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Abstract. We present an overview of generalizations of Banach’s fixed point theorem and

continuation results for contractions, i.e., results establishing that the existence of a fixed point is

preserved by suitable homotopies. We will consider single-valued and multi-valued contractions

in metric and in gauge spaces.

0. Introduction. We present an overview of fixed point results for contractions in metric

and in gauge spaces. The first result is the famous contraction principle due to Banach [4].

Weakening the contraction condition permitted many authors to generalize the Banach

fixed point theorem, see [6, 7, 8, 14, 15, 16, 27, 40, 50, 51, 60]. Banach’s fixed point

theorem was also generalized to locally convex spaces by Cain and Nashed [9], and to

uniform spaces by Knill [38]. See also [20, 23, 28, 62] for results in Fréchet or gauge spaces.

The question of the convergence of a sequence of fixed points of a converging sequence

of contractions is then raised. An affirmative answer to this question was obtained by

Bonsall [5] for a sequence of contractions {fn} converging pointwise to f0 when the

constants of contraction are the same for every fn. This result was extended by Reich [51]

for more general contractions. Moreover, the constants of contraction may vary with n if

stronger assumptions are imposed on the space or if the convergence of {fn} is uniform,

see Nadler [42].

One could also ask if one can replace the sequence of contractions by a family of

contractions or homotopies of contractions. We present an overview of continuation results

for homotopies of contractions on metric or gauge spaces h : X × [0, 1] → E with X a

closed subset of E. More precisely, we give conditions which ensure that if h(·, 0) has

a fixed point then h(·, t) has a fixed point for every t ∈ [0, 1]. Usually the space X is
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the closure of an open set. However, as it was explained in [20], potential applications in

gauge spaces lead to consider homotopies defined on a subset X with empty interior. For

this reason, the usual condition x 6= h(x, t) for x ∈ ∂X should be replaced, and a more

general notion of contraction is suitable, see [20].

We also present some fixed point and continuation results for multi-valued contrac-

tions in metric and gauge spaces. The first fixed point result for multi-valued contraction

was obtained by Nadler [43], while the first continuation result is due to Frigon and

Granas [22]; see [12, 19, 25, 39, 44, 48, 61] for generalizations and related results.

Obviously, this overview on fixed point and continuation results for contractions can-

not be complete but it gives a good idea of results which can be found in the literature.

The reader is referred to [32, 29, 30, 36, 37] and the references therein for more results

on contractive and non-expansive mappings.

The paper is divided into six parts: (1) single-valued contractions in metric spaces;

(2) continuation results for single-valued contractions in metric spaces; (3) multi-valued

contractions in metric spaces; (4) continuation results for multi-valued contractions in

metric spaces; (5) single-valued contractions in gauge spaces; (6) multi-valued contrac-

tions in gauge spaces.

1. Single-valued contractions

1.1. Existence results. The most famous fixed point theorem is certainly the contraction

principle established by Banach in 1922 [4]. This result establishing the existence of a

fixed point of a contraction defined on a Banach space was very useful in particular in

the theory of differential and integral equations, in the theory of chaos and in numerical

analysis.

Theorem 1.1 (Banach, 1922). Let (E, ‖ · ‖) be a Banach space and f : E → E a con-

traction, i.e.,

there exists k < 1 such that ‖f(x) − f(y)‖ ≤ k‖x− y‖ for every x, y ∈ E.

Then f has a fixed point x0.

Caccioppoli [8] formulated this result in complete metric space. He also observed that

it is clear from the proof that the fixed point x0 is unique and fn(x) → x0 for every

x ∈ E.

Many generalizations of this principle were given with the condition of contraction

replaced by a weaker one. We state a result of Weissinger [63].

Theorem 1.2 (Weissinger, 1952). Let (E, d) be a complete metric space and f : E → E

such that for every n ∈ N, there exists kn such that

d(fn(x), fn(y)) ≤ knd(x, y), and

∞
∑

n=1

kn <∞.

Then f has a unique fixed point x0, which is such that fn(x) → x0 for every x ∈ E.

Moreover,

d(x0, f
n(x)) ≤ d(fm(x), fm+1(x))

∞
∑

i=n−m

ki ∀m ∈ {0, 1, . . . , n− 1}.
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It was natural to ask if the Banach contraction principle holds when k = 1 and the

inequality replaced by a strict inequality, i.e., if d(f(x), f(y)) < d(x, y) for all x 6= y. This

is not possible as it is shown in the following example.

Example 1.3. Let E = l1 be the space of real sequences x = (xn)n∈N endowed with the

usual norm ‖x‖1 =
∑

n |xn|. Let f : l1 → l1 be defined by

f(x1, x2, . . . ) =
(

1,
x1

2
,
2x2

3
,
3x3

4
, . . .

)

.

It is clear that ‖f(x) − f(y)‖1 < ‖x − y‖1 for all x 6= y in l1. However, x = f(x) if and

only if x = (1, 1
2 ,

1
3 , . . . ) but x 6∈ l1. So f has no fixed point.

Therefore, with such a weak condition of contraction, extra assumptions on the space

are needed as was shown by Edelstein [15], [16].

Theorem 1.4 (Edelstein, 1961–62). Let (E, d) be a complete metric space, f : E → E.

(a) If d(f(x), f(y)) < d(x, y) for all x, y ∈ E, and if there exists x1 such that {fn(x1)}

has a subsequence converging to x0, then x0 is the unique fixed point of f . (Condition

satisfied if E is compact).

(b) If f is (ε, k)-uniformly locally contractive, i.e., there exist ε > 0 and k < 1 such that

d(x, y) < ε =⇒ d(f(x), f(y)) ≤ kd(x, y),

and if E is ε-chainable (i.e., for every x, y ∈ E, there exist x0, . . . , xn such that x = x0,

y = xn and d(xk−1, xk) < ε for all k = 1, . . . , n), then f has a unique fixed point.

A simple proof of Theorem 1.4(a) can be found in [30].

From the previous example and theorem, one sees that to obtain generalizations of the

Banach contraction principle in complete metric spaces, one should look for a condition

weaker than

∃k ∈ [0, 1) such that d(f(x), f(y)) ≤ kd(x, y) ∀x, y ∈ E;

and stronger than

d(f(x), f(y)) < d(x, y) ∀x 6= y ∈ E.

This was done in particular by Rakotch [50], Browder [7], Boyd and Wong [6],

Geraghty [27] and Matkowski [40].

Theorem 1.5. Let (E, d) be a complete metric space and f : E → E such that there

exists ψ : [0,∞) → [0,∞) with

d(f(x), f(y)) ≤ ψ(d(x, y)) for every x, y ∈ E.

Assume one of the following conditions is satisfied :

(a) [Rakotch, 1962] ψ(t) = tφ(t) with φ : (0,∞) → [0, 1) decreasing.

