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1. Introduction. We begin with some notation and definitions:
F denotes a differential field of characteristic zero with derivation D = DF and

algebraically closed field of constants C.
E ⊃ F is a Picard–Vessiot, or Differential Galois extension for an order n monic linear

homogeneous differential operator

L = Y (n) + an−1Y
(n−1) + . . .+ a1Y

(1) + a0Y, ai ∈ F

if:

1. E is a differential field extension of F generated over F by V = {y ∈ E | L(y) = 0}.
2. The constants of E are those of F (“no new constants”).
3. dimC(V ) = n (“full set of solutions”).

For Picard–Vessiot extensions, let G(E/F )=Autdiff
F (E); then G(E/F )→GL(L−1(0))

is an injection with Zariski closed image.
There is a “Fundamental Theorem” for differential Galois extensions:

Theorem 1 (Fundamental Theorem for Picard–Vessiot Extensions). Let E ⊃ F be
a Picard–Vessiot extension. Then G = G(E/F ) has a canonical structure of affine alge-
braic group and there is a one-one lattice inverting correspondence between differential
subfields K, E ⊃ K ⊃ F , and Zariski closed subgroups H of G given by K 7→ G(E/K)
and H 7→ KH . If K is itself a Picard–Vessiot extension, then the restriction map G →
G(K/F ) is a surjection with kernel G(E/K). If H is normal in G, then KH is a Picard–
Vessiot extension.
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For various reasons, the direct analogues of “algebraic closure” and its properties for
differential Galois extensions do not hold. However, the following notion is of interest:

A Picard–Vessiot closure E ⊃ F of F is a differential field extension which is a union
of Picard–Vessiot extensions of F and such that every such Picard–Vessiot extension of
F has an isomorphic copy in E.

Example 1. For an example, we consider the Picard–Vessiot closure of C (with the
trivial derivation). Let C[[t]] and C((t)) denote the ring of complex formal power series
and its quotient field, with the usual derivation (D(C) = 0 and D(t) = 1). For c ∈ C
we let exp(ct) =

∑
(ct)k/k!. Let K be the subfield of C((t)) generated over C by t and

{exp(ct) | c ∈ C}. Since exp(ct) is a solution of Y ′ − cY = 0, it is easy to see that
C(exp(ct)) ⊃ C is a Picard–Vessiot subextension of C((t)) ⊃ C. And since t is a solution
of Y ′′ = 0, C(t) ⊃ C is a Picard–Vessiot subextension as well. As we will show below
(Corollary 10), this implies that the field K, the compositum of the fields C(exp(ct)),
c ∈ C, along with C(t), is a union of Picard–Vessiot subextensions of C. On the other
hand, it is a familiar fact from the theory of elementary differential equations that any lin-
ear, homogeneous equation with (complex) constant coefficients has a full set of solutions
of the form tk exp(cjt) for appropriate k and cj ∈ C. It follows that any Picard–Vessiot
extension of C embeds in K, and hence that K is a Picard–Vessiot closure of C.

There are two basic approaches to the algebraic construction of Picard–Vessiot clo-
sures: one can either construct a maximal extension of a suitable sort by an application of
Zorn’s Lemma, and then try to prove that it contains copies of all Picard–Vessiot exten-
sions of the base; or one can take a tensor product of all the Picard–Vessiot extensions of
the base and then try to prove than an appropriate quotient exists. (Both approaches are
related, of course.) In [2] and [3], we considered the construction from the first approach.
(There are errors in the account in [2] which are corrected in [3].) In the present work,
we follow the second approach, although we will use the first approach to establish the
existence of the desired quotient. Our argument proceeds via a class of differential fields
which are especially well adapted for the Zorn’s lemma argument we need.

It should also be noted that these algebraic constructions are moot from a model
theory point of view, where all the fields in question can already be assumed to reside
inside a single universal differential field.

In [3], it is further shown that differential automorphisms of the base field lift to
differential automorphisms of a Picard–Vessiot closure. We give another proof of that
here, using the tensor product construction of closures, which makes this lifting theorem
more transparent.

In [3], in addition to proving that Picard–Vessiot closures exist, it is shown that they
have pro-affine proalgebraic groups of differential automorphisms, and that there is a
“Fundamental Theorem” for Picard–Vessiot closures and related infinite extensions. (An
interesting special case is the Picard–Vessiot antiderivative closure EU ⊃ F : the group G
of differential automorphisms of EU over F is prounipotent. When C is the complex num-
bers and F = C(t) the rational functions in one variable, this G is free prounuipotent.)

The Picard–Vessiot closure of F can have proper Picard–Vessiot extensions, and hence
a proper Picard–Vessiot closure. This leads naturally to the consideration of the tower
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of Picard–Vessiot extensions. The automorphism lifting theorem implies that the differ-
ential automorphism groups of each extension in the tower over the base maps onto the
automorphism group of its predecessor, with the kernel being the pro-affine proalgebraic
group of differential automorphisms of the extension over its predecessor. However the
groups themselves need not be pro-affine.

2. Locally excellent fields. Our main interest is in differential fields which are
unions of Picard–Vessiot extensions. For didactic purposes, however, we will work with
a broader class of fields, ones for which we have extracted all the excellent properties of
Picard–Vessiot extensions save normality. In keeping with a similar convention from com-
mutative algebra, we will call such fields excellent. The following sequence of definitions
sets the terminology.

