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Abstract. We present a generalization of the classical central limit theorem to the case of non-
commuting random variables which are bm-independent and indexed by a partially ordered set.
As the set of indices I we consider discrete lattices in symmetric positive cones, with the order
given by the cones. We show that the limit measures have moments which satisfy recurrences
generalizing the recurrence for the Catalan numbers.

1. Introduction. In the classical Central Limit Theorem (CLT) one considers conver-
gence of the normalized sums

1 N

of independent identically distributed random variables X;, which are centered by the
expectation E(X;) = 0 and with the variance E(X?) = 1. In this paper we consider
a generalization of this to a non-commutative setting. Instead of the classical random
variables, which are just functions on a probability space, we shall consider operators
on some Hilbert space, and the classical independence will be replaced by the notion of
bm-independence, defined in the next section. This notion is associated with partially
ordered sets of indexes I, instead of the totally ordered set N of positive integers. Hence
we will have to replace the above summation over positive integers in the interval [1, N]
by a summation over some ascending family of finite subsets Jy C I. These sets have
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to enjoy some geometrical properties of the ordinary intervals, so the natural candidates
would be intervals in the partially ordered set I. However, our method of proof of the
bm-Central Limit Theorem works better for some more particular choice of these sets.
In addition, the classical expectation E has to be replaced by a state ¢, defined for our
non-commutative random variables, and the convergence is considered as convergence of
moments with respect to this state.

The notion of bm-independence is a generalization of the monotonic independence
invented and studied initially by Muraki [5], and also of the boolean independence, which
appeared first in the work by Bozejko [1] under the name generalized free product of
states. The main generalization is by replacing the totally ordered set of indexes with
partially ordered set indexing the non-commutative random variables. The basic example
of the bm-independent family of (non-commutative) random variables is provided by the
bm-extension construction [7]. This will be described also in section 3. The construction
is based on the ideas of [6], where a sequence of monotonically independent operators
was constructed, providing example related to the work by Muraki. Another related
construction was given by Lenczewski and Salapata in [4].

2. bm-independence. Let I be a set partially ordered by a relation <. For £, € I we
shall write £ < 7 if and only if £ < 1 and £ # 7. In a partially ordered set some elements
&,n € I may be non-comparable; in such case we shall write £ ~ 7.

Let {B¢ : £ € I} be a family of subalgebras of a given algebra B and let ¢ be a
functional on B.

DEFINITION 1. We say that the algebras {B¢ : { € I} are bm-independent in B, with
respect to the given functional ¢ on B, if the following two conditions hold:

BML1. If £,p,nm € Isatisfy: £ < p>nor & < p o nor~p>mn, then for any be € B,
b, € B, and b, € B,

beboby, = p(by)beby,
BM2. If &,...,&, € Isatisfy & = -+ = &p v - 0 & < ++- < &y, for some 1 < m <
k < n, then for any b¢, € Be,, with 1 <i<n

o(be, - be,) = [ e(be.)
=1

If the set I is totally ordered, then these two conditions are just Muraki’s conditions
for monotonic independence. On the other hand, if the set I is totally disordered (no
two elements are comparable) then the first condition is void, and the second one is
the condition for boolean independence. The two conditions above are sufficient for the
computation of the mixed moments, the expressions of the form (b, ...be, ), by means
of the restrictions of the functional ¢ to each subalgebra B¢. In the next section we shall
describe the construction of bm-independent subalgebras.

3. bm-product of Hilbert spaces and bm-extensions of operators. Let us con-
sider a family {H : £ € I} of Hilbert spaces, indexed by a partially ordered countable
set I, which have a common unit vector 2. One may think of a countable number of copies
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of 12, with the natural orthonormal basis {6, : n > 0} and with Q = §y; the orthonormal
basis in He would then be {e;, = 6, : n > 0} and e, = Q. Let Hg be the orthogonal
complement of 2 in He.

DEFINITION 2. The bm-product of Hilbert spaces {H¢ : { € I} is the Hilbert subspace
H of the free Fock space F1 := F({H¢ : { € I}) generated by these spaces, which is
spanned by the vacuum vector €2 and the simple tensors of the form h, ®---® h,, with
p1 < -+ < pjand h,, € Hgi (1 < i < j). The orthogonal projection F1 — H will be
denoted by Py.

Let us assume that for each £ € I we are given an algebra B of operators bounded
on H,.
DEFINITION 3. The bm-extension of an operator b¢ € B¢ onto H is defined as

a¢ := Pub:Pu.
More explicitly, for py < --- < p; €1
ag(hp, @ -+ @hy) =0
if £ < pj or & < py;
ag(hp, ® - ®@hp, ) =Bhp, , @+ Qhp, + fe @hp, , @+ @ hy,
if pj =€ and behe = BQ + fe with fe L Q;
ag(hy, @+ @hp) =ah, @ @hy +ge@h,, @ @h,,

if £ > pj and b¢Q 1= o) + g¢, with g¢ L Q.

The bm-extension operators are bm-independent with respect to the vacuum state
p(a) := (af22) ([7]).

THEOREM 4. If A¢ is the algebra of the bm-extension operators of the given algebra Be,
then the algebras {A¢ : £ € I} are bm-independent with respect to the functional .

4. Positive symmetric cones and examples of discrete sublattices. Partial orders
are related to positive cones in euclidian spaces in a natural way. If V' is a euclidian space
and II C V is a positive cone, i.e. it is closed under addition of vectors and under
multiplication by positive scalars, then it defines a partial order < on V:

DEFINITION 5. If u,v € V then u v if v —u € II.

