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Abstra
t. This is a presentation of re
ent work on quantum permutation groups. Contains:a short introdu
tion to operator algebras and Hopf algebras; quantum permutation groups,and their basi
 properties; diagrams, integration formulae, asymptoti
 laws, matrix models; thehypero
tahedral quantum group, free wreath produ
ts, quantum automorphism groups of �nitegraphs, graphs having no quantum symmetry; 
omplex Hadamard matri
es, 
o
y
le twists ofthe symmetri
 group, quantum groups a
ting on 4 points; remarks and 
omments.1. Introdu
tion. The idea of non
ommuting 
oordinates goes ba
k to Heisenberg, whowas in turn motivated by results of Balmer and Ritz-Rydberg regarding spe
tra of 
hem-i
al elements. Several theories emerged from Heisenberg's work, most 
omplete beingConnes' non
ommutative geometry, where the base spa
e is a Riemannian manifold.See [30℄.The spe
i�
 idea of using algebras of free 
oordinates on algebrai
 groups should beattributed to Brown [25℄. The point is the following: given a group G ⊂ Un, the matrix
oordinates uij ∈ C(G) 
ommute with ea
h other, and satisfy 
ertain relations R. One2000 Mathemati
s Subje
t Classi�
ation: Primary 46L65; Se
ondary 46L37, 46L54, 46L87.Key words and phrases: quantum permutation group, magi
 unitary matrix.The paper is in �nal form and no version of it will be published elsewhere.[13℄ 
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14 T. BANICA, J. BICHON AND B. COLLINS
an de�ne then the universal algebra generated by abstra
t variables uij , subje
t to therelations R. The spe
trum of this algebra is an abstra
t obje
t, 
alled non
ommutativeversion of G. The non
ommutative version is not unique, be
ause it depends on R.A detailed study of Brown's algebras, from a K-theoreti
 point of view, is due toM
Clanahan [42℄. Unfortunately, the whole subje
t is a bit limited, be
ause Brown's
hoi
e for the relations R is somehow minimal, and this makes the 
orresponding algebratoo big. This algebra has a 
omultipli
ation and a 
ounit, but no antipode. In otherwords, the 
orresponding non
ommutative version is a quantum semigroup.The 
ontinuation of story makes use of Woronowi
z's axiomatization of 
ompa
t quan-tum groups [58℄, [59℄. The algebras Ao(n) and Au(n), 
orresponding to the orthogonaland unitary groups, appeared in Wang's thesis [55℄. Then Connes suggested use of sym-metri
 groups, and the algebra As(n) was 
onstru
ted in [56℄. In all three 
ases the ideais the same as Brown's. The point is to 
arefully 
hoose the relations R, in order to geta 
ompa
t quantum group in the sense of Woronowi
z.The spe
trum of As(n) is 
alled free version of Sn. This a 
ompa
t quantum group,bigger than Sn. Its subgroups are 
alled quantum permutation groups.In this paper we present a number of known fa
ts about su
h quantum groups. Wefo
us on 
ombinatorial aspe
ts, and their algebrai
 or probabilisti
 interpretation.A
knowledgements. This work was started at B�dlewo in O
tober 2006 at the workshop�Non
ommutative harmoni
 analysis with appli
ations to probability�. We would like tothank Marek Bo»ejko for the invitation, and for several stimulating dis
ussions.2. Operator algebras. The operator algebra ba
kground needed in order to 
onstru
tquantum permutation groups redu
es to the de�nition of C∗-algebras, and to some earlywork on the subje
t. We thought it useful to in
lude a short presentation of this material.A
tually the present text is written as to be at the same time an introdu
tion and surveypaper.Definition 2.1. A C∗-algebra is a 
omplex algebra with unit, having a norm and aninvolution, su
h that Cau
hy sequen
es 
onverge, and su
h that ||aa∗|| = ||a||2.The basi
 example is B(H), the algebra of bounded operators on a Hilbert spa
e H.The GNS theorem states that any C∗-algebra appears as subalgebra of some B(H).The key example is C(X), the algebra of 
ontinuous fun
tions on a 
ompa
t spa
e X.The Gelfand theorem below states that any 
ommutative C∗-algebra is of this form.We need some basi
 spe
tral theory. The spe
trum of an element a ∈ A is the set σ(a)
onsisting of 
omplex numbers λ su
h that a − λ is not invertible. The spe
tral radius
ρ(a) is the radius of the smallest disk 
entered at 0 
ontaining σ(a).Theorem 2.1. Let A be a C∗-algebra.1. The spe
trum of a norm one element is in the unit disk.2. The spe
trum of a unitary element (a∗ = a−1) is on the unit 
ir
le.3. The spe
trum of a self-adjoint element (a = a∗) 
onsists of real numbers.4. The spe
tral radius of a normal element (aa∗ = a∗a) is equal to its norm.



QUANTUM PERMUTATION GROUPS: A SURVEY 15The �rst assertion follows from the formula 1/(1− x) = 1 + x + x2 + . . .If f is a rational fun
tion having poles outside σ(a), we have σ(f(a)) = f(σ(a)). Byusing the fun
tions z−1 and (z + it)/(z − it) we get the middle assertions.Finally, the inequality ρ(a) ≤ ||a|| is 
lear from the �rst assertion. For the 
onversewe �x ρ > ρ(a), and we integrate over the 
ir
le of radius ρ:
∫

zn

z − a
dz =

∞∑

k=0

(∫
zn−k−1dz

)
ak = an.By applying the norm and taking n-th roots we get ρ ≥ lim ||an||1/n.In the 
ase a = a∗ we have ||an|| = ||a||n for any exponent of the form n = 2k, andby taking n-th roots we get ρ ≥ ||a||. This gives the missing inequality ρ(a) ≥ ||a||.In the general 
ase aa∗ = a∗a we have an(an)∗ = (aa∗)n, and we get ρ(a)2 = ρ(aa∗).Now sin
e aa∗ is self-adjoint, we get ρ(aa∗) = ||a||2, and we are done.Theorem 2.2. The 
ommutative C∗-algebras are those of form C(X).The proof is as follows. Given a 
ommutative C∗-algebra A, we 
an de�ne X to bethe set of 
hara
ters χ : A→ C, with topology making 
ontinuous all evaluation maps ea.Then X is a 
ompa
t spa
e, and a 7→ ea is a morphism of algebras e : A → C(X). Weprove �rst that e is involutive. We use the following formula:

a =
a + a∗

2
− i ·

i(a− a∗)