Definition 1. A differential field extension E ⊇ F is a No New Constants (NNC)
extension if the constants of E are those of F . A differential integral domain R ⊇ F is
called a No New Constants F algebra if the quotient field E of R is NNC extension of F .
A prime differential ideal P of a differential F algebra S is called a co No New Constants
(cNNC) ideal if A/P is a NNC F algebra.

It is shown, for example in [2], that if A is a finitely generated differential F algebra
then any maximal differential ideal M is a cNNC ideal.

Definition 2. An integral domain differential F algebra R is called excellent if:

1. Every element of R satisfies a linear differential equation over F .
2. R is a finitely generated F algebra.
3. R is a NNC F algebra.

As noted, if a finitely generated differential F algebra is differentially simple, then it
is also NNC. For such algebras, condition 3 is superfluous. We call differentially simple
excellent algebras simply excellent. A differential field extension E ⊇ F is called excellent
(respectively simply excellent) if it is the quotient field of an excellent (respectively simply
excellent) differential F algebra. E is called locally excellent (respectively locally simply
excellent, respectively locally Picard–Vessiot) if every finite subset of E is contained in
an excellent (respectively simply excellent, respectively Picard–Vessiot) subfield.

By [2, Thm 3.4 & Thm 3.5, p. 25], a Picard–Vessiot extension of F is simply excel-
lent. It is easy to construct excellent extensions which are not Picard–Vessiot, for example
by looking at subfields of Picard–Vessiot extensions. A slightly more subtle question is
whether there are excellent extensions which are not subfields of Picard–Vessiot exten-
sions. The answer is “no”, as we will see in Corollary 14.

Applying condition 2 of Definition 2 requires that one be able to recognize field el-
ements that satisfy linear differential equations. The following lemma is useful in that
regard.

Lemma 2. Let R ⊇ F be a differential algebra and let α ∈ R. Then α satisfies a
linear differential equation over F if and only if there is a DR stable finite dimensional
F subspace V of R containing α.
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Proof. Suppose L(α) = 0 where L = Y (n) + an−1Y
(n−1) + . . . + a1Y

(1) + a0Y , so
α(n) = −∑ aiα

(i). Let V be the F span of α(i), 0 ≤ i ≤ n− 1. For f ∈ F , DR(fα(i)) =
D(f)α(i)) + fα(i+1). When i < n− 1, we clearly have DR(fα(i)) ∈ V , and for i = n− 1,
DR(fα(n−1)) = D(f)α(n−1) − f∑i<n aiα

(i) which is in V as well. It follows that V is
closed under DR. If, conversely, α belongs to a DR stable subspace V of R of dimension
n over F , then the set {α(i) | 0 ≤ i ≤ n} is necessarily linearly dependent over F , from
which it follows that α satisfies a linear differential equation of order n over F .

The definition of locally excellent asserts that a locally excellent field is the direct
limit of excellent subfields. As the following proposition shows, it is sufficient that it be
a union of excellent subfields.

Proposition 3. Let E ⊇ F be a no new constants extension. Let Ee be the union of
all excellent subfields of E. Then Ee is a locally excellent subfield of E, and E is locally
excellent if and only if E = Ee.

Proof. Let α1 and α2 belong to Ee. Suppose that αi ∈ Ei where Ei ⊇ F is excellent,
and suppose that Ei is the quotient field of the excellent integral domain Ri where
F ⊆ Ri ⊆ Ei. Consider the integral domain R = R1R2 = {∑βjγj | βj ∈ R1, γj ∈ R2}. It
is clearly finitely generated over F , and its quotient field, being contained in E, has no new
constants. Let

∑
βjγj be an element of R, and let Vj and Wj be finite F dimensional D

stable subspaces of R1 and R2 such that βj ∈ Vj and γj ∈Wj (these exist by Lemma 2).
Then V =

∑
VjWj is a finite F dimensional D stable subspace of R containing

∑
βjγj ,

so, by Lemma 2,
∑
βjγj satisfies a linear differential equation over F . It follows that R

is excellent, and hence so is its quotient field E1E2, so E1E2 ⊆ Ee. Since αi ∈ Ei, we
have the sum, product, and quotient (if defined) of the αi in the excellent subfield E1E2

and hence belong to Ee as well. It follows that Ee is a field. If F ={α1, . . . , αn} is a finite
subset of Ee, with αi ∈ Ei for some excellent subfield Ei of E, then the above argument
applied inductively shows that E1 · E2 · . . . · En is an excellent subfield of Ee containing
F , and it follows that Ee is locally excellent. And of course if E is locally excellent, it
coincides, by definition, with Ee.

The set of solutions of a linear differential equation L = 0 over F in a no new constants
extension E of F is a vector space over the constants C of dimension at most the order of
L. The cardinality of the set of equations over F is that of F , and the cardinality of any
finite dimensional C space is that of C. It follows that the set of elements of the NNC
extension E ⊇ F that satisfy linear differential equations over F has cardinality at most
that of F , as would the set of their ratios. We conclude:

Lemma 4. Let E ⊇ F be a no new constants extension. Let Ee be the union of all
excellent subfields of E. Then Ee has cardinality that of F . In particular, the cardinality
of an excellent or locally excellent extension of F is that of F .