(b) [Browder, 1968] ψ is non-decreasing and continuous from the right such that

ψ(t) < t for every t > 0.

(c) [Boyd and Wong, 1969] ψ is upper semi-continuous from the right or lim sup
s→t+

ψ(s) < t,

and such that

ψ(t) < t for every t > 0.
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(d) [Geraghty, 1973] ψ(t) = tφ(t) with φ : [0,∞) → [0, 1) such that

φ(tn) → 1 =⇒ tn → 0.

(e) [Matkowski, 1994] ψ is continuous at 0, subadditive and there exists {tn} converging

to 0 such that

ψ(tn) < tn for every n ∈ N.

Then fn(x) → x0 = f(x0) for every x ∈ E.

Idea of the proof. Take x ∈ E. Using the fact that

d(fn(x), fn+1(x)) ≤ ψ
(

d(fn−1(x), fn(x))
)

and the properties of ψ, deduce that

lim
n→∞

d(fn(x), fn+1(x)) = 0.

Then show that {fn(x)} is a Cauchy sequence converging to x0. Finally, conclude that

x0 is the unique fixed point of f .

The reader is referred to [35] for a comparison of the previous conditions. Also, it is

worth to mention that most of non-expansive mappings (in the sense of Baire category)

satisfy Rakotch’s condition (Theorem 1.5(a) ), see [58, 59].

Some of the previous conditions can be weakened if one assumes that E is metrically

convex, i.e.,

∀x 6= y, ∃z ∈ E such that d(x, y) = d(x, z) + d(z, y).

Theorem 1.6. Let (E, d) be a metrically convex complete metric space and f : E → E

such that there exists ψ : [0,∞) → [0,∞) with

d(f(x), f(y)) ≤ ψ(d(x, y)) for every x, y ∈ E.

Assume one of the following conditions is satisfied :

(a) [Boyd and Wong, 1969] ψ satisfies

ψ(t) < t for every t > 0.

(b) [Matkowski, 1994] ψ is continuous at 0, and there exists {tn} converging to 0 such

that

ψ(tn) < tn for every n ∈ N.

Then fn(x) → x0 = f(x0) for every x ∈ E.

In the two previous results ψ depended on d(x, y), Dugundji and Granas [14] consid-

ered the case of a function depending on x, y.

Theorem 1.7 (Dugundji and Granas, 1978). Let (E, d) be a complete metric space and

f : E → E such that there exists θ : E × E → (0,∞) with

d(f(x), f(y)) ≤ d(x, y) − θ(x, y) for every x 6= y,

and

inf{θ(x, y) : a ≤ d(x, y) ≤ b} > 0 for every b ≥ a > 0.

Then fn(x) → x̂ = f(x̂) for every x ∈ E.
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Proof. Take x0 ∈ E and define inductively xn = fn(x0). Observe that

d(x2, x1) ≤ d(x1, x0) − θ(x1, x0).

This implies that

d(x3, x2) ≤ d(x2, x1) − θ(x2, x1) ≤ d(x1, x0) − θ(x1, x0) − θ(x2, x1).

Repeating this argument, we deduce that

d(xn, xn+1) ≤ d(x0, x1) −
n

∑

j=1

θ(xj−1, xj).

This inequality implies that the series
∑∞

j=1 θ(xj−1, xj) is convergent.

For 0 < a ≤ b, define

µ(a, b) = inf{θ(x, y) : a ≤ d(x, y) ≤ b} and γ(a, b) = min{a, µ(a, b)}.

Let ε ∈ (0, d(x0, x1)), and choose N ∈ N such that

θ(xn, xn+1) < µ(γ(ε/2, ε), d(x0, x1) ) for every n ≥ N.

This, and the fact that d(xN , xN+1) ≤ d(x0, x1) imply that

d(xN , xN+1) < γ(ε/2, ε).

Observe that

d(xN+2, xN ) ≤ d(xN+2, xN+1) + d(xN+1, xN )

≤ 2d(xN+1, xN ) − θ(xN+1, xN ) < ε.

Similarly,

d(xN+3, xN ) ≤ d(xN+3, xN+1) + d(xN+1, xN )

≤ d(xN+2, xN ) − θ(xN+2, xN ) + d(xN+1, xN )

< d(xN+2, xN ) − θ(xN+2, xN ) + γ(ε/2, ε) ≤ ε.

Repeating this argument implies that xn ∈ B(xN , ε) for all n ≥ N . So,

d(xn, xm) < 2ε for every n,m ≥ N.

Since ε is arbitrary, {xn} is a Cauchy sequence, and hence converges to x ∈ E. From the

continuity of f , we deduce that x is a fixed point of f . The uniqueness of the fixed point

is obvious.

In [51], Reich generalized the contraction condition to the following one:

there exist k, l,m ∈ [0, 1) such that k + l +m < 1 and

d(f(x), f(y)) ≤ kd(x, f(x)) + ld(y, f(y)) +md(x, y) for every x, y ∈ E.

This condition was also generalized by many authors, see [60] for a comparison between

different conditions.
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1.2. Stability results. Now, we are interested in the behavior of a sequence {xn} such that

xn is the unique fixed point of the contraction fn, and {fn} converges to f0. It was shown

by Bonsall [5], and then generalized by Reich [51], that if the constant of contraction is

the same for all n then the pointwise convergence is sufficient to guarantee that xn → x0.

However, Nadler [42] established an analogous result when the convergence of {fn} is

uniform and the constant of contraction varies with n.

Theorem 1.8. Let (E, d) be a complete metric space, and fn : E → E for n ∈ N ∪ {0}.

Assume that one of the following conditions is true.

(a) [Bonsall, 1962] fn → f0 pointwise and there exists k < 1 such that for every

n ∈ N ∪ {0}

d(fn(x), fn(y)) ≤ kd(x, y) for every x, y ∈ E.

(b) [Nadler, 1968] For every n ∈ N ∪ {0}, there exists kn < 1 such that

d(fn(x), fn(y)) ≤ knd(x, y) for every x, y ∈ E,

and fn → f0 uniformly, or fn → f0 pointwise and E is locally compact.

(c) [Reich, 1971] fn → f0 pointwise and there exist k, l,m ≥ 0 such that k + l +m < 1,

and for all n ∈ N ∪ {0},

d(fn(x), fn(y)) ≤ kd(x, y) + ld(x, fn(x)) +md(y, fn(y)) for every x, y ∈ E.

Then xn = fn(xn) → x0 = f0(x0).

Proof. (a) Let xn = fn(xn) for n ∈ N ∪ {0}. Then,

d(xn, x0) = d(fn(xn), f0(x0))

≤ d(fn(xn), fn(x0)) + d(fn(x0), f0(x0))

≤ kd(xn, x0) + d(fn(x0), f0(x0)).

