rd
pT−t,−xω(0,0; t,x)FU(ω)G(T−t,−xω) dxP(dω) =

�
P tFUGdP.

To finish the argument for the stationarity note that since h∗ is U0
−∞-

measurable we can write�
P tFh∗ dP =

�
E[P tF | U ]h∗ dP

Lemma 5.1=
�
P tFUh∗ dP

=
�
FUh∗ dP =

�
Fh∗ dP

and (2.7) is satisfied.

5.2. Ergodicity. Here we assume that condition (ET) holds. Note that for
each t > 0 the operator P t is conservative in the sense of Hopf decomposition
(see [6, II, Chapter]). According to [6, Theorem A, p. 21] it suffices to show
that any A ∈ B satisfying

P t1A = 1A for some t > 0(5.2)

must be trivial, i.e. P(A) = 0 or 1. Suppose that A satisfies (5.2) and
P(A) > 0. With no loss of generality we may assume that A ∈ U . Indeed,
otherwise consider F := E[1A | U ] that is non-constant, U-measurable and
such that P tF = F . This, again by [6], implies the existence of a non-trivial
set B ∈ U such that P t1B = 1B.

We have �
Ω

�
Rd

1A(Tt,yω)pω(0,0, t,y)1Ac(ω) dyP(dω) = 0,
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which in turn implies �
1A(Tt,yω)1Ac(ω)P(dω) = 0(5.3)

for m-a.e. y ∈ Rd, where m denotes the Lebesgue measure on Rd. Stochastic
continuity of the group T·,· implies that (5.3) holds in fact for all y ∈ Rd
and in particular also for y = 0. Therefore, 1A(Tt,0ω) = 1A(ω) P-a.s., which
implies P(A) = 1 by (ET).

5.3. Ergodicity of the quasi-Lagrangian process. Suppose that A is a
Borel subset of C([0,∞);Rd) that satisfies (2.3) and P∗ ⊗ W [η(·) ∈ A] ∈
(0, 1). Assume that Ω and the group T·,· are as in Remark 2.5. Let ξ(·) be the
corresponding environment process with (P t) the corresponding semigroup
of transition probabilities. By (FDT) the group T·,· is temporally ergodic.
Then F := M1A(η(·)) is non-constant and, by (2.3), satisfies P hF = F
for any h > 0. This contradicts the conclusion of the previous section, and
shows that there are no non-trivial shift invariant sets.

References

[1] D. G. Aronson, Bounds for the fundamental solutions of a parabolic equation, Bull.
Amer. Math. Soc. 290 (1967), 890–896.

[2] A. V. Balakrishnan, Applied Functional Analysis, Springer, Berlin, 1981.
[3] E. Bolthausen and A. S. Sznitman, On the static and dynamic points of views

for certain random walks in random environment, Methods Appl. Anal. 9 (2002),
345–376.

[4] G. Falkovich, K. Gawędzki and M. Vergassola, Particles and fluids in turbulence,
Rev. Mod. Phys. 73 (2001), 913–975.

[5] A. Fannjiang and T. Komorowski, An invariance principle for diffusions in turbu-
lence, Ann. of Probab. 27 (1999), 751–781.

[6] S. Foguel, Ergodic Theory of Markov Processes, Van Nostrand, New York, 1969.
[7] U. Frisch, Turbulence, Cambridge Univ. Press, 1996.
[8] T. Komorowski and G. Krupa, On the existence of invariant measure for Lagrangian

velocity in compressible environments, J. Statist. Phys. 106 (2002), 635–651; Erra-
tum, ibid. 109 (2002), 341.

[9] —, —, On stationarity of Lagrangian observations of passive tracer velocity in a
compressible environment, Ann. Appl. Probab., to appear.

[10] A. Lasota and M. Mackey, Probabilistic Properties of Deterministic Systems, Cam-
bridge Univ. Press, 1985.

[11] J. L. Lumley, The mathematical nature of the problem of relating Lagrangian and
Eulerian statistical functions in turbulence, in: Mécanique de la Turbulence (Mar-
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de Mathématiques Appliquées, 1994, www.cmap.polytechnique.fr/˜olla/lho.ps.

[14] S. C. Port and C. Stone, Random measures and their application to motion in an
incompressible fluid, J. Appl. Probab. 13 (1976), 499–506.



Turbulent Transport Problem 113

[15] Yu. A. Rozanov, Stationary Random Processes, Holden-Day, 1967.
[16] A. V. Skorokhod, σ-algebras of events on probability spaces. Similarity and factor-

ization, Theory Probab. Appl. 36 (1991), 63–73.

Tomasz Komorowski
Institute of Mathematics
Polish Academy of Sciences
P.O. Box 21
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