2
.Thus it is enough to prove the equality ea∗ = e∗a for self-adjoint elements a. But thisis the same as proving that a = a∗ implies that ea is a real fun
tion, whi
h is in turntrue, be
ause ea(χ) = χ(a) is an element of σ(a), 
ontained in the reals.Sin
e A is 
ommutative, ea
h element is normal, so e is isometri
: ||ea|| = ρ(a) = ||a||.It remains to prove that e is surje
tive. But this follows from the Stone-Weierstrasstheorem, be
ause e(A) is a 
losed subalgebra of C(X), whi
h separates points.3. Hopf algebras. This is a short introdu
tion to Hopf algebra philosophy.In order to simplify presentation, we 
all 
omultipli
ation, 
ounit and antipode anymorphisms of C∗-algebras of the following type:

∆ : A→ A⊗A,

ε : A→ C,

S : A→ Aop.The terminology 
omes from the fa
t that in the 
ommutative 
ase A = C(X), themorphism ∆ is transpose to a binary operation, or multipli
ation, X ×X → X.Definition 3.1. A �nite Hopf algebra is a �nite dimensional C∗-algebra, endowed witha 
omultipli
ation, 
ounit and antipode, satisfying the following 
onditions:
(∆⊗ id)∆ = (id⊗∆)∆,

(ε⊗ id)∆ = id,

(id⊗ ε)∆ = id,

m(S ⊗ id)∆ = ε(.)1,
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m(id⊗ S)∆ = ε(.)1.The group algebra C∗(G) is the 
omplex ve
tor spa
e spanned by G, with produ
t
g · h = gh, involution g∗ = g−1, and norm 
oming from the regular representation.We say that A is 
o
ommutative if Σ∆ = ∆, where Σ(a⊗ b) = b⊗ a.Theorem 3.1. Let G be a �nite group.1. C(G) is a 
ommutative �nite Hopf algebra, with

∆(ϕ) = (g, h) 7→ ϕ(gh),

ε(ϕ) = ϕ(1),

S(ϕ) = g 7→ ϕ(g−1)as stru
tural maps. Any 
ommutative �nite Hopf algebra is of this form.2. C∗(G) is a 
o
ommutative �nite Hopf algebra, with
∆(g) = g ⊗ g,

ε(g) = 1,

S(g) = g−1as stru
tural maps. Any 
o
ommutative �nite Hopf algebra is of this form.In this statement the fa
t that ∆, ε, S satisfy the axioms is 
lear from de�nitions.The assertion about 
ommutative Hopf algebras follows from the Gelfand theorem. Forthe remaining assertion, let A be a �nite Hopf algebra, and 
onsider its 
omultipli
ation,
ounit, multipli
ation, unit and antipode. By taking duals, we get linear maps as follows:
∆∗ : A∗ ⊗A∗ → A∗,

ε∗ : C→ A∗,

m∗ : A∗ → A∗ ⊗A∗,

u∗ : A∗ → C,

S∗ : A∗ → A∗.It is routine to 
he
k that these maps make A∗ into a �nite Hopf algebra. Moreover,if A is 
o
ommutative then A∗ is 
ommutative, so we 
an apply the �rst result. We get
A∗ = C(G) for a 
ertain �nite group G, whi
h in turn gives A = C∗(G).4. Compa
t quantum groups. There are several types of 
ompa
t quantum groups.The formalism that we need is that of 
ompa
t quantum groups whose square of theantipode is the identity. A �rst study here is due to Eno
k and S
hwartz [37℄. We use inthis paper an adaptation of Woronowi
z's axioms in [58℄.Definition 4.1. A �nitely generated Hopf algebra is a C∗-algebra A, together with aunitary matrix u ∈Mn(A) whose 
oe�
ients generate A, su
h that the formulae

∆(uij) =
∑

uik ⊗ ukj ,

ε(uij) = δij ,

S(uij) = u∗
jide�ne a 
omultipli
ation, a 
ounit and an antipode.



QUANTUM PERMUTATION GROUPS: A SURVEY 17The maps ∆ and ε satisfy the usual axioms for a 
omultipli
ation and a 
ounit. Themap S satis�es the usual axioms for an antipode, on the dense ∗-algebra generated byentries of u. Observe that the square of the antipode is the identity: S2 = id.On
e the pair (A, u) is given, the maps ∆, ε, S 
an exist or not. If they exist, they areuniquely determined, and we have a Hopf algebra. This point of view, somehow oppositeto the spirit of abstra
t group theory, was invented by Woronowi
z [58℄.The terminology and axioms are motivated by the following result.Theorem 4.1. The following are �nitely generated Hopf algebras.1. C(G), with G ⊂ Un 
ompa
t Lie group.2. C∗(G), with Fn → G �nitely generated group.In both 
ases, we have to exhibit a 
ertain matrix u. For the �rst assertion, we 
anuse the matrix u = (uij) formed by matrix 
oordinates of G, given by:
g =




u11(g) u1n(g). . .
un1(g) unn(g)



 .

The se
ond assertion is 
lear by using the diagonal matrix formed by generators:
u =




g1 0. . .
0 gn



 .

The algebras in the above statement 
an be 
hara
terized as being the 
ommutativeor 
o
ommutative �nitely generated Hopf algebras. See Woronowi
z [58℄.In the general 
ase we have the following heuristi
 formulae.1. A = C(G), with G 
ompa
t quantum group.2. A = C∗(G′), with G′ dis
rete quantum group.Needless to say, the quantum groups G, G′ don't exist as 
on
rete obje
ts. This is infa
t the 
ase with all kinds of quantum groups. See Drinfeld [35℄.5. Free quantum groups. We 
onstru
t now the orthogonal, unitary and symmetri
quantum groups, following Wang's papers [55℄, [56℄. Let u ∈ Mn(A) be a square matrixover a C∗-algebra.1. u is 
alled orthogonal if u = ū and ut = u−1.2. u is 
alled biunitary if u∗ = u−1 and ut = ū−1.For the algebras C(On) and C(Un), the 
orresponding matrix u is orthogonal, respe
-tively biunitary. In the symmetri
 group 
ase the situation is less obvious. When usingthe embedding Sn ⊂ Un given by permutation matri
es, the fun
tions uij are:
uij = χ{σ ∈ Sn | σ(j) = i}.These 
hara
teristi
 fun
tions satisfy a 
ondition whi
h reminds magi
 squares.