Therefore, xn → x0. The statement (c) can be proved similarly.

(b) Again xn = fn(xn). If fn → f0 uniformly, then

d(xn, x0) = d(fn(xn), f0(x0))

≤ d(fn(xn), f0(xn)) + d(f0(xn), f0(x0))

≤ k0d(xn, x0) + d(fn(xn), f0(xn)).

Therefore, xn → x0.

Now assume that fn → f0 pointwise and E is locally compact. Let ε > 0 be sufficiently

small such that K := B(x0, ε) is compact. Since the sequence {fn} is equicontinuous and

converges pointwise to f0 on the compact set K, it converges uniformly on K to f0. Fix

N ∈ N such that for all n ≥ N ,

d(fn(x), f0(x)) ≤ (1 − k0)ε for every x ∈ K.

It follows that for every x ∈ K,

d(fn(x), x0) ≤ d(fn(x), f0(x)) + d(f0(x), f0(x0))

≤ (1 − k0)ε+ k0d(x, x0) ≤ ε.
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This shows that fn maps K in K and hence has a fixed point in K. The uniqueness of

the fixed point implies that xn ∈ K. Since we can choose ε arbitrarily small, we deduce

that xn → x0.

2. Continuation results for single-valued contractions. In this section, we study

continuation results. More precisely, we are interested in conditions under which a family

of contractions {fλ} has a fixed point for each value of the parameter λ. It is also inter-

esting to study the properties of λ 7→ xλ = fλ(xλ). In 1969, Nussbaum [45] extended a

continuation result for compact maps to k-set contractions.

Theorem 2.1 (Nussbaum, 1969). Let E be a Banach space, U bounded and open in E

with 0 ∈ U , and f : U → E a k-set contraction for k < 1 (i.e., α(f(A)) ≤ kα(A) for all

bounded subset A, where α is the Kuratowski measure of non-compactness). Assume that

x = λf(x) for x ∈ ∂U =⇒ λ ≥ 1.

Then f has a fixed point in U .

An elementary proof of this result was given by Gatica and Kirk [26] in the case where

f is a contraction. They removed the assumption that U is bounded. In [24], Granas,

Guennoun and myself showed that a Lipschitzian curve of fixed point λ 7→ xλ = λf(xλ)

is obtained for λ ∈ [0, 1].

Theorem 2.2. Let E be a Banach space, Y closed and convex in E, U open in Y with

0 ∈ U , and f : U → Y a contraction. Assume that

x = λf(x) for x ∈ ∂Y U =⇒ λ ≥ 1.

Then f has a fixed point in U . Moreover, there is a Lipschitzian curve λ 7→ xλ = λf(xλ)

defined on [0, 1].

Proof. First of all, notice that if x = λf(x) for λ ∈ [0, 1], then

‖x‖ = λ‖f(x)‖ ≤ λ‖f(x) − f(0)‖ + ‖f(0)‖ ≤ k‖x‖ + ‖f(0)‖,

and

‖f(x)‖ ≤ k‖x‖ + ‖f(0)‖,

where k is the constant of contraction. So, there exists M > 0 such that ‖f(x)‖ ≤M for

all x = λf(x) for some λ ∈ [0, 1].

Let Q = {λ ∈ [0, 1) : λf has a fixed point}. Observe that 0 ∈ Q. Let λ0 ∈ Q and x0 =

λ0f(x0). By assumption, x0 6∈ ∂Y U . So, there exists s > 0 such that B(x0, s) ∩ Y ⊂ U .

For λ ∈ [0, 1) such that |λ − λ0| ‖f(x0)‖ < s(1 − k), λf : B(x0, s) ∩ Y → B(x0, s) ∩ Y .

Indeed, for x ∈ B(x0, s) ∩ Y ,

‖x0 − λf(x)‖ ≤ ‖λ0f(x0) − λf(x0)‖ + λ‖f(x0) − f(x)‖ ≤ s(1 − k) + k‖x0 − x‖ ≤ s.

The Banach contraction principle implies that λ ∈ Q and hence Q is open.

Now, we claim that Q is closed. Indeed, let λ1, λ2 ∈ Q and x1 = λ1f(x1), x2 =

λ2f(x2). We have

‖x1 − x2‖ ≤ ‖λ1f(x1) − λ2f(x1)‖ + λ2‖f(x1) − f(x2)‖ ≤M |λ1 − λ2| + k‖x1 − x2‖,
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and hence,

‖x1 − x2‖ ≤
M

1 − k
|λ1 − λ2|. (2.1)

It follows that Q = [0, 1) since [0, 1) is connected. Moreover, inequality (2.1) implies the

existence of λ 7→ xλ = λf(xλ) a Lipschitzian curve on [0, 1], with x1 ∈ U .

Using the same arguments, Granas [31] extended this result to more general homo-

topies in complete metric spaces. Note that condition (ii) of the following result can be

generalized in order to keep the curve t 7→ xt continuous, see Precup’s result [48].

Theorem 2.3 (Granas, 1994). Let E be a complete metric space, U ⊂ E open, and

h : U × [0, 1] → E such that

(i) there exists k < 1 such that d(h(x, t), h(y, t)) ≤ kd(x, y) for every x, y ∈ E and

every t ∈ [0, 1];

(ii) there exists M ≥ 0 such that d(h(x, t), h(x, s)) ≤M |t−s| for every x ∈ E and every

s, t ∈ [0, 1];

(iii) x 6= h(x, t) for x ∈ ∂U , and t ∈ [0, 1].

If h(·, 0) has a fixed point, then there exists a Lipschitzian curve t 7→ xt = h(xt, t) defined

on [0, 1].

This type of result is also true with the notion of contraction introduced by Dugundji

and Granas as shown in [19].

Theorem 2.4 (Frigon, 1996). Let E be a complete metric space, U ⊂ E open, and

h : U × [0, 1] → E such that

(i) there exists θ : E × E → (0,∞) such that

d(h(x, t), h(y, t)) ≤ d(x, y) − θ(x, y) for every x 6= y and t ∈ [0, 1],

and

inf{θ(x, y) : d(x, y) ≥ a} > 0 for every a > 0;

(ii) there exists a continuous function φ : [0, 1] → R such that for every x ∈ U , and

t, s ∈ [0, 1], d(h(x, t), h(x, s)) ≤ |φ(t) − φ(s)|;

(iii) x 6= h(x, t) for x ∈ ∂U , and t ∈ [0, 1].

If h(·, 0) has a fixed point, then h(·, t) has a fixed point for every t ∈ [0, 1].

Proof. For 0 < a ≤ b, let

µ(a, b) = inf{θ(x, y) : a ≤ d(x, y) ≤ b} and γ(a, b) = min{a, µ(a, b)}.

Define

Q = {λ ∈ [0, 1] : h(·, λ) has a fixed point}.