We are going to use Lemma 4 in a Zorn’s Lemma argument to produce locally excellent
extensions with certain maximality properties. The following Lemma covers the inductive
step in those arguments:
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Lemma 5. Let E be a simply excellent extension of F and let K be a NNC extension
of F . Then there is a NNC extension K1 ⊇ F and differential F embeddings E → K1

and K → K1. If K is locally excellent, K1 may be taken to be locally excellent.

Proof. Suppose that E is the quotient field of the differential integral domain R, where
R a differentially simple excellent F algebra. Let R1 be the finitely generated K algebra
K⊗F R, and let P be a maximal differential ideal of R1. By [2, Cor. 1.8, p. 11], R1/M is a
differential integral domain whose quotient field K1 is a NNC extension of K. Thus K1 is
a NNC extension of F . The map x 7→ x⊗ 1 induces a differential F embedding K → K1.
The map y 7→ 1 ⊗ y induces a differential F algebra homomorphism R → K1; since
R is differentially simple this is an embedding which then extends to an F embedding
E → K1. Let Ke denote the union of the excellent subfields of K1. By Proposition 3, Ke

is a subfield of K1, and of course it contains the image of E under the above embedding.
If K is locally excellent, then Ke contains the image of K under the above embedding
and hence we can replace K1 by Ke in the conclusion of the lemma.

We now establish the main compositum result for excellent extensions:

Theorem 6. There exist maximal locally excellent extensions K of F . If K is such,
and if E is any simply excellent extension of F then E can be differentially F embedded
into K.

Proof. Fix a set Y ⊃ F of cardinality greater than that of F . Let S denote the set
of locally excellent extensions of F whose underlying set is a subset of Y . By Lemma
4, any locally excellent extension of F is F differentially isomorphic to an element of S.
The union of any chain in S is a locally excellent extension of F and, by Lemma 4, again
in S. Hence by Zorn’s Lemma S has maximal elements. Let K be one, and let E be a
simply excellent extension of F . By Lemma 5, there is a locally excellent extension K1

of F containing images of both E and K. By transport of structure, we can assume that
K ⊆ K1. Then by using the fact that the cardinality of K1 and F are the same (Lemma 4)
and that of Y is larger, we can construct a field in S containing K and isomorphic to K1;
we denote this field by K1 as well. By maximality, K = K1, and by construction of K1,
E is F differentially embedded in K1, hence K.

Our most important use of the above construction is the following corollary:

Corollary 7. There is a no new constants extension of F in which every Picard–
Vessiot extension of F embeds; any maximal locally excellent extension is such.

Proof. Picard–Vessiot extensions of F are simply excellent, so any maximal locally
excellent extension is, by Theorem 6, a NNC extension with the desired property.

As another application of Theorem 6, we will deduce that the compositum of Picard–
Vessiot extensions inside a no new constants extension is also Picard–Vessiot. The fol-
lowing lemmas isolate the main points of the argument:

Lemma 8. Let Ri, i = 1, 2 be simply excellent F subalgebras of the no new constants
extension K ⊇ F , and let Ei denote the quotient field of Ri. Suppose that, for both i = 1
and i = 2, for every NNC extension M ⊇ F and every pair of differential F embeddings
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φ, ψ : Ei → M , φ(Ei) = ψ(Ei). Then S = R1R2 is simply excellent, and if E is its
quotient field then all differential F embeddings of E in a given NNC extension have the
same image.

Proof. Let P be any prime differential ideal of T = R1 ⊗F R2 such that the quotient
field of T = (R1 ⊗F R2)/P has no new constants. It follows from Lemma 2 that every
element of T satisfies a linear homogeneous differential equation over F , and then it
is clear that T is excellent. Let M be a maximal locally excellent extension of F . By
Theorem 6, the quotient fields of S and T both embed in M , as do E1 and E2. We
suppose the later to be the inclusion, and then by the embedding images property of the
Ei we have that the compositum E1E2 is (isomorphic to) the quotient fields of both S

and T . In particular, both S and T have the same dimension, m, say, independent of the
choice of P . We can choose P = P0 to be the kernel of R1 ⊗F R2 → S, and then we can
take P = P1 to be a maximal differential ideal containing P0. Since R1 ⊗F R2 modulo
P0 and P1 both have dimension m, we conclude that P0 = P1 is maximal differential and
hence that S = (R1⊗F R2)/P0 is simple. And it is clear that the quotient field E = E1E2

satisfies the embedding condition.

Lemma 9. Let S be a simply excellent F algebra with quotient field E, and suppose
that all differential F embeddings of E in any given NNC extension have the same image.
Let a ∈ E − F . Then there is a differential F algebra automorphism σ of E over F with
σ(a) 6= a. In particular, E is a Picard–Vessiot extension of F .

Proof. The proof is essentially the same as [2, Thm. 3.7, p. 26]. There is an element
b ∈ S such that a ∈ S[b−1] (which is also differentially simple, finitely generated as an
F algebra, and has quotient field E), and we can replace S with S[b−1] and assume that
a ∈ S. By assumption, c = a ⊗ 1 − 1 ⊗ a is not zero in the finitely generated F algebra
S⊗S, and so we can find a maximal differential ideal Q of S⊗S such that c 6∈ Q. Let K
be the quotient field of (S ⊗ S)/Q. K is a NNC extension of F . Since S is differentially
simple, the maps S → K induced from x 7→ (x⊗1) +Q and x 7→ (1⊗x) +Q are injective
and hence induce differential F embeddings from E to K. These have the same image,
and send a to different things, so their ratio is the desired automorphism σ.