18 T. BANICA, J. BICHON AND B. COLLINSDefinition 5.1. u ∈Mn(A) is 
alled magi
 unitary if all entries uij are proje
tions, andon ea
h row and 
olumn of u these proje
tions are orthogonal, and sum up to 1.With these de�nitions in hand, it is routine to 
he
k that we have the followingequalities, where C∗
com means universal 
ommutative C∗-algebra:

C(On) = C∗
com(uij | u = n× n orthogonal),

C(Un) = C∗
com(uij | u = n× n biunitary),

C(Sn) = C∗
com(uij | u = n× n magi
 unitary).In other words, orthogonality, biunitarity and magi
 unitarity are the relevant 
ondi-tions about matrix 
oordinates of On, Un, Sn. We 
an pro
eed now with liberation.Theorem 5.1. The universal algebras

Ao(n) = C∗(uij | u = n× n orthogonal),
Au(n) = C∗(uij | u = n× n biunitary),
As(n) = C∗(uij | u = n× n magi
 unitary)are �nitely generated Hopf algebras.The proof is as follows. Let us use the generi
 term �spe
ial� for the three unitarity no-tions in the above theorem. Consider now the following three matri
es, having 
oe�
ientsin the target algebras of the maps ∆, ε, S to be 
onstru
ted:

(∆u)ij =
∑

uik ⊗ ukj ,

(εu)ij = δij ,

(Su)ij = u∗
ji.The matrix εu = 1 is spe
ial, and it is routine to 
he
k that ∆u and Su are spe
ialas well. Thus the maps ϕ = ∆, ε, S 
an be de�ned by ϕ(uij) = (ϕu)ij .Summarizing, we have now free analogues of On, Un, Sn. Their 
onstru
tion mightseem quite mysterious, and indeed so it is: free quantum groups are not axiomatized.The orthogonal and unitary algebras have the following properties.1. Ao(2) 
orresponds to the quantum group SU−1

2 .2. Ao(n) 
orresponds to an R-matrix quantization of SU2.3. Au(n) embeds into the free produ
t C(T ) ∗Ao(n).We refer to [10℄, [49℄ for an updated dis
ussion of these results.6. Quantum permutation groups. The algebra As(n) is a free analogue of C(Sn). Weshow now that the 
orresponding 
ompa
t quantum group 
onsists indeed of �quantumpermutations�.The permutations of Sn a
t on points of X = {1, . . . , n}. The 
orresponding a
tionmap (i, σ) 7→ σ(i) gives by transposition a 
ertain morphism αcom, 
alled 
oa
tion. This
oa
tion 
an be expressed in terms of the magi
 unitary asso
iated to C(Sn):
αcom(δi) =

∑
δj ⊗ uji.Now let u be the magi
 unitary asso
iated to As(n), and 
onsider the linear map αgiven by the above formula. Then α is a 
oa
tion, and we have the following result.



QUANTUM PERMUTATION GROUPS: A SURVEY 19Theorem 6.1. We have the following 
ommutative diagram:
C(X)

α
−→ C(X)⊗As(n)

↓ ↓

C(X)
αcom−→ C(X)⊗ C(Sn)Moreover, α is the universal Hopf algebra 
oa
tion on X.This result appeared in Wang's paper [56℄, in a slightly di�erent form. We refer to [2℄for a detailed dis
ussion, by using the magi
 unitarity 
ondition.At this point of writing, it is not 
lear whether quantum permutations do exist. Thequestion is whether the 
anoni
al map As(n)→ C(Sn) is an isomorphism or not.Theorem 6.2. Quantum permutations exist starting from n = 4. More pre
isely:1. For n = 1, 2, 3 we have As(n) = C(Sn).2. For n ≥ 4 the algebra As(n) is not 
ommutative, and in�nite dimensional.The �rst assertion follows from the fa
t that for n = 1, 2, 3, the entries of a n × nmagi
 unitary matrix have to 
ommute with ea
h other. This is 
lear for n = 1, and alsofor n = 2, where the magi
 unitary must be of the following spe
ial form:

up =

(
p 1− p

1− p p

)
.At n = 3 the proof is quite tri
ky. The idea is to use the Fourier transform over Z3.In terms of the ve
tor ξ formed by third roots of unity, we 
an write α as follows:

α(ξi) =
∑

ξj ⊗ vji.Now the magi
 unitarity 
ondition on u translates into a 
ertain 
ondition on v, andthe point is that with this new 
ondition, 
ommutativity is 
lear. See [2℄.At n = 4 we use the following matrix, where p, q are proje
tions:
upq =





p 1− p 0 0

1− p p 0 0

0 0 q 1− q

0 0 1− q q



 .

This shows that the algebra < p, q >, whi
h 
an be 
hosen to be not 
ommutativeand in�nite dimensional, is a quotient of As(4). This gives the last assertion.The reasons why we have As(4) 6= C(S4) might remain quite mysterious. In whatfollows we propose several explanations for this fa
t.7. The Temperley-Lieb algebra. We present here a �rst 
on
eptual explanation forthe main result in previous se
tion. The idea is that n = 4 is the 
riti
al value of theJones index [40℄.Consider the algebra As(n). Its generators uij are 
oe�
ients of the 
oa
tion α, sothe matrix u is a 
orepresentation. The tensor powers of u are de�ned as follows:
(u⊗k)i1...ik,j1...jk

= ui1j1 . . . uikjk
.



20 T. BANICA, J. BICHON AND B. COLLINSThe problem is to 
ompute the Hom spa
es between these 
orepresentations.Definition 7.1. The Temperley-Lieb algebra is given by
TLn(k, l) = span






· · · ← 2k points
W ← k + l strings
· · · · · ← 2l points




where strings join pairs of points, do not 
ross, and are taken up to isotopy.
TLn is a tensor 
ategory: the 
omposition is by verti
al 
on
atenation, with the rulethat 
losed 
ir
les are deleted and repla
ed by the number n, the tensor produ
t is byhorizontal 
on
atenation, and the involution is by upside-down turning of diagrams.Temperley-Lieb diagrams a
t on tensors a

ording to the following formula, wherethe middle symbol is 1 if all strings of p join pairs of equal indi
es, and is 0 if not:

p(ei1 ⊗ . . .⊗ eik
) =

n∑

j1...jl=1




i1 i1 . . . ik ik

p

j1 j1 . . . jl jl



 ej1 ⊗ . . .⊗ ejl
.