To show thatQ is open, take λ0 ∈ Q and x = h(x, λ0). Let r > 0 be such thatB(x, r) ⊂ U ,

and let δ > 0 such that for |λ− λ0| < δ, |φ(λ) − φ(λ0)| < γ(r/2, r). Then

d(x, h(x, λ)) ≤ d(x, h(x, λ0)) + d(h(x, λ0), h(x, λ))

≤ |φ(λ) − φ(λ0)| < γ(r/2, r).
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By arguing as in Theorem 1.7, it can be shown that h(·, λ) has a fixed point in B(x, r)

for every λ such that |λ− λ0| < δ.

To show that Q is closed, take {λn} in Q such that λn → λ. Let xn = h(xn, λn). Fix

ε > 0. Define k = inf{µ(ε, b) : b ≥ ε}.

Let N ∈ N be such that for all n,m ≥ N , |φ(λn) − φ(λm)| < k. Then d(xn, xm) < ε

for every n,m ≥ N . Indeed, otherwise,

d(xn, xm) ≤ d(h(xn, λn), h(xn, λm)) + d(h(xn, λm), h(xm, λm))

≤ |φ(λn) − φ(λm)| + d(xn, xm) − θ(xn, xm)

< k + d(xn, xm) − θ(xn, xm) ≤ d(xn, xm),

which is a contradiction. So Q is closed.

Therefore, if h(·, 0) has a fixed point, Q = [0, 1], so h(·, t) has a fixed point.

Condition (i) of Theorem 2.3 can also be weakened by considering different constants

of contraction. In this case, a stronger assumption on the space is needed. Also, [0, 1] can

be replaced by a metric space as shown in [34] for U = E. Notice that in the following

result the family of maps {h(·, λ)} is defined on the whole space.

Theorem 2.5 (Jachymski, 1996). Let E be a locally compact complete metric space,

(M,ρ) a metric space and h : E ×M → E such that

(i) for every λ ∈ M , x 7→ h(x, λ) is a contraction (not necessarily with the same con-

stant);

(ii) for every x ∈ E, λ 7→ h(x, λ) is continuous.

Then there exists a continuous curve λ 7→ xλ = h(xλ, λ) defined on M .

Using this theorem, Jachymski obtained a continuation result for attractors of iterated

function systems.

Definition 2.6. Let f1, . . . , fn : E → E be contractions. Then
(

(E, d), f1, . . . fn
)

is

called a hyperbolic iterated function system (IFS). It generates a mapping f̂ : K(E) →

K(E) defined by

f̂(X) =

n
⋃

i=1

fi(X),

where K(E) is the space of compact subsets of E endowed with the Hausdorff metric. It

can be shown that f̂ is a contraction. The fixed point of f̂ is denoted by A and is called

the attractor of the IFS.

Theorem 2.7 (Jachymski, 1996). Let E be a locally compact complete metric space,

(M,ρ) a metric space, and for each λ ∈ M ,
(

(E, d), f1(·, λ), . . . fn(·, λ)
)

an IFS such

that for i = 1, . . . , n, fi is continuous with respect to its second variable. Then the attrac-

tor A(λ) depends continuously on the parameter λ ∈M .

Here is a result established by Chiş and Precup [11] for a homotopy defined on an

arbitrary closed set X of E. Of course, the condition on ∂X had to be changed.
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Theorem 2.8 (Chiş and Precup, 2004). Let E be a complete metric space, X ⊂ E

closed, and h : X × [0, 1] → E such that

(i) there exist k > 0, l ≥ 0 such that k + 2l < 1, and for every x, y ∈ X and t ∈ [0, 1],

d(h(x, t), h(y, t)) ≤ kd(x, y) + l
(

d(x, h(x, t)) + d(y, h(y, t))
)

;

(ii) t 7→ h(x, t) is continuous uniformly on X;

(iii) inf{d(x, y) : x = h(x, t), y ∈ E\X} > 0.

If h(·, 0) has a fixed point, then h(·, t) has a unique fixed point for each t ∈ [0, 1].

Precup [49], and with O’Regan [46] obtained continuation results with two metrics

on E and also with generalized metrics.

3. Multi-valued contractions

3.1. Existence results. In this section, we present fixed point results for multi-valued

contractions. Let (E, d) be a complete metric space. We denote by D the generalized

Hausdorff metric, i.e., for X,Y closed subsets of E,

D(X,Y ) = inf{ε > 0 : ε ∈ E(X,Y )},

where

E(X,Y ) = {ε > 0 : X ⊂ B(Y, ε), Y ⊂ B(X, ε)},

B(Y, ε) = {x ∈ E : d(x, Y ) < ε}, and inf ∅ = ∞. If F : X → E is a multi-valued map,

then x is called a fixed point of F if x ∈ F (x). The first fixed point result for multi-valued

contraction was obtained by Nadler [43].

Theorem 3.1 (Nadler, 1969). Let F : E → E be a multi-valued contraction with closed

bounded values, i.e., there exists k < 1 such that

D(F (x), F (y)) ≤ kd(x, y) for every x, y ∈ E.

Then F has a fixed point which can be obtained by iteration.

Proof. Fix ε > 0 and x0 ∈ E. We define inductively a sequence {xn} satisfying

(a)n xn ∈ F (xn−1);

(b)n d(xn, xn−1) < kn−1
(

d(x1, x0) + ε
)

.

Choose x1 ∈ F (x0). Now, assume that there exist xi satisfying (a)i, (b)i for 1 ≤ i ≤ n.

Since

D(F (xn), F (xn−1)) ≤ kd(xn, xn−1) < kn
(

d(x1, x0) + ε
)

,

there exists xn+1 satisfying (a)n+1, (b)n+1.

The inequality

d(xn, xn+p) < (1 + k + . . .+ kp−1)kn
(

d(x1, x0) + ε
)

for all n, p ∈ N

implies that {xn} is a Cauchy sequence, and hence converges to some x ∈ E. On the other

hand, since F (x) is closed and D(F (xn), F (x)) ≤ kd(xn, x), we deduce that x ∈ F (x).

In the same paper, Nadler showed that the condition of contraction can be weakened if

stronger assumptions are imposed on the space; more precisely if the space is ε-chainable

(the definition can be found in Theorem 1.4(b) ).
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Theorem 3.2 (Nadler, 1969). Let F : E → E be a multi-valued mapping with closed

bounded values such that there exist ε > 0 and k < 1 such that F is (ε, k)-uniformly

locally contractive, i.e.,

d(x, y) < ε =⇒ D(F (x), F (y)) ≤ kd(x, y).

If E is ε-chainable, then F has a fixed point.