Now we revert to our original algebra S. Since S is excellent, it is finitely generated
over F , say by x1, . . . , xk, and each xi is a solution of a linear homogeneous differential
equation Li = 0 over F . Let Vi be the set of all solutions of Li = 0 in E, and let
V = V1 + . . .+ Vk. V is stable under the group G all differential F automorphisms of E,
and by the first part of the proof the fixed field of G is F . Since S is differentially simple,
E has no new constants over F , and then it follows (say by [2, Prop. 3.9, p. 27]) that E
is Picard–Vessiot over F .

It is now a trivial matter to show that the compositum of Picard–Vessiot extensions
inside a no new constants extension is also Picard–Vessiot:

Corollary 10. Let K be a no new constants extension of F and let E1, . . . , Ek be
Picard–Vessiot subextensions of F in K. Then the compositum E1 · E2 · . . . · Ek is a
Picard–Vessiot extension of F .
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Proof. By induction, it suffices to treat the case k = 2. Then each Ei is the quotient
field of a simply excellent Ri and R1, R2 satisfy the hypotheses of Lemma 8. It follows
from that lemma that S = R1R2 satisfies the hypotheses of Lemma 9, and hence by that
lemma the quotient field E1E2 of S is a Picard–Vessiot extension of F as desired.

When we apply Corollary 10 to the maximal locally excellent extensions of F , we get
the following information about their structure:

Theorem 11. Let Km be a maximal locally excellent extension of F . Then every
finite subset of Km belongs to a Picard–Vessiot subextension. Thus Km is locally Picard–
Vessiot. In particular, Km is the union of its Picard–Vessiot subextensions, and (a unique
isomorphic copy) of every Picard–Vessiot extension of F occurs in Km.

Proof. Every finite subset of Km belongs to an excellent subextension. Let K be such,
and suppose that K is differentially generated over F by elements x1, . . . , xk such that xi
is a solution of the differential equation Li = 0. By Corollary 7, there are Picard–Vessiot
extensions Ei for Li inside K. Note that xi ∈ Ei. By Corollary 10, the compositum E of
the Ei is a Picard–Vessiot extension of F in K containing the xi, and hence containing
K. The final assertion is just Corollary 7 plus the fact that Picard–Vessiot extensions
have unique images in NNC extensions [2, Prop. 3.3, p. 24].

We will see in the next section that it is a consequence of Theorem 11 that all maximal
locally excellent extensions of F are isomorphic.

We conclude this section with a few additional consequences of the above results.
First, we note that we have established the existence of Picard–Vessiot extensions for
(finite) sets of linear differential operators:

Proposition 12. Let L1, . . . , Ln be monic homogeneous linear differential operators
over F . Then there exists a Picard–Vessiot extension E of F which

1. contains a Picard–Vessiot extension for each Li; and
2. is differentially generated over F by the solution spaces L−1(0), 1 ≤ i ≤ n.

Proof. Let K be a maximal locally excellent extension of F . By Corollary 7, there is
a Picard–Vessiot extension Ei of F for Li in K. By Corollary 10, E = E1 · . . . · En is a
Picard–Vessiot extension of F which satisfies the assertions of the proposition.

We can now show that excellent extensions embed in Picard–Vessiot extensions:

Proposition 13. Let F 〈x1, . . . , xn〉 be a finitely generated NNC differential field ex-
tension of F , and suppose for each i that xi satisfies a monic linear homogeneous differ-
ential equation Li = 0 over F . Then F 〈x1, . . . , xn〉 can be embedded in a Picard–Vessiot
extension of F .

Proof. Let M = F 〈x1, . . . , xn〉. By Proposition 12, there is a Picard–Vessiot extension
E0 of M which contains a Picard–Vessiot extension of M for each Li. Let Vi ⊂ E0 denote
L−1
i (0); we note that xi ∈ Vi. The differential subfield Ei = F 〈Vi〉 of E0 generated over

F by Vi is a Picard–Vessiot extension of F for Vi, and by Corollary 10, E = E1 · . . . ·En
is a Picard–Vessiot extension of F . Since all the xi belong to E, M is contained in E.
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Among the consequences of Proposition 13, we have that excellent extensions are
subextensions of Picard–Vessiot extensions:

Corollary 14. Excellent extensions of F are subextensions of Picard–Vessiot exten-
sions.

Proof. Since excellent extensions are differentially generated over F by finitely many
elements each of which satisfies a linear differential equation over F , this is a special case
of Proposition 13.

3. Picard–Vessiot closures. As we saw in Section 2, maximal locally excellent
extensions of F are unions of their Picard–Vessiot subextensions, and every Picard–
Vessiot extension occurs (up to isomorphism). That is, they are Picard–Vessiot closures
of F . In this section, we will show that these extensions are unique (up to isomorphism),
and that automorphisms of F extend to them.