In 
ase the index satis�es n ≥ 4, di�erent diagrams produ
e di�erent linear maps,and this a
tion makes TLn a sub
ategory of the 
ategory of Hilbert spa
es.Theorem 7.1. We have the equality of tensor 
ategories
Hom(u⊗k, u⊗l) = TLn(k, l)where u is the fundamental 
orepresentation of As(n), with n ≥ 4.The proof uses Woronowi
z's duality in [59℄. The idea is that the de�nition of As(n)translates into a presentation result for the 
orresponding tensor 
ategory.1. The fa
t that a unitary matrix u is magi
 is equivalent to M ∈ Hom(u⊗2, u) and

U ∈ Hom(1, u), where M, U are the multipli
ation and unit of Cn.2. The relations satis�ed by M, U in a 
ategori
al sense are those satis�ed by thediagrams m = | ∪ | and u = ∩, whi
h in turn generate TLn.We re
all now that the tensor powers of the fundamental representation of PU2 ≃ SO3form a 
ategory whi
h is isomorphi
 to TL4. This shows that the irredu
ible representa-tions of As(4), with fusion rules and dimensions, are the same as irredu
ible representa-tions of SO3. Moreover, the fusion rule statement must hold for any n ≥ 4.Theorem 7.2. For any n ≥ 4, the irredu
ible 
orepresentations of As(n) satisfy theClebs
h-Gordan rules for irredu
ible representations of SO3.In other words, the irredu
ible 
orepresentations are as follows.1. They are given by r0 = 1, r1 = u− 1, r2 = u⊗2 − 3u + 1 and so on.2. They satisfy ra ⊗ rb = r|a−b| + r|a−b|+1 + . . . + ra+b−1 + ra+b.These 
onsiderations have several extensions. We would like to mention here thefollowing statement, whi
h trivializes the whole thing: the quotients of As(n) are infun
torial 
orresponden
e with subalgebras of the n-th spin planar algebra. See [3℄.



QUANTUM PERMUTATION GROUPS: A SURVEY 218. The Weingarten formula. By general results of Woronowi
z in [58℄, the Hopf al-gebra As(n) has a unique unital bi-invariant state, 
alled Haar integration, and denotedhere as an integral: ∫
: As(n)→ C.The various integrals 
an be 
omputed by using the representation theory diagramsfound in previous se
tion. The idea here, going ba
k to Weingarten's paper [57℄, wasdeveloped in [16℄, [27℄, [28℄, [29℄, and was applied to quantum groups in [10℄, [11℄, [12℄.Definition 8.1. Consider the set NC(k) of non-
rossing partitions of {1, . . . , k}.1. We plug multi-indi
es i = (i1, . . . , ik) into partitions p ∈ NC(k), and we set δpi = 1if all blo
ks of p 
ontain equal indi
es of i, and δpi = 0 if not.2. The Gram matrix of partitions (of index n ≥ 4) is given by Gkn(p, q) = n|p∨q|,where ∨ is the set-theoreti
 sup, and |.| is the number of blo
ks.3. The Weingarten matrix Wkn is the inverse of Gkn.The non-
rossing partitions are in 
orresponden
e with Temperley-Lieb diagrams hav-ing no upper points: these 
an be indeed obtained by fattening the partitions.Now by using the Temperley-Lieb a
tion des
ribed in the previous se
tion, we seethat the elements of NC(k) 
reate a basis of �xed ve
tors of u⊗k. The Gram matrix ofthis basis is nothing but Gkn, as shown by the following 
omputation:

〈p, q〉 =
∑

i

δpiδqi =
∑

i

δp∨q,i = n|p∨q|.Observe also that Gkn is by de�nition a kind of version of Di Fran
es
o's meandermatrix in [33℄. With these notations, we have the following result.Theorem 8.1. The Haar fun
tional of As(n) is given by
∫

ui1j1 . . . uikjk
=

∑

pq

δpiδqjWkn(p, q)where the sum is over all pairs of diagrams p, q ∈ NC(k).The proof is based on the following fa
t: the numbers on the left are the matrix
oe�
ients of the orthogonal proje
tion onto the spa
e of �xed points of u⊗k.As a �rst 
onsequen
e, we have the following moment formula:
∫

(u11 + . . . + uss)
k = Tr(G−1

knGks).The free Poisson law of parameter t ∈ (0, 1] is the following probability measure:
πt = (1− t) δ0 +

1

2πx

√
4t− (x− 1− t)2 dx.This measure is also 
alled Mar
henko-Pastur law. The terminology here 
omes fromthe fa
t that πt is the free analogue of the Poisson law of parameter t. See [53℄, [54℄.Theorem 8.2. With n→∞ the law of u11 + . . . + uss with s = [tn] 
onverges to πt.



22 T. BANICA, J. BICHON AND B. COLLINSThis follows from the moment formula, by using the fa
t that with n → ∞, boththe Gram and Weingarten matri
es are 
on
entrated on the diagonal. The tra
e to be
omputed redu
es to a sum of powers of t, known to give the k-th moment of πt.In the 
lassi
al 
ase a similar result is available, in terms of Poisson laws. As a 
on-
lusion, C(Sn)→ As(n) transforms asymptoti
 independen
e into freeness. See [11℄.9. The Pauli quantum group. The 
entral obje
t of the theory is the algebra As(4).In this se
tion we present an expli
it matrix model for this algebra, 
oming from thePauli matri
es:
c1 =

(
1 0

0 1

)
c2 =

(
i 0

0 −i

)
c3 =

(
0 1

−1 0

)
c4 =

(
0 i

i 0

)
.These matri
es multiply a

ording to the formulae for quaternions:

c2
2 = c2

3 = c2
4 = −1,

c2c3 = −c3c2 = c4,

c3c4 = −c4c3 = c2,

c4c2 = −c2c4 = c3.The Pauli matri
es form an orthonormal basis of M2(C), and the same is true if wemultiply them to the left or to the right by an element of SU2. This shows that for any
x ∈ SU2, the elements ξij = cixcj form a magi
 basis of M2(C), in the sense that the
orresponding orthogonal proje
tions Pij form a magi
 unitary over M4(C).Definition 9.1. The Pauli representation is the map