One year later, he showed with Covitz [12] that in the two previous results, the values

of F do not need to be bounded. Nadler’s result was generalized by Reich in the spirit

of Theorem 1.5 (see [53]), and also by replacing the condition of contraction as stated

below (see [52]). If fact, the constants k, l,m in the following theorem can be replaced by

suitable functions of d(x, y) when E is compact (see [54]).

Theorem 3.3 (Reich, 1971). Let F : E → E be a multi-valued mapping with closed

values such that there exist k, l,m ≥ 0 with k + l +m < 1 such that for every x, y ∈ E,

D(F (x), F (y)) ≤ kd(x, y) + l dist(x, F (x)) +m dist(y, F (y)).

Then F has a fixed point.

This result was recently generalized by Rus, Petruşel and Ŝıntămărian [61], by replac-

ing the condition by:

there exist k, l,m ≥ 0 with k+ l+m < 1 such that for every x ∈ E, ux ∈ F (x), and

every y ∈ E, there exists uy ∈ F (y) such that

d(ux, uy) ≤ kd(x, y) + ld(x, ux) +md(y, uy).

Edelstein’s periodic point result [16] was recently extended to multi-valued maps by

Nadler [44]. He also obtained a fixed point result for compact and connected spaces.

Theorem 3.4 (Nadler, 2003). Let E be a metric space and F : E → E with compact

values such that there exists ε > 0 with

d(x, y) < ε =⇒ D(F (x), F (y)) < d(x, y) for every x 6= y.

(a) If E is compact and connected, then F has a fixed point.

(b) Assume there exists X ⊂ E compact such that {Fn(X)} has a subsequence converging

to some compact set Y . Then there exists x0 ∈ Y , a periodic point of F , i.e., there exist

m ∈ N and x1, . . . , xm such that x0 ∈ F (xm) and xi ∈ F (xi−1), i = 1, . . . ,m.

It is worthwhile to notice that Nadler showed that statement (b) is false if the com-

pactness of the values of F is replaced by closed bounded values.

3.2. Maps defined on subsets of E. Now, we consider multi-valued contractions defined

on a subset of the space E. In order to guarantee the existence of a fixed point, extra

assumptions will be needed. We state a result of Assad and Kirk [3] obtained in metrically

convex complete metric space.

Theorem 3.5 (Assad and Kirk, 1972). Let E be a metrically convex complete metric

space, X ⊂ E and F : X → E a contraction with closed bounded values. Assume that

F (x) ⊂ X for every x ∈ ∂X, then F has a fixed point.
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This result was generalized by Matkowski [40] for maps F such that there exists

ψ : [0,∞) → [0,∞), continuous at 0, such that there exist k < 1 and tn → 0 with

ψ(tn) ≤ ktn and D(F (x), F (y)) ≤ ψ(d(x, y)) ∀x, y ∈ X.

With no restriction on the space, Reich [56] obtained the following result for weakly

inward maps. Let us mention that Caristi [10] gave an elementary proof of the following

result for single-valued contractions.

Theorem 3.6 (Reich, 1978). Let E be a Banach space, X ⊂ E closed convex, and

F : X → E a contraction with compact values which is weakly inward, i.e.,

F (x) ⊂ IX(x) = cl{y ∈ E : y = x+ t(z − x) for some z ∈ X, t ≥ 0}.

Then F has a fixed point.

Proof. Suppose F has no fixed point. Choose r ∈ (0, 1) such that the constant of con-

traction satisfies k < (1 − r)/(1 + r). For x ∈ X, there exists z ∈ F (x) such that

dist(x, F (x)) = ‖x−z‖. Since z ∈ IX(x), there exists t ∈ (0, 1) such that w = tz+(1−t)x

satisfies dist(w,X) < rt‖x− z‖, see [10]. So, there exists y ∈ X such that

‖w − y‖ < rt‖x− z‖ = r‖w − x‖ and ‖x− y‖ < (1 + r)‖w − x‖.

Moreover

dist(y, F (y)) ≤ ‖y − w‖ + dist(w,F (x)) +D(F (x), F (y))

≤ ‖y − w‖ + ‖w − z‖ + k‖x− y‖

≤ ‖y − w‖ + (1 − t)‖x− z‖ + k‖x− y‖

< r‖w − x‖ + ‖x− z‖ − ‖w − x‖ + k‖x− y‖

= ‖x− z‖ − (1 − r)‖w − x‖ + k‖x− y‖

< dist(x, F (x))− c‖x− y‖,

with c = −k + (1 − r)/(1 + r). This defines a map g : X → X by g(x) = y satisfying

‖x− g(x)‖ <
1

c

(

dist(x, F (x)) − dist(g(x), F (g(x)))
)

. (3.1)

The lower semi-continuity of the map u 7→ dist(u, F (u))/c and Caristi’s fixed point theo-

rem (see [32] for a simple proof) imply that g has a fixed point; this contradicts (3.1).

It is natural to ask if this result is true when the values of F are not compact but

only closed and bounded. To my knowledge, the answer is still unknown. However, a

partial answer was obtained by Mizoguchi and Takahashi [41] using a characterization

of single-valued inward map, see [55] or [10]. Indeed, a single-valued map f : X → E is

weakly inward (i.e., f(x) ⊂ IX(x) for all x ∈ X) if and only if

lim
t→0+

dist
(

(1 − t)x+ tf(x), X
)

t
= 0 for every x ∈ X.



FIXED POINT AND CONTINUATION RESULTS FOR CONTRACTIONS 101

Theorem 3.7 (Mizoguchi and Takahashi, 1989). Let E be a Banach space, X ⊂ E

closed convex, and F : X → E a contraction with closed bounded values such that for

every x ∈ X,

lim
t→0+

dist
(

(1 − t)x+ ty,X
)

t
= 0 uniformly for y ∈ F (x).

Then F has a fixed point.

3.3. Stability results. Similarly to what was done for single-valued contractions, stability

results for multi-valued contractions can be obtained. The first result in this direction

was obtained by Nadler [43].

Theorem 3.8 (Nadler, 1969). For n ∈ N ∪ {0}, let Fn : E → E be a multi-valued

contraction with closed bounded values with constant of contraction kn < 1. Assume that

one of the following statements holds :

(a) Fn → F0 uniformly ;

(b) sup kn < 1 and Fn → F0 pointwise;

(c) E is locally compact and Fn → F0 pointwise.

Then there exists a sequence {xnm
} such that xnm

∈ Fnm
(xnm

) and xnm
→ x0 ∈ F0(x0).

With stronger assumptions, more precision on the behavior of Fix(Fn) was obtained

by Lim [39].

Theorem 3.9 (Lim, 1985). For n ∈ N ∪ {0}, let Fn : E → E be a multi-valued contrac-

tion with closed bounded values with constant of contraction kn < 1 such that sup kn < 1

and Fn → F0 uniformly. Then

lim
n→∞

D(Fix(Fn),Fix(F0)) = 0.