The maximal locally excellent extensions are constructed from a Zorn’s Lemma/maxi-
mization method, and then seen to be generated by (actually a union of) representatives
of the isomorphism classes of Picard–Vessiot extensions of F . Alternatively, one could
start with representatives of all these isomorphism classes, form their (infinite) tensor
product, pass to the quotient by a prime differential ideal, and take the quotient field of
the result. This of course provides a differential field containing a representative of each
isomorphism class of Picard–Vessiot extensions of F ; the difficulty is to find such a field
with no new constants. That this is possible at all will be seen to follow from Theorem
11, and we will further show that all such constructions yield isomorphic fields.

We begin by considering a similar construction with finitely many Picard–Vessiot
extensions of F :

Proposition 15. Let E1, . . . , En be Picard–Vessiot extensions of F , and let S =
E1 ⊗F . . . ⊗F En. Let Gi = G(Ei/F ) be the group of differential automorphisms of Ei
over F and let G = G1× . . .×Gn. Regard G as a group of automorphisms of S. Suppose
that P and Q are prime differential cNNC ideals of S. Then there is g ∈ G such that
g(P ) = Q. The set of all such g is a coset of a Zariski closed subgroup of G.

Proof. Let K be the quotient field of S/P and let M be the quotient field of S/Q.
Both K and M are NNC composita of E1, . . . , En, and hence themselves Picard–Vessiot
by Corollary 10. Hence, by Theorem 11 both K and M can be embedded over F in a
maximal locally excellent extension Km, say via σ : K → Km and τ : M → Km. We let
s : S → Km and t : S → Km be the corresponding maps with respective kernels P and
Q coming from σ and τ . We regard Ei as a subring of S. The restrictions of s and t to
Ei are two embedings of Ei in an NNC field, and hence their images coincide. It follows
that there is gi ∈ Gi such that s = tgi on Ei. Let g = (g1, . . . , gn). Then s = t ◦ g on each
Ei, and hence on S, and it follows that the kernel of t is g(Ker(s)). Since s has kernel P
and t has kernel Q, it follows that g(P ) = Q.

Let H ≤ G be the stabilizer of P . The set of all elements of G that carry P to Q is
a coset of H, and hence it suffices to prove that H is Zariski closed in G. Each Ei is the
quotient field of the simply excellent domain Ri consisting of all elements of Ei which
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satisfy linear differential equations over F [2, Prop. 5.1, p. 61] and Gi acts as an algebraic
transformation group on Ri ([2, p. 49]; indeed, Ri can alternatively be characterized as
the maximal such subspace of Ei). Let R = R1 ⊗F . . . ⊗F Rn. G acts as an algebraic
transformation group on R as well. S is a localization of R, and for h ∈ G, h(P ) = P if
and only if h(P ∩R) = P ∩R. Hence it suffices to prove that the stabilizer of P ∩R in G
is Zariski closed. G is an algebraic group over C, and while R is not a finitely generated
C algebra, it nonetheless is true that the stabilizer of an ideal of R is closed in G, [2, p.
49]. Hence H is closed, as asserted.

It is now straightforward to generalize Proposition 15 to cover the infinite case we need:

Theorem 16. Let {Ei | i ∈ I} be a set of Picard–Vessiot extensions of F , and let

S =
⊗

i∈I
Ei.

Let Gi = G(Ei/F ) and let

G =
∏

i∈I
Gi.

Regard G as a group of automorphisms of S. Suppose that P and Q are cNNC prime
differential ideals of S. Then there is g ∈ G with g(P ) = Q.

Proof. Let F be a finite subset of I. Let SF =
⊗

i∈F Ei and let PF (respectively QF )
denote the intersection P ∩SF (respectively Q∩SF ). Since SF/PF injects into S/P , PF
is cNNC. Similarly, QF is cNNC. By Proposition 15, there is g ∈ GF =

∏
i∈F Gi such

that g(PF) = QF . In particular, the set

X(F) = {g ∈ GF | g(PF) = QF}
is non-empty. We also note that X(F) is the coset of a subgroup of GF ; it is a coset of
the stabilizer of P .

As F ranges over the finite subsets of I, the groups GF form an inverse system with
G = lim←−GF , and the sets X(F) form a sub inverse system of cosets. The groups GF
are algebraic groups (over C), and, as we saw in Proposition 15, the cosets X(F) are
Zariski closed subsets. It then follows from [1, Prop. 2.7, p.504] that the inverse limit
X = lim←−X(F) is non-empty. Clearly any element g ∈ X satisfies g(P ) = Q as desired.

It is an immediate corollary of Theorem 16 that extensions of F which are locally
Picard–Vessiot are determined by the Picard–Vessiot extensions which occur in them. To
make the notion of “occur in them” precise we formulate the following definition.

Definition 3. An isomorphism class E of Picard–Vessiot extensions of F is said to
occur in an extension K of F if there is a representative E of E and an embedding E → K

over F .

Theorem 17. Let K1 and K2 be locally Picard–Vessiot extensions of F . Then K1

and K2 are isomorphic over F if and only if the isomorphism classes of Picard–Vessiot
extensions which occur in each coincide. In particular, any two Picard–Vessiot closures
of F are isomorphic.
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Proof. Let {Ei | j ∈ J } be the set of isomorphism classes of Picard–Vessiot extensions
of F . For each j ∈ J , let Ej be a representative of Ej . Let J (Ki) = {j ∈ J | Ej occurs
in Ki}. There is an obvious surjection

Si =
⊗

j∈J (Ki)

Ej → Ki

whose kernel we denote Pi. If J (K1) = J (K2), then S1 = S2, which we will denote S.
By Theorem 16, there is an automorphism g of S with g(P1) = P2; g then provides an
isomorphism of K1 with K2. The reverse implication is obvious, and the main assertion
of the theorem follows. If the Ki are Picard–Vessiot closures, then J (Ki) = J so the
extensions occurring in both coincide.