π : As(4)→ C(SU2, M4(C))given by π(uij) = (x 7→ rank one proje
tion on cixcj).This representation is introdu
ed in [13℄. In [12℄ we use integration te
hniques forproving that π is faithful. The idea is to 
he
k 
ommutativity of the following diagram:
As(4) → C(SU2, M4(C))

↓ ↓

C ← M4(C)A key problem is to work out the integral geometri
 analogy between C(S4) and
As(4), at level of laws of averages of diagonal 
oordinates uii. For C(S4) we have:

law(t1u11 + . . . + t4u44) =
1

24

(
9δ0 + δ1 + 2

∑

i

δti
+

∑

i 6=j

δti+tj

)
.For the algebra As(4) we 
an use the Pauli representation, whi
h makes integrationproblems 
orrespond to 
omputations on the real sphere S3.Theorem 9.1. For s = 1, 2, 4 we have the formula

law(s−1(u11 + . . . + uss)) =

(
1−

s

4

)
δ0 +

s

4
µswhere µ1, µ2, µ4 are a Dira
 mass, a Lebesgue measure, and a free Poisson law.
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larify the relation with C(S4). In fa
t, what is missing isthe s = 3 law. This is the law of the following matrix, depending on (a, b, c, d) ∈ S3:
M3 =

1

3





3a2 −ab −ac −ad

−ab 3b2 −bc −bd

−ac −bc 3c2 −cd

−ad −bd −cd 3d2



 .

We don't know how to 
ompute this measure. The problem is explained in [12℄.10. The hypero
tahedral quantum group. In this se
tion we present a few knownfa
ts, along with some re
ent work [8℄. The quantum symmetry algebra of a �nite graph
X is de�ned as follows.1. In 
ase X has no edges, we set A(X) = As(n). The fa
t that this is indeed aquantum symmetry algebra follows from 
onsiderations in previous se
tions.2. In the general 
ase, we set A(X) = As(n)/R, where R are the relations 
omingfrom du = ud, where d ∈Mn(0, 1) is the adja
en
y matrix of X.The quotients of A(X) are 
alled Hopf algebras 
oa
ting on X. See [2℄, [4℄, [18℄.Let us go ba
k to the magi
 unitary matrix upq in se
tion 6. This matrix 
ommuteswith the adja
en
y matrix of the square. Moreover, by 
hoosing the proje
tions p, qto be free, the algebra < p, q > they generate is isomorphi
 to the group algebra of
Z2 ∗ Z2 = D∞, and we get the following result.Theorem 10.1. The dual of D∞ a
ts on the square.In other words, for the square we have an arrow A(X)→ C∗(D∞). The algebra A(X)
an be a
tually 
omputed expli
itly, and is isomorphi
 to C(O−1

2 ). See [20℄.This result has the following generalization. Consider the Hopf algebra C(O−1
n ), whi
his the quotient of Ao(n) by the skew-
ommutation relations for GL−1

n , namely:1. uijuik = −uikuij , ujiuki = −ukiuji, for i 6= j,2. uijukl = ukluij for i 6= k, j 6= l.These relations de�ne a Hopf ideal, so we have indeed a Hopf algebra.Theorem 10.2. C(O−1
n ) is the quantum symmetry algebra of the hyper
ube in R

n.This leads to the quite surprising 
on
lusion that O−1
n is a quantum analogue of thehypero
tahedral group Hn. On the other hand, O−1

n 
annot be a free version of Hn, saybe
ause the fusion semi-ring depends on n, whi
h avoids probabilisti
 freeness.In order to solve this problem, the idea is as follows. The group Hn appears also assymmetry group of the spa
e formed by the [−1, 1] segments on ea
h 
oordinate axis. Inother words, Hn is the symmetry group of In, the graph formed by n segments.Definition 10.1. Ah(n) is the quantum symmetry algebra of In.This algebra is the quotient of As(2n) by the relations 
oming from 
ommutation of
u with the adja
en
y matrix of In. Now writing down the 
ommutation relations leads
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on
lusion that u must be a magi
 unitary of the following spe
ial form:
u =

(
a b

b a

)
.We 
all su
h a matrix a 2n× 2n sudoku unitary. With this notion in hand, Ah(n) isthe universal algebra generated by entries of a 2n× 2n sudoku unitary.As a �rst 
onsequen
e, we have the following 
ommutative diagram:

Au(n) → Ao(n) → Ah(n) → As(n)

↓ ↓ ↓ ↓

C(Un) → C(On)→ C(Hn)→ C(Sn)A Tannakian translation gives the representation theory of Ah(n): the relevant algebrais the Fuss-Catalan algebra of Bis
h and Jones [22℄, and the Weingarten ma
hinery leadsto a free analogue of the Bessel fun
tion 
ombinatori
s for Hn.11. Free wreath produ
ts. The simplest example of a wreath produ
t is the hypero
-tahedral group Hn. Consider the graph In formed by n segments, and for ea
h segment
Ii 
onsider the element τi ∈ Hn whi
h returns Ii, and keeps the other segments �xed.The elements τ1 . . . τn have order two and 
ommute with ea
h other, so they generate aprodu
t Ln = Z2× . . .×Z2. Now the symmetri
 group Sn a
ts as well on In by permutingthe segments, and it is routine to 
he
k that we have Hn = Ln ⋊Sn. But this latter groupis a wreath produ
t.Theorem 11.1. We have Hn = Z2 ≀ Sn.At level of algebras of fun
tions, this gives a formula of the following type, where ×wis some fun
tional analyti
 implementation of the ≀ operation:

C(Hn) = C(Z2)×w C(Sn).The operation ×w is not the good one for quantum groups. This is be
ause the naturalquantum formula involving it would imply Ah(2) = C(H2), whi
h is wrong. The point isthat in the quantum world, wreath produ
ts are repla
ed by free wreath produ
ts.Definition 11.1. The free wreath produ
t of (A, u) and (B, v) is given by
A ∗w B = (A∗n ∗B)/ < [u

(a)
ij , vab] = 0 >where n is the size of v, and has magi
 unitary matrix wia,jb = u

(a)
ij vab.This notion, introdu
ed in [20℄, is justi�ed by formulae of the following type, where

G, A denote 
lassi
al symmetry groups, respe
tively quantum symmetry algebras:
G(X ∗ Y ) = G(X) ≀ G(Y ), A(X ∗ Y ) = A(X) ∗w A(Y ).There are several su
h formulae, and the one we are interested in is:

G(I . . . I) = G(I) ≀ G(◦ . . . ◦),

A(I . . . I) = A(I) ∗w A(◦ . . . ◦).