Proof. Let k = sup kn < 1. For n ∈ N ∪ {0}, from the proof of Theorem 3.1, we deduce

that for every x ∈ E and every y ∈ Fn(x), there exists z ∈ Fix(Fn) such that

d(x, z) ≤
d(x, y)

1 − k
.

In particular, for m ∈ N, z ∈ Fix(Fn) and for every y ∈ Fm(z), there exists zy ∈ Fix(Fm)

such that

d(z, zy) ≤
d(z, y)

1 − k
.

For ε > 0, there exists ŷ ∈ Fm(z) such that

d(z, ŷ) ≤ D(Fn(z), Fm(z)) + ε.

So, denoting ẑ = zŷ ∈ Fix(Fm), we have that for every ε > 0,

∀z ∈ Fix(Fn), ∃ẑ ∈ Fix(Fm) such that d(z, ẑ) ≤
D(Fn(z), Fm(z)) + ε

1 − k
.

Since ε is arbitrary and interchanging n and m permits us to deduce that for every

m ∈ N, n ∈ N ∪ {0},

D(Fix(Fn),Fix(Fm)) ≤ (1 − k)−1 sup
x∈E

D(Fn(x), Fm(x)).
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Rus, Petruşel and Ŝıntămărian [61] extended Lim’s result by introducing a general-

ization of contractive mappings.

Definition 3.10. Let F : E → E be a multi-valued mapping and k ≥ 0. The map

F is called a k-multi-valued weakly Picard operator (k-MWP) if for every x0 ∈ E and

x1 ∈ F (x0), there exists

f∞(x0, x1) ∈ {y ∈ E : ∃xn+1 ∈ F (xn), for n ≥ 1 with xn → y ∈ F (y)}

such that

d(x0, f
∞(x0, x1)) ≤ kd(x0, x1).

In particular, if E is complete and F has closed values and satisfies Reich’s condition:

there exist k, l,m ≥ 0 with k + l +m < 1 such that

D(F (x), F (y)) ≤ kd(x, y) + l dist(x, F (x)) +m dist(y, F (y)),

then F is c-MWP with c =
1 −m

1 − k − l −m
.

Theorem 3.11 (Rus, Petruşel and Ŝıntămărian, 2003). Let E be a metric space (not

necessarily complete), Fi : E → E a ki-MWP, for i = 1, 2. Assume that there exists

δ > 0 such that D(F1(x), F2(x)) ≤ δ for all x ∈ E. Then

D(Fix(F1),Fix(F2)) ≤ δmax{k1, k2}.

4. Continuation results for multi-valued contractions. In this section, we present

a continuation result for multi-valued contractions obtained in [22]. Let us mention that

this result was known in Banach spaces for k-set contractions with a non-elementary

proof.

Theorem 4.1 (Frigon and Granas, 1994). Let E be a complete metric space, U ⊂ E

open, and H : U × [0, 1] → E such that

(i) there exists k < 1 such that D(H(x, t), H(y, t)) ≤ kd(x, y) for every x, y ∈ E and

t ∈ [0, 1];

(ii) there exists φ : [0, 1] → R continuous and increasing such that

D(H(x, t), H(x, s)) ≤ |φ(t) − φ(s)| for every x ∈ E and s, t ∈ [0, 1];

(iii) x 6∈ H(x, t) for all (x, t) ∈ ∂U × [0, 1].

If H(·, 0) has a fixed point then H(·, t) has a fixed point for each t ∈ [0, 1].

Proof. Let us consider the set

Q = {(t, x) ∈ [0, 1] × U : x ∈ H(x, t)}.

By assumption (0, x̄) ∈ Q where x̄ ∈ H(x̄, 0).

On Q we define the partial order:

(t, x) ≤ (s, y) if and only if t ≤ s and d(x, y) ≤
2 (φ(s) − φ(t))

1 − k
.
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Let P be a totally ordered subset of Q. Define t∗ = sup{t : (t, x) ∈ P}. Take a

sequence {(tn, xn)} in P such that (tn, xn) ≤ (tn+1, xn+1) and tn → t∗. We have

d(xm, xn) ≤
2 (φ(tm) − φ(tn))

1 − k
for all m > n.

Thus, {xn} is a Cauchy sequence, and hence converges to some x∗ ∈ U . The continuity

of H implies that (t∗, x∗) ∈ Q. Moreover, it is clear that

(t, x) ≤ (t∗, x∗) for every (t, x) ∈ P .

That means that (t∗, x∗) is an upper bound of P . It follows from Zorn’s Lemma that Q

admits a maximal element (t0, x0) ∈ Q.

To complete the proof, we have to show that t0 = 1. Suppose this is false. Then, we

can choose r > 0 and t ∈ (t0, 1] such that

B(x0, r) ⊂ U, and r >
(φ(t) − φ(t0))

1 − k
.

It follows that

dist(x0, H(x0, t)) ≤ dist(x0, H(x0, t0)) +D(H(x0, t0), H(x0, t))

≤ φ(t) − φ(t0) < (1 − k)r.

Arguing as in the proof of Theorem 3.1, we define inductively a sequence in B(x0, r)

converging to x a fixed point of H(·, t). Thus, (t, x) ∈ Q and (t0, x0) < (t, x); this

contradicts the maximality of (t0, x0).

As before, the contraction condition can be generalized for example by the condition

∃k < 1 such that D(H(x, t), H(y, t)) ≤ kmax
{

d(x, y), dist(x,H(x, t)),

dist(y,H(y, t)),
1

2
[dist(x,H(y, t)) + dist(y,H(x, t))]

}

.

This condition was used by O’Regan and myself [25] to generalize the previous result.

This permits us to apply our result to fuzzy contractive maps. Condition (ii) on the

continuity with respect to the parameter can also be weakened if a boundary condition

stronger than (iii) is imposed, see Agarwal and O’Regan [2] for more details.

5. Single-valued contractions in gauge spaces. We are interested to study contrac-

tions in more general spaces, and in particular in a gauge space, i.e., a topological space

with a gauge structure, that is such that its topology is induced by {dα}α∈Λ, a separating

family of gauges (also called semi-metric, pseudometric, ecart , see [13]).

We start with a result of Cain and Nashed [9] in Hausdorff locally convex topological

spaces.

Theorem 5.1 (Cain and Nashed, 1971). Let (E, {‖·‖α}α∈Λ) be a Hausdorff locally con-

vex topological vector space, X ⊂ E sequentially complete, and f : X → X a contraction,

i.e.,

∀α ∈ Λ ∃kα < 1 such that ‖f(x) − f(y)‖α ≤ kα‖x− y‖α ∀x, y ∈ X.

Then f has a unique fixed point.
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Proof. For every y ∈ X,

‖fn(y) − y‖α ≤
‖f(y) − y‖α

1 − kα
for every n ∈ N and α ∈ Λ.