We next want to see what happens to Picard–Vessiot closures when F undergoes
an automorphism. We begin this analysis by considering base change for Picard–Vessiot
extensions.

Thus we assume that E is a Picard–Vessiot extension of F for L = Y (n)+an−1Y
(n−1)+

. . .+ a1Y
(1) + a0Y , that R is the simply excellent ring with quotient field E consisting

of the solutions in E of linear differential equations over F , and that σ : F → K is a
differential morphism from F to a differential field with field of constants C, where σ is
the identity on C. We consider the differential K algebra S = K ⊗F R. The derivation
DS satisfies DS(k ⊗ r) = DK(k) ⊗ r + k ⊗ DE(r), and for a ∈ F , kσ(a) ⊗ r = k ⊗ ar.
Hence if y ∈ E satisfies L(y) = 0, we have

0 = 1⊗ (y(n) + an−1y
(n−1) + . . .+ a1y

(1) + a0y)

= (1⊗ y(n)) + (σ(an−1)⊗ y(n−1)) + . . .+ (σ(a1)⊗ y(1)) + (σ(a0)⊗ y)

= z(n) + σ(an−1)z(n−1) + . . .+ σ(a1)z(1) + σ(a0)z

where
z = 1⊗ y.

Thus z is a solution of the equation

σ(L) = 0

where σ(L) is the operator

L = Y (n) + σ(an−1)Y (n−1) + . . .+ σ(a1)Y (1) + σ(a0)Y

over K.
If {y1, . . . , yn} is a full set of solutions of L = 0 in E, with Wronskian w (which is a

unit in R), then zi = 1⊗yi, 1 ≤ i ≤ n, have Wronskian 1⊗w, which is a unit in S. And S
is generated as a K algebra by the zi. Let P be a maximal differential ideal of S, and let
M be the quotient field of S/P . Then M is a NNC extension of K and a Picard–Vessiot
extension of K for σ(L). The morphism R → S → S/P → M induced by r 7→ 1 ⊗ r is
a non-trivial differential homomorphism, and hence injective since R has no non-trivial
differential ideals, and so extends to a differential morphism σ̂ : E →M (the notation is
chosen because σ̂(a) = σ(a) for a ∈ F ). And, by construction, we have that M = Kσ̂(E).
We record these remarks in the following proposition:
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Proposition 18. Let E⊃F be a Picard–Vessiot extension for L=Y (n) +an−1Y
(n−1)

+ . . . + a0Y , let K be a differential field with field of constants C and let σ : F → K be
a differential morphism. Let M ⊃ K be a Picard–Vessiot extension for σ(L) = Y (n) +
σ(an−1)Y (n−1) + . . . + σ(a0)Y . Then there is a morphism σ̂ : E → M extending σ and
such that M is generated as a field over K by σ̂(E).

In particular, if K = F and σ is a differential automorphism of F then σ̂ is a dif-
ferential isomorphism from E to M . Further, F ⊗σ E → M by a ⊗ e 7→ σ(a)σ̂(e) is an
isomorphism, which we will also denote by σ̂. Thus F ⊗σE is a Picard–Vessiot extension
of F and every Picard–Vessiot extension of F is of this form.

Proof. All the assertions have been noted except the ones of the final paragraph.
When K = F , K = σ(F ) is contained in σ̂(E) so that the latter equals M , and thus
σ̂ is onto as well as injective. Moreover, every element of F ⊗σ E can be written in the
form 1 ⊗ e, and if such an element is in the kernel of F ⊗σ E → M then 1σ̂(e) = 0, so
e and 1 ⊗ e are zero as well. Thus F ⊗σ E → M is injective; it is obviously surjective
and hence an isomorphism. It follows that F ⊗σ E is a field and a NNC extension of F .
In the notation of the construction which preceded the proposition, F ⊗σ E is then the
quotient field of the differential integral domain S = F ⊗σ R, and it follows that F ⊗σ E
is a Picard–Vessiot extension of F (for σ(L)). If we start with an arbitrary monic linear
homogeneous operator, apply σ−1, take a Picard–Vessiot extension for the transformed
operator and then tensor with F via σ, we thus obtain a Picard–Vessiot extension for the
original operator.

We retain the notation of the final paragraph of Proposition 18, and assume further
that we have two differential operators L1 and L2, and corresponding Picard–Vessiot
extensions E1, E2 and M1,M2. The isomorphisms σ̂i : F ⊗σ Ei → Mi are not F linear.
They do, however, fit into the commutative diagrams

F ⊗σ Ei σ̂i−→ Mi

↑ ↑
F

σ−→ F

It follows that there is a well defined map

σ̂1 ⊗ σ̂2 : (F ⊗σ E1)⊗F (F ⊗σ E2)→M1 ⊗F M2

which is σ semilinear as well.
Now we fix some notation:

Notation 1. Let L be the set of all monic linear homogeneous differential operators
over F . For each L ∈ L let E(L) be a Picard–Vessiot extension of F for L. Fix a differential
automorphism σ of F . For each L choose an isomorphism σL : E(L) → E(σ(L)) as in
Proposition 18; denote the corresponding isomorphism F ⊗σ E(L) → E(σ(L) by σL as
well. Let τσ be the (differential) isomorphism

Tσ =
⊗

F
(F ⊗σ E(L))L∈L → Tσ =

⊗
F

(E(σ(L)))L∈L

given by
τσ =

⊗
F

(σL)L∈L.