QUANTUM PERMUTATION GROUPS: A SURVEY 25Here I is a segment, ◦ is a point, and the dots mean n-fold disjoint union. The �rstformula is Hn = Z2 ≀ Sn. As for the se
ond formula, this is what we need.Theorem 11.2. We have Ah(n) = C(Z2) ∗w As(n).Now getting ba
k to general free wreath produ
ts, a �rst thing to be noti
ed is thefollowing diagram, where maps on the left are de�ned by formulae on the right:
A∗n ∗B → A ∗w B

↓ ↓

A ∗B → A⊗B

∑
u

(a)
ii vaa →

∑
u

(a)
ii vaa

↓ ↓

∑
uiivaa →

∑
uii ⊗ vaaThe spe
tral measures of the north-east and south-west elements 
an be 
omputedin several 
ases of interest, and turn out to be equal. The 
onje
ture is that equalityholds, under general assumptions. This is the same as saying that the spe
tral measureof A ∗w B appears as free multipli
ative 
onvolution of the spe
tral measures of A, B:

µ(A ∗w B) = µ(A) ⊠ µ(B).This is related to work in preparation of Bis
h and Jones, see [4℄. The whole thingwould be a �rst step towards establishing an analogy with results of �niady [45℄.12. Quantum automorphisms of �nite graphs. The free wreath produ
t results inprevious se
tion are part of a 
lassi�
ation proje
t for �nite graphs [2℄, [3℄, [4℄, [5℄. Thisis in turn part of the Bis
h-Jones 
lassi�
ation proje
t for planar algebras generated bya 2-box [23℄, [24℄. Indeed, it follows from the general Tannaka-Galois duality in [3℄ thatthe algebras of form A(X) with X 
olored oriented graph are those 
orresponding tosubalgebras of the spin planar algebra, generated by a 2-box.The 
on
lusion in [5℄ is the following table, 
ontaining all vertex-transitive graphs oforder n ≤ 11 modulo 
omplementation, ex
ept for the Petersen graph.Order Graph Classi
al group Quantum group2 K2 (simplex) Z2 Z23 K3 S3 S34 2K2 (dupli
ation) H2 H+

2 (hyper. quant. group)4 K4 S4 S+

4 (symm. quant. group)5 C5 (
y
le) D5 D55 K5 S5 S+

56 C6 D6 D66 2K3 S3 ≀ Z2 S3 ≀∗ Z2 (free wreath prod.)6 3K2 H3 H+

36 K6 S6 S+

67 C7 D7 D77 K7 S7 S+

7
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Order Graph Classi
al group Quantum group8 C8, C+

8 (
y
le with diags.) D8 D88 P (C4) (prism) H3 S+

4 × Z28 2K4 S4 ≀ Z2 S+

4 ≀∗ Z28 2C4 H2 ≀ Z2 H+

2 ≀∗ Z28 4K2 H4 H+

48 K8 S8 S+

89 C9, C3
9 (
y
le with 
hords) D9 D99 K3 × K3 (dis
rete torus) S3 ≀ Z2 S3 ≀ Z29 3K3 S3 ≀ S3 S3 ≀∗ S39 K9 S9 S+

910 C10, C2
10, C+

10, P (C5) D10 D1010 P (K5) S5 × Z2 S+

5 × Z210 C4
10 Z2 ≀ D5 Z2 ≀∗ D510 2C5 D5 ≀ Z2 D5 ≀∗ Z210 2K5 S5 ≀ Z2 S+

5 ≀∗ Z210 5K2 H5 H+

510 K10 S10 S+

1011 C11, C2
11, C3

11 D11 D1111 K11 S11 S+

1113. Graphs having no quantum symmetry. The 
lassi�
ation proje
t for �nitegraphs is there for various reasons, one of them being to help in 
lassi�
ation of 
er-tain subfa
tors and planar algebras, of integer index. In other words, the whole thingshould be regarded as belonging to a spe
ialized area of von Neumann algebras, andmathemati
al physi
s in general.As explained to us by Jones, the end of the game would be to investigate some spe
ialgraphs, su
h as the Clebs
h graph, or the Higman-Sims graph.We are quite far away from this kind of appli
ation. The big list in previous se
tion
onsists of simplexes, 
y
les, and their produ
ts. That is, our main realization so far isto have reasonably strong results about produ
t operations.The next step would be to develop some new te
hniques, for graphs whi
h do notde
ompose as produ
ts. The �rst su
h graph is the Petersen one, at n = 10. As alreadymentioned, we have no results about it. But work here is in progress, and we hope to
ome up soon with an answer, along with a study for higher n, say between 12-15.We would like to present now a �rst 
on
eptual result emerging from our small nstudy. This 
on
erns graphs having no quantum symmetry.Definition 13.1. A �nite graph X has no quantum symmetry if it satis�es one of thefollowing equivalent 
onditions, where d is its adja
en
y matrix.1. The quantum symmetry algebra A(X) is 
ommutative.2. We have A(X) = C(GX), where GX is the symmetry group of X.3. For a magi
 unitary u, du = ud implies that uij 
ommute with ea
h other.
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hara
terizing su
h graphs goes ba
k to Wang's paper [56℄, with theresults A(C3) = C(S3) and A(C4) 6= C(H2), showing that C3 has no quantum symmetry,but C4 does. A topologi
al formulation of the problem is found by Curtin in [32℄.There are several graphs in the above table whi
h satisfy this 
ondition: the 
y
les
Cn with n 6= 4, a number of prisms and of 
y
les with 
hords, and the dis
rete torus
K3 × K3. Moreover, we have found some more graphs by working on the subje
t, andthis led us to take a detailed look at the 
ase of 
ir
ulant graphs.A graph X having n verti
es is 
alled 
ir
ulant if its automorphism group 
ontains
opy of Zn. This is the same as saying that verti
es of X are elements of Zn, and that
i ∼ j (
onne
tion by an edge) implies i + k ∼ j + k for any k.Asso
iated to a 
ir
ulant graph are the following algebrai
 invariants.1. The set S ⊂ Zn is given by i ∼ j ⇐⇒ j − i ∈ S.2. The group E ⊂ Z∗