Hence, for x ∈ X, y = fm(x) and m ∈ N,

‖fm+n(x) − fm(x)‖α ≤
‖fm+1(x) − fm(x)‖α

1 − kα
≤
km‖f(x) − x‖α

1 − kα
∀n ∈ N, ∀α ∈ Λ.

Thus, {fn(x)} is a Cauchy sequence in X and hence converges to some x̂ ∈ X. Clearly,

x̂ is the unique fixed point of f .

Observe that in the particular case where Λ is countable then (E, {‖ · ‖α}α∈Λ) is

metrizable. However, f can be a contraction in the sense of the Theorem 5.1 without

being a contraction with the metric induced by the topology of E.

Let us mention that this result was not the first one of this type. Indeed, in 1965,

Knill [38] gave a notion of contraction and a fixed point result in Hausdorff uniform

spaces.

In 1974, Tarafdar [62] expressed the notion of contraction in Hausdorff uniform spaces

as follows:

∀α ∈ Λ ∃kα < 1 such that dα(f(x), f(y)) ≤ kαdα(x, y) ∀x, y ∈ E,

using the observation that a uniformity on E determines a family of gauges or pseudo-

metrics {dα}α∈Λ. So, the Banach contraction principle can be extended to complete

Hausdorff uniform spaces or complete gauge spaces (E, {dα}α∈Λ).

Continuation results in gauge spaces for h : U × [0, 1] → E can also be obtained

as in Theorem 2.3 when h(·, t) are contractions with the same constants {kα} and U is

open in E, see [23]. To my knowledge, there are no applications of this result in this

generality. The problem is that in gauge spaces, open sets are too big. Indeed, in eventual

applications, we have to consider maps f defined on a closed subset X of the gauge

space E which has empty interior. A result for weakly inward map defined on a closed

subset of a Fréchet space and satisfying an appropriate differential equation was obtained

by Reich [57], see [55] for a similar result in Banach spaces for single-valued contractions.

Theorem 5.2 (Reich, 1980). Let (E, {‖ · ‖n}n∈N) be a Fréchet space, X ⊂ E bounded,

closed, convex, and f : X → E a k-set contraction which is weakly inward, i.e.,

f(x) ∈ IX(x) for all x ∈ X. Assume for every C closed and convex such that f |C is

weakly inward, the initial value problem u′(t) = f(u(t))−u(t), u(0) = x0 has a C1-solution

u : [0,∞) → C for every x0 ∈ C. Then f has a fixed point.

Idea of the proof. Construct K = C1 ⊃ C2 ⊃ . . . such that Ci is closed convex, the

measure of compactness α(Ci) < 1/i, and f |Ci
is weakly inward. Take C =

⋂

Ci, hence

C is compact convex. Using the differential equation and Ascoli’s theorem, show that f |C
is weakly inward and apply Halpern–Bergman’s theorem [33].

Polewczak [47] showed that, in the previous result, the condition on the differential

equation is not necessary if f is a contraction satisfying a stronger condition than weakly

inwardness.
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Theorem 5.3 (Polewczak, 1989). Let (E, {‖ · ‖n}n∈N) be a Fréchet space, X ⊂ E closed

and locally bounded, and f : X → E a contraction such that

lim
h→0+

dist
(

(1 − h)x+ hf(x), X
)

h
= 0 ∀x ∈ X,

where dist(z,X) = inf{‖x − z‖ : x ∈ X}, and ‖z‖ =
∑∞

n=1

cn‖z‖n
1 + ‖z‖n

for a fixed positive

sequence {cn} such that
∑∞

n=1 cn <∞. Then f has a unique fixed point.

It appears that the notion of contraction in gauge spaces is very restrictive. Indeed, if
(

E, {‖ · ‖n}
)

=
(

∏

n∈N

Bn, {‖ · ‖n}
)

with (Bn, | · |n) Banach spaces,

‖(x1, x2, . . . )‖n = |x1|1 + · · · + |xn|n,

and f = (f1, f2, . . . ) : E → E a contraction then fn does not depend on xn+1, xn+2, . . . .

In particular, if f is a contraction such that






|f1(x) − f1(y)|1
|f2(x) − f2(y)|2

...






≤ A







|x1 − y1|1
|x2 − y2|2

...






,

where A = (ai,j) is a matrix such that ai,j ≥ 0, then A is lower triangular.

In the following result, Gheorghiu [28] permits row finite matrix A. He considers also

two gauge structures on E.

Theorem 5.4 (Gheorghiu, 1982). Let E be a set endowed with two gauge structures

D0 = {d̂α}α∈Λ0
, D1 = {dα}α∈Λ1

, and f : E → E such that

(i) (E,D0) is sequentially complete, f : (E,D0) → (E,D1) is sequentially continuous;

(ii) there exists φ : Λ1 → Λ1, and for all α ∈ Λ1, there exists kα < 1 such that

dα(f(x), f(y)) ≤ kαdφ(α)(x, y) for every x, y ∈ E,

and
∞
∑

n=1

kαkφ(α) . . . kφn−1(α)dφn(α)(x, y) <∞;

(iii) there exists ψ : Λ0 → Λ1 and for all α ∈ Λ0, there exists cα such that

d̂α(x, y) ≤ cαdψ(α)(x, y) for every x, y ∈ E.

Then f has a unique fixed point which can be obtained by iteration.

Chiş and Precup [11] obtained a continuation result for that type of map.

Again, we can raise the question if a more general matrix A can be considered and in

particular with all ai,j > 0. To this aim, we recall the notion of generalized contraction

introduced in [20].

We consider (E, {dα}α∈Λ) a complete gauge space satisfying

Λ is a directed set, such that dα(x, y) ≤ dβ(x, y) if α ≤ β. (5.1)
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In fact, E is the projective limit of a family of Banach spaces {Eα}α∈Λ where Eα is the

completion of E/∼α with respect to dα and for the equivalence relation ∼α defined by

x ∼α y ⇐⇒ dα(x, y) = 0.

This defines a continuous map [·]α : E → Eα. Similarly, for every β ≥ α ∈ Λ, we define

maps [·]αβ : Eβ → Eα.

For X ⊂ E, we set Xα = {[x]α : x ∈ X}, we denote by Xα, and ∂Xα, respectively,

the closure, and the boundary of Xα with respect to dα in Eα. For x ∈ X, we set

{x}α = {y ∈ X : dα(x, y) = 0}.

We define a family of generalized gauges on the space of subsets of E by

Dα(X,Y ) = inf{ε > 0 : ε ∈ Eα(X,Y )},

where

Eα(X,Y ) = {ε > 0 : X ⊂ Bα(Y, ε), Y ⊂ Bα(X, ε)},

with

Bα(X, r) = {y ∈ E : distα(y,X) < r}

and

distα(y,X) = inf{dα(x, y) : x ∈ X};

and inf ∅ = ∞. We define

diamα(X) = inf{dα(x, y) : x, y ∈ X}.