162 A. R. MAGID

We follow Notation 1. T σ is a tensor product of F algebras and hence an F algebra.
Tσ is also an F algebra. But τσ is not an F algebra homomorphism, although it is σ semi-
linear: τσ(ax) = σ(a)τσ(x) for a ∈ F and x ∈ T σ. Let Km be a Picard–Vessiot closure of
F . Of course {σ(L) | L ∈ L} = L. There is thus a surjection

⊗
F (E(σ(L)))L∈L → Km;

let P be its kernel and let Q = τσ−1(P ). We have a differential isomorphism

τσ : Tσ/Q→ Tσ/P

induced from τσ. Both T σ/Q and Tσ/P are F algebras, and, as before, although τσ is not
F linear it is σ semi-linear. Of course Tσ/P , being isomorphic to Km, is a Picard–Vessiot
closure of F . We claim that T σ/Q is as well. First, since τσ is a differential isomorphism,
the constants of T σ/Q coincide with those of Tσ/P ,namely C, and hence T σ/Q is a NNC
extension of F . Next, suppose that E is any Picard–Vessiot extension of F . By Proposition
18, E is of the form F ⊗σ E(L) for some L ∈ L. The natural map F ⊗σ E(L) → T σ

then passes to an embedding of F ⊗σ E(L) into T σ/Q, so that the isomorphism class of
E occurs in T σ/Q. Since T σ is generated by Picard–Vessiot extensions (the F ⊗σ E(L)),
so is T σ/Q, and since every isomorphism class occurs it follows easily that T σ/Q is a
Picard–Vessiot closure of F (and hence isomorphic to Km). We conclude:

Theorem 19. Let σ be a differential automorphism of F and let K be a Picard–
Vessiot closure of F . Then there is an automorphism σ of K extending σ on F .

Proof. In the notation of the discussion preceding the theorem, with Km = K, σ is
the composition of τσ with the isomorphisms Km ' T σ/Q and Tσ/P ' Km.

Example 2. As we saw in Example 1 above, the Picard–Vessiot closure of C is the
subfield K = C(t)({exp(ct) | c ∈ C}) of the power series field C((t)). An automorphism
σ of C extends to C((t)) by acting on coefficients; this action leaves t fixed and carries
exp(ct) =

∑
(ct)k/k! to exp(σ(c)t) and hence preserves K.

4. The tower of closures. It may happen that a Picard–Vessiot closure K1 ⊃ F

has proper Picard–Vessiot extensions, and hence K1 has a proper Picard–Vessiot closure
K2. For example, if F = C(t), then log(t) belongs to the Picard–Vessiot closure K of
F , and K(log(log(t))) ⊃ K is a proper Picard–Vessiot extension [3, p. 12-13]. And this
process may continue. We introduce the following notation for these “higher Picard–
Vessiot closures”:

Notation 2. Let K0 denote the base differential field F . We inductively define fields
Ki as follows: if Ki has a proper Picard–Vessiot extension, then Ki+1 ⊃ Ki is a Picard–
Vessiot closure of Ki. (The chain K0 ⊂ K1 ⊂ . . . may be finite or infinite.) Let K∞
denote the union of the chain whether it is finite or infinite. It is clear that K∞ is a field.
We let Gi, i ≤ ∞, denote the group of differential automorphisms of Ki over F .

The field K∞ has no proper Picard–Vessiot extensions. This is trivial when the chain
is finite, and when it is infinite, then we use the fact that any linear differential operator
L over K∞ has coefficients in Ki for some i, and hence Ki+1 contains a Picard–Vessiot
extension for L, namely a full set of solutions for L. But then so does K∞. Next, we
record the behavior of the groups Gi under the restriction of domain from Ki to Ki+1:
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Lemma 20. Let σ ∈ Gi, i < ∞. Then σ(Kj) = Kj for all j ≤ i. In particular,
for i < ∞, under the restriction of domain from Ki to Kj for i ≥ j, Gi maps to Gj.
Moreover, the restriction map pi,j : Gi → Gj is surjective. G∞ is naturally identified
with lim←−Gi, with the projection maps pi : G∞ → Gi surjective and given by restriction.

Proof. By definition, σ(K0) = K0. Suppose we have shown that σ(Ki) = Ki, and let
a ∈ Ki+1. Then a belongs to a Picard–Vessiot extension E of Ki for some operator L
with coefficients in Ki. It then follows that σ(E) is a Picard–Vessiot extension of Ki for
σ(L). Hence σ(E) is contained in Ki+1, so that σ(a) ∈ Ki+1. This proves that the maps
Gi → Gj for j < i <∞ are well defined. The maps Gi+1 → Gi are surjective by Theorem
19, and then all their composites are as well, proving surjectivity of pi,j for i ≥ j. The
final assertions are then standard results about countable (or finite) inverse limits.