Since we seek the replacement of the set N of positive integers, which itself is a discrete
lattice in the positive cone II = [0,4+00) of V' = R, we shall consider analogous discrete
lattices I in more general situations. In particular, we shall show in each of our Examples
what are the replacements Jy of the intervals [I, N] C N C [0,400). Of course in a
partially ordered set we can always consider intervals, which are defined as follows: if
&€ <n €lthen [&n] :={p €I:¢& =< p = n} However, our methods of proof of the
bm-Central Limit Theorems require a little more sophisticated definitions. In particular,
we shall exhibit also some subsets [y C Jn, which play a combinatorial and geometrical
role in computing the limit recurrences (with the exception of Example 1).

The main examples we shall consider will be the following (d is a positive integer).
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EXAMPLE 1. Let V := R? and 1T := (R, U0)%, then I = I; := N? and for N :=
(N1,...,Ng) € I; we define the partial order < as

(k1,.. . kq) 2 (my,...,mg) if ki <mgq,.... kg <my
and the analogues of the intervals as
IN:={(n1,...,nq) €Iz:n1 < Ni,...,ng < Ng}
These sets are in fact lattice intervals in the partial order.

EXAMPLE 2. Let V be the Minkowski spacetime and let IT be the Lorentz light cone
defined as
M= {(y1,.,9a) € Ry x RT:x® > 9f + -+ 493}

and the partial order < is given by

d
(X;yla"wyd) j (Z;’U}1,...7U)d) if Z_XZ (Z(w’b _92)2)
i=1

Then we define
L= {(k;my,...,mqg) ENxZ: K2 >m?2 +.. .+ m2} C Tl
and for positive integers N € N we consider
In o= {(k;mq,...,mq) €I : k <N}

In particular, the elements with the same time-coordinate k£ are non-comparable. In this
example
Iy = {(ka my, ..., md) € Id}

EXAMPLE 3. Let V' = Hermgx4(R) be the vector space of d X d symmetric matrices
with real entries, and let II C V' be the positive cone of positive definite real symmetric
matrices. Then we define

I, = {(aij)ﬁl’jzl cll: ai; € Z}

the lattice of real symmetric positive definite matrices with integral entries, and for
N = (Ny,...,Ng) we set

JN = {(aij)ijzl elg:a; <N; V1I<i< d}

and
Iy = {(aij)lii’j:1 elg:ay=k V1<:i< d}

itk = (ki, ..., kq).

EXAMPLE 4. Let I; be the set of vertices of a homogeneous rooted tree of degree d > 2.
If & is the root, and if dist(p,n) is the distance of p and 7, then for N € N we define

IN:={§ €1y dist(&,8) < N},
I == {§ € 14 : dist(&, &) = k}.
The partial order =< is defined by “being on the geodesic closer to the root”:
p3n if dist(§o,n) = dist(&o, p) + dist(p,n).
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In particular, different elements which are at the same distance from the root are non-
comparable.

REMARK 6. The sets Jn are chosen so that they satisfy the following geometric property:
if £ € Jn then the set {n € Jn : £ < n} is a translation by £ of some other set Jk, for
properly chosen K.

5. bm-Central Limit Theorems. Our bm-Central Limit Theorems have the following
formulation (cf. [7] and [8]). Let {a¢ : £ € I} be a family of bm-extension self-adjoint
operators on H and let I, Jn be defined as in section 4. Let ¢ be the vacuum state and
let us assume that p(as) = 0 and ga(az) = 1 for each £ € I,;. For each index N as above
let us define the normalized partial sums as follows:

1

||

SN = Qg.
fen
These operators are self-adjoint, and since ¢ is a vacuum state and ¢((Sn)°) = 1, the mo-
ment sequence p((SN)™) is a positive definite sequence of real numbers, so if it converges
to some o, when N — oo, then the limit sequence «, is also positive definite.

Using the combinatorial reduction, as in [7] and [8], one can show that the odd mo-

ments of the Sn tend to zero, as N — oo:

0= _lim ¢((Sn)*"*).

N—oo

With the same method of combinatorial reduction, and using geometrical properties of
the sets Jn, one can show the following for the even moments.
THEOREM 7. For each non-negative integer n the limit

gn = lim o((Sn)*")

N—oo

exists, where (gy),~ is the sequence of (even) moments of a symmetric probability mea-
sure g on the real line, depending on d. These moments satisfy the following recurrence:

Z’yd gm 19n—m

for n > 1, where the coefficients ’yd(m) are specified for each of the above examples:

va(m)™t = m? in Ezample 1, yq(m)~! = <m((ld+—|—1l)> in Ezample 2, v4(m) =
(%B(d%l; 7(7”71%('”1)))[1 in Ezample 3 (here B(s + 1,t + 1) fo (1 — z)tdx is the
Euler B-function), and v4(1) =1, y4(m) =0 for m > 2 in Ea:ample 4.

go=g1=1 and

REMARK 8. The coefficients v4(m) can be computed as the following limit:
. || (lJN—k|>m_1
~va(m) = lim — .
N*wk%; [InI A [

REMARK 9. If v4(m) = 1, which is formally a possible case in Example 1 with d = 0,

then the recurrence defines the Catalan numbers, which are moments of the semi-circle
law (free CLT).
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REMARK 10. If v4(m) = %, which is the case in Example 1 for d = 1, and in Example 2.
for d = 0, then the recurrence defines the sequence of (even) moments of the arcsine
distribution (monotonic CLT).

REMARK 11. In Example 4 we obtain the constant sequence g, = 1 of (even) moments
of the measure = % (6 +6_1) (boolean CLT).
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