Definition 5.5. A function f : X → E is a generalized contraction if

(i) for every α ∈ Λ, there exists kα < 1 such that

Dα

(

f({x}α), f({y}α)
)

≤ kαdα(x, y) for every x, y ∈ X;

(ii) for every ε > 0 and every α ∈ Λ, there exists β ≥ α such that

diamβ

(

f({x}α)
)

< (1 − kβ)ε for every x ∈ X.

We will also say that k = (kα)α∈Λ ∈ [0, 1)Λ is a constant of contraction of f .

Observe that if f : X → E is a generalized contraction then for every α ∈ Λ, we

can define a multi-valued map with closed values Fα : Xα → Eα which is the continuous

extension of

[x]α 7→ cl
{

[f(y)]α : y ∈ {x}α
}

for [x]α ∈ Xα.

The map Fα is a multi-valued contraction with constant kα.

Theorem 5.6 (Frigon, 2000). Let (E, {dα}α∈Λ) be a complete gauge space satisfy-

ing (5.1), and f : E → E a generalized contraction. Then f has a unique fixed point.

Proof. Since f is a generalized contraction, for every α ∈ Λ, the map Fα defined above is

a multi-valued contraction in a complete metric space. By Nadler’s fixed point theorem

(Theorem 3.1), it has a fixed point zα ∈ Fα(zα). Obviously, [zβ ]αβ ∈ Fα([zβ]αβ) for all

β ≥ α.

Let ε > 0, and γ ∈ Λ. Since f is a generalized contraction, there exists α ≥ γ such

that

diamα

(

Fα(z)
)

< (1 − kα)ε for all z ∈ Eα.
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It follows that for λ, β ≥ α,

dα
(

[zλ]αλ, [zβ ]αβ
)

≤ Dα

(

Fα([zλ]αλ), Fα([zβ ]αβ)
)

+ diamα

(

Fα([zλ]αλ)
)

< kαdα
(

[zλ]αλ, [zβ ]αβ
)

+ (1 − kα)ε.

Hence,

dγ
(

[zλ]γλ, [zβ ]γβ
)

≤ dα
(

[zλ]αλ, [zβ ]αβ
)

< ε.

So, for all γ ∈ Λ,
{

[zα]γα
}

α≥γ
is a Cauchy net in Eγ , and therefore, converges to some

x ∈ E.

We claim that x = f(x). Indeed, let γ ∈ Λ. For ε > 0, choose β ≥ α ≥ γ such that

diamα

(

f({x}α)
)

< ε/2, and dα
(

[x]α, [zβ ]αβ
)

< ε/4. We have

dγ
(

x, f(x)
)

≤ dα
(

x, f(x)
)

≤ dα
(

[x]α, [zβ ]αβ
)

+Dα

(

Fα([zβ]αβ), Fα([x]α)
)

+ diamα

(

Fα([x]α)
)

≤ (1 + kα)dα
(

[x]α, [zβ ]αβ
)

+
ε

2
≤ ε.

A similar argument permits to deduce the uniqueness of x, the fixed point of f .

Now, we present a continuation result on a subset X which can have empty interior.

Theorem 5.7 (Frigon, 2000). Let (E, {dα}α∈Λ) be a complete gauge space satisfy-

ing (5.1), X a closed subset of E, and h : X × [0, 1] → E such that

(i) there exists k ∈ [0, 1)Λ such that h(·, t) is a generalized contraction with constant of

contraction k, for every t ∈ [0, 1];

(ii) for every α ∈ Λ, there exists Mα ≥ 0 such that

Dα

(

h({x}α, t), h({x}α, s)
)

≤Mα|t− s| for every x ∈ X, s, t ∈ [0, 1];

(iii) z 6∈ Hα(z, t) for every z ∈ ∂Xα, t ∈ [0, 1], and α ∈ Λ, where Hα : Xα × [0, 1] → Eα
is the multi-valued map obtained as above.

If h(·, 0) has a fixed point, then h(·, t) has a unique fixed point for all t ∈ [0, 1].

Proof. If h(·, 0) has a fixed point, then Hα(·, 0) also has a fixed point for all α ∈ Λ.

The continuation principle for multi-valued contractions in Banach spaces (Theorem 4.1)

implies that for every t ∈ [0, 1] and every α ∈ Λ, Hα(·, t) has a fixed point xtα ∈ Eα. By

arguing as in the previous theorem, we deduce that the net {xtα}α∈Λ converges to some

xt ∈ X such that xt = h(xt, t).

Remark 5.8. In the previous theorem, it is suitable to impose condition (iii) instead of

(iii)′ x 6= h(x, t) for every x ∈ ∂X, t ∈ [0, 1].

Indeed, in many applications, X has empty interior: in this case, (iii)′ means that h(·, t)

has no fixed point for every t.

In Theorem 5.6, the fixed point of the generalized contraction f was not obtained

by iteration. I raised the question to know if it is possible to obtain the fixed point of f

as the limit of a sequence defined by iteration. Recently, Esṕınola and Kirk [17] gave a

positive answer to this question and they generalized Theorem 5.6.
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Theorem 5.9 (Esṕınola and Kirk, 2003). Let (E, {dα}α∈Λ) be a complete gauge space

satisfying (5.1), and for every α ∈ Λ, let Fα : E → E be a multi-valued map with closed

values. Assume that

(i) for every α ∈ Λ, there exists kα < 1 such that

Dα(Fα(x), Fα(y)) ≤ kαdα(x, y) for every x, y ∈ E;

(ii) β ≥ α implies that Fβ(x) ⊂ Fα(x) for every x ∈ E;

(iii) for every ε > 0 and every α ∈ Λ, there exists β ≥ α such that

diamβ

(

Fβ(x)
)

≤ (1 − kβ)ε for every x ∈ E.

Then there exists a unique x0 ∈ E such that x0 ∈ Fα(x0) for every α ∈ Λ. Moreover

x 7→ f(x) =
⋂

α Fα(x) is a single-valued map, and fn(x) → x0 for every x ∈ E.

Proof. Let x ∈ E. Observe that f(x) is non-empty. Indeed, choose for α ∈ Λ, xα ∈ Fα(x).

Let ε > 0 and α ∈ Λ, condition (iii) implies that there exists β ≥ α such that

diamβ

(

Fβ(x)
)

≤ ε.

So, for µ, ν ≥ β, xµ, xν ∈ Fβ(x) and hence dα(xµ, xν) ≤ ε. So {xα} converges to some

y ∈ f(x). Again, condition (iii) implies that f is single-valued.

Observe that for α ∈ Λ and S ⊂ E with diamα(S) > 0, using condition (iii), we can

choose β ≥ α such that