Corollary 21. For i <∞, the kernel of Gi+1 → Gi is proaffine proalgebraic. Thus
{e} = Ker(pi,i) ⊂ Ker(pi,i−1) . . . ⊂ Ker(pi,0) = Gi is a normal series for Gi with proaffine
proalgebraic layers.

Proof. The kernel of the surjective map Gi+1 → Gi is AutKi(Ki+1), which is proaffine
proalgebraic.

The groups Gi need not themselves, however, be proalgebraic. We will understand
this through the following example:

We will consider the subfield of C((t)) generated by t and the series {log(t+c) | c ∈ C}.
It is somewhat more convenient to consider this field abstractly as the pure transcendental
field K = C(t)({yc | c ∈ C}) with the derivation D(t) = 1 and D(yc) = 1

y+c . We regard
K as an extension of C and of C(t). In the latter guise, it is a compositum of the
Picard–Vessiot extensions C(t)(yc) ⊃ C(t), and hence locally Picard–Vessiot. Moreover,
any differential automorphism of K over C is seen to carry t to t plus an element of C. Let
G be the group of differential automorphisms of K over C, let H the group of differential
automorphisms of K over C(t), and let C be the group of differential automorphisms of
C(t) over C.

We know that H is a proaffine proalgebraic group. In fact it is easy to identify: any
automorphism δ ∈ H carries each yc to a translate by a constant, say δ(yc) = yc + δ(c).
Conversely, any sequence of constants {dc}c∈C gives rise to an automorphism of K over
C(t) via the rule yc 7→ yc + dc. This correspondence δ 7→ {δ(c)} identifies H with the
product

∏
c∈C C which we can regard as a proaffine proalgebraic group with coordinate

ring C[{Yc | c ∈ C}].
The group C is C acting via t 7→ t + α. For γ ∈ C, we define the C automorphism

σγ of K by t 7→ t + γ and yc 7→ yc+γ . It is easily checked that σγ is a differential
automorphism of K over C, which restricts to translation by γ on C(t). In particular, the
restriction maps induces a surjection G → C (with kernel H). Let τ be any differential
automorphism of K over C. Since τ(t) = t− β for some β ∈ C, τσβ fixes t and hence lies
in H. It follows that G is the semidirect product H o C (where the latter sits inside G
via γ 7→ σγ). The action of C on H is given by σ−1

c δσc, which when composed with the
correspondence δ 7→ {δ(c)} ends up being the translation action on the index in

∏
c∈C C,

namely {αc}c 7→ {αc}c+γ .
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We note that this semidirect product structure does not make G into a proaffine
proalgebraic group, despite the fact that both H and C are. The action of C on H on
the coordinates Yc is via Yc 7→ Yc+δ. If G were a proaffine proalgebraic group compatible
with the semidirect product structure, then Yc would lie in the coordinate ring of G, but
we have just seen that its C translates (and hence its G translates) span an infinite di-
mensional space over C, which is a contradiction. If G were a proaffine proalgebraic group
under any structure compatible with those of its subgroup H and its quotient C, then G
would be prounipotent and hence a semidirect product (since C is free prounipotent on
one generator), and a similar argument would lead to the same contradiction.

The tower of fields K ⊃ C(t) ⊃ C is not part of the tower of Picard–Vessiot closures
of C, of course. It can, however, be embedded in that tower. We recall from Example 1
that K1 = C(t)({exp(ct) | c ∈ C}) ⊂ C((t)) is a Picard–Vessiot closure of C. The field
K = C(t)({yc | c ∈ C}) can be embedded into C((t)) as well, via t 7→ t and yc 7→ log(t+c).
We identify K with its image.

We also want to consider the field K1.5 = C(t)({exp(ct), log(t+ c) | c ∈ C}) ⊂ C((t)).
By construction, K1.5 contains the Picard–Vessiot closure K1 of C, and since K1.5 is
a compositum of Picard–Vessiot extensions of C(t), it is contained in a Picard–Vessiot
closure K2 of K1. Since K ⊂ K1.5, we have K ⊂ K2.

We further claim that any differential automorphism σ of K2 fixing C pointwise
preserves K setwise. Since D(σ(t)) = 1, we must have σ(t) = t+ a for some a ∈ C. Since
D(σ(log(t+ c)) = σ(D(log(t+ c)) = 1

t+c+a , we have σ(log(t+ c)) = log(t+ c) + d(c) for
some d(c) ∈ C. It follows that σ(K) ⊆ K. Note that in passing we have also remarked
that σ(C(t)) ⊆ C(t).

Now suppose that G2 = AutC(K2) has a proalgebraic structure such that AutK1(K2)
is Zariski closed and the quotient isomorphism with AutC(K1) is a morphism of proal-
gebraic groups. Suppose further that for any set of elements in K2 their fixer in G2 is
Zariski closed. Then AutK(K2) is closed and the quotient of G2 by it maps injectively
under restriction to G = AutC(K). Using the semidirect structure of G above, one can
see that this injection is an isomorphism. But since G is not a proalgebraic group, neither
is the quotient, and hence there is no such structure on G2.

We revert to the general case and close this section with some comments: the nature
of the groups Gi and G∞ remains a mystery. Obviously the partial proalgebraic group
structure they exhibit is important, but exactly what that structure is, and exactly what
groups with that structure can occur, is in need of further research and clarification.
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