n 
onsists of elements a su
h that aS = S.3. The order of E is denoted k, and is 
alled type of X.With these notations, we have the following result:Theorem 13.1. A type k 
ir
ulant graph having p ≫ k verti
es, with p prime, has noquantum symmetry.This result is proved in [7℄, with the lower bound p > 6ϕ(k), where ϕ is the Eulerfun
tion. Most of the proof there doesn't really use the fa
t that p is prime, and we hopeto 
ome up soon with more general results in this sense.The whole subje
t is somehow opposite to the freeness 
onsiderations in previousse
tions: �no quantum symmetry� means �too many 
onstrains, hen
e independen
e�.14. Hadamard matri
es. A 
omplex Hadamard matrix is a matrix h ∈Mn(C) havingthe following properties: entries are on the unit 
ir
le, and rows are mutually orthogonal.The rows of h, denoted h1, . . . , hn, 
an be regarded as elements of the algebra Cn.Sin
e ea
h hi is formed by 
omplex numbers of modulus 1, this element is invertible. We
an therefore 
onsider the elements ξij = hj/hi, and we have:
〈ξij , ξik〉 = 〈hj/hi, hk/hi〉 = n〈hj , hk〉 = n · δjk.A similar 
omputation works for 
olumns, so ξ is a magi
 basis of Cn, in the sensethat the 
orresponding orthogonal proje
tions P (ξij) form a magi
 unitary matrix.Definition 14.1. Let h ∈Mn(C) be an Hadamard matrix.1. ξ is the magi
 basis of C

n given by ξij = hj/hi.2. P is the magi
 unitary over Mn(C) given by Pij = P (ξij).3. π is the representation of As(n) given by π(uij) = Pij .4. A is the quantum permutation algebra asso
iated to π.In other words, we say that the representation π : As(n) → Mn(C) 
omes from arepresentation ν : Gn → Un of the dual of the n-th quantum permutation group, thenwe 
onsider the quantum group G = ν(Gn), and the algebra A = C∗(G). See [14℄.Theorem 14.1. The 
onstru
tion h→ A has the following properties.



28 T. BANICA, J. BICHON AND B. COLLINS1. The Fourier matrix hij = wij with w = e2πi/n gives A = C(Zn).2. For a tensor produ
t h = h′ ⊗ h′′ we have A = A′ ⊗A′′.3. A is 
ommutative if and only if h is a tensor produ
t of Fourier matri
es.For n = 1, 2, 3, 5 any Hadamard matrix is equivalent to the Fourier one. At n = 4 wehave the following example, depending on q on the unit 
ir
le:
hq =





1 1 1 1

1 q −1 −q

1 −1 1 −1

1 −q −1 q



 .

These are, up to equivalen
e, all 4×4 Hadamard matri
es. As an example, the Fouriermatrix 
orresponds to the value q = ±i. See Haagerup [39℄.Theorem 14.2. Let n be the order of q2, and for n < ∞ write n = 2sm, with m odd.The matrix hq produ
es the algebra C∗(G), where G is as follows.1. For s = 0 we have G = Z2n ⋊ Z2.2. For s = 1 we have G = Zn/2 ⋊ Z4.3. For s ≥ 2 we have G = Zn ⋊ Z4.4. For n =∞ we have G = Z ⋊ Z2.This result provides the �rst example of a deformation situation for quantum permu-tation groups. Observe that the parameter spa
e is the unit 
ir
le, with roots of unityhighlighted. We should mention that this spa
e, while being fundamental in most theoriesemerging from Drinfeld's original work [35℄, is quite new in the 
ompa
t quantum grouparea, where the deformation parameter is traditionally real. See [14℄.There are many di�
ult problems regarding Hadamard matri
es, and we don't knowyet if quantum permutation groups 
an help. See Jones [41℄.15. Co
y
le twists of the symmetri
 group. The examples of quantum permutationgroups dis
ussed so far in this paper are either 
lassi
al or in�nite-dimensional. A naturalquestion is whether there exist non-
lassi
al �nite quantum permutation groups. The
onstru
tion of su
h obje
ts was done in [17℄, using the 2-
o
y
le twisting pro
edure.The idea of twisting, originally due to Drinfeld [36℄, and developed by Doi [34℄ in thedual framework, is the following one. Starting with a Hopf algebra A, we 
onsider linearmaps σ : A⊗A→ C satisfying 
ertain 
onditions and 
alled (Hopf) 2-
o
y
les. We thendeform the produ
t of A by σ to get a new Hopf algebra Aσ, 
alled a twist of A, andhaving the same tensor 
ategory of 
orepresentations as A. See S
hauenburg [44℄.The theory of twisting is developed at di�erent levels of generality and studied innumerous papers that we shall not list here. Amongst these, the paper of Eno
k andVainerman [38℄ was in�uential: they realized that 2-
o
y
les 
ould be easily 
onstru
tedfrom abelian subgroups, over whi
h Hopf 2-
o
y
les 
orrespond to ordinary group 2-
o
y
les. This idea was used in [17℄ to 
onstru
t twists of C(S2n) indu
ed by the abeliansubgroup Zn
2 , leading to the following 
onstru
tion.



QUANTUM PERMUTATION GROUPS: A SURVEY 29Let i ∈ {1, . . . , 2n}. For i even we put i′ = i − 1 and i∗ = i/2. For i odd we put
i′ = i + 1 and i∗ = i′/2. We 
onsider a matrix p = (pij) ∈ Mn(C) with pii = 1 and
pij = pji = ±1 for all i and j.Definition 15.1. The Hopf algebra Cp(S2n) is de�ned to be the quotient of As(2n) bythe following relations:
(3 + pi∗j∗)ukjuli + (1− pi∗j∗)ukjuli′ + (1− pi∗j∗)ukj′uli + (pi∗j∗ − 1)ukj′uli′

= (3 + pl∗k∗)uliukj + (1− pl∗k∗)ul′iukj + (1− pl∗k∗)uliuk′j + (pl∗k∗ − 1)ul′iuk′j .The 
on
eptual meaning of these relations is that they are FRT-relations [43℄ asso
i-ated with a Yang-Baxter operator C2n ⊗ C2n → C2n ⊗ C2n atta
hed to p.One shows that Cp(S2n) is a twist of C(S2n) and here is the 
on
lusion in [17℄.Theorem 15.1. There exist at least n �nite quantum permutation groups a
ting on 2npoints, and having the same tensor 
ategory of representations as S2n.It is also possible to 
onstru
t twists of C(S2n+1) in the same manner. More generaltwistings of Sn are 
onstru
ted in [19℄, using arbitrary roots of unity.We have the following natural questions.1. Does there exist a �nite graph having a non-
lassi
al �nite quantum symmetrygroup, for example one of the above ones 
onstru
ted by twisting?2. Consider a �nite quantum group G obtained as a twisting of Sn. Is it true that Gis a quantum permutation group?The twisting 
onstru
tion is also available for any �nite group. This leads to somesurprises: although the alternating group A5 does not a
t faithfully on 4 points, it has a�nite quantum analogue that does. This plays an important role in the 
lassi�
ation ofthe quantum groups a
ting on 4 points in the next se
tion.Finally we should mention that the twisting pro
edure is also a useful tool to un-derstand the in�nite-dimensional situation: for example the Hopf algebras C(O−1
n ) aretwists of C(On). As explained in the next se
tion, in the 
ase n = 4, twisting te
hniquesessentially enable us to 
lassify the quantum groups a
ting on 4 points.16. Quantum groups a
ting on 4 points. A natural problem in the area of quantumpermutation groups is the 
lassi�
ation problem, at least for small n. This is the sameas the 
lassi�
ation of Hopf algebra quotients of As(n). In the dual language, we haveto 
lassify the quantum subgroups of S+

n , the 
ompa
t quantum group dual to As(n),de�ned by As(n) = C(S+
n ).At n = 4 we have the following result [6℄.Theorem 16.1. The 
ompa
t quantum subgroups of S+

4 are as follows:1. S+
4 ≃ SO−1

3 .2. The quantum orthogonal group O−1
2 .3. The quantum group D̂∞, the quantum dual of the in�nite dihedral group.4. The symmetri
 group S4 and its subgroups.5. The quantum group Sτ

4 , the unique non-trivial twist of S4.



30 T. BANICA, J. BICHON AND B. COLLINS6. The quantum group Aτ
5 , the unique non-trivial twist of the alternating group A5.7. The quantum group Dτ
n, n even and n ≥ 6, the unique non-trivial twist of thedihedral group of order 2n.8. The quantum group DCτ

n of order 4n, n ≥ 2, a pseudo-twist of the di
y
li
 groupof order 4n.9. The quantum group D̂n, n ≥ 3, the quantum dual of the dihedral group of order
2n.The �rst step in the proof is to show that As(4) is in fa
t isomorphi
 with C(SO−1

3 ),the latter being the quotient of C(SU−1
3 ) by the relations making the fundamental matrixorthogonal. Then one shows that C(SO−1

3 ) is a twist of C(SO3) (re
all that, in 
ontrast,
C(SU−1

2 ) is not a twist of C(SU2)). Then one uses twisting te
hniques to show that thequantum subgroups diagonally 
ontaining the Klein subgroup of SO−1
3 
orrespond totwists of subgroups of SO3 
ontaining the diagonal subgroup. The remaining 
ases areexamined by using 
ase-by-
ase arguments.The existen
e and uniqueness of various quantum groups in the theorem follow fromwork of several authors, in
luding Davydov, Etingof and Gelaki, Ka
 and Paljutkin,Masuoka, Nikshy
h, Vainerman.We note that all the quantum groups o

urring in the theorem were already known,and that the 
lassi�
ation has lots of similarities with the one for the 
ompa
t subgroupsof SO3, whi
h is explained by the twisting result.A dire
t 
onsequen
e of the 
lassi�
ation theorem is the following result.Theorem 16.2. The 
lassi
al symmetri
 group S4 is maximal as a 
ompa
t quantumsubgroup of the quantum permutation group S+

4 .We 
onje
ture that for any n, the 
lassi
al symmetri
 group Sn is maximal in thequantum permutation group S+
n .The next step is to 
ontinue the 
lassi�
ation for the next values of n, say n = 5, 6, 7.At this stage we are very far from having 
omplete results, or even from having a strategy.We expe
t that several additional te
hni
al di�
ulties will arise. The �rst one is thenon-amenability of the dis
rete quantum group dual to S+

n if n ≥ 5, shown in [1℄.As a last remark, the results presented here are in 
onne
tion with the various n = 4results from previous se
tions. A �rst problem here would be to �nd expli
it matrixmodels for all quantum groups in the above theorem. Another problem is to understandthe relation with integration results, say via a systemati
 study of twisted integration.17. Con
lusion. In this paper we have presented several known fa
ts about quantumpermutation groups, most of them being published, or available at arxiv.org. The theoryis quite re
ent: it originates from Wang's 1998 paper [56℄, and was basi
ally developed inthe last few years.The meaning of these investigations might remain quite un
lear. This is indeed the
ase: the whole subje
t, with all its possible interpretations, belongs to area of mathe-mati
al physi
s, where everything is by de�nition quite un
lear.



QUANTUM PERMUTATION GROUPS: A SURVEY 31The problem is that the theory is not mature enough for a serious 
omparison withresults in traditional theoreti
al physi
s. It is most likely that many years will pass beforerea
hing to the 
orre
t te
hni
al level.It is probably instru
tive here to re
all the story of non
ommutative geometry, whi
his illustrating for the di�
ulty of applying mathemati
al ideas. The theory was initiatedby Connes in the early eighties, with ideas 
oming from foliations, groupoids, and theAtiyah-Singer theorem. The high energy physi
s motivation was revealed 10 years later,in the Connes-Lott paper [31℄. This was still quite away from reasonable numeri
 results,and the 170 GeV predi
tion for the mass of the Higgs boson was obtained 15 more yearslater, in the Chamseddine-Connes-Mar
olli paper [26℄.Ba
k to quantum permutation groups, what we 
an say for the moment is that theseen
ode, via a very simple formalism, a few re
ent results.1. Relation with Jones theory. The idea here is to develop a double approa
h to theproblem, in terms of subfa
tors and planar algebras, by using tools from fun
tionalanalysis and low-dimensional topology. The �rst thing to be said is that the mainproblems 
on
ern the 
ase of non-integer index, and that our study is quite faraway from that (see [9℄). However, in the simplest 
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ent work of Bis
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 approa
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 results.3. Among other results, we have the pleasing appearan
e of the Pauli matri
es in
onne
tion with the 
entral obje
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e of Di Fran
es
o's meander determinants in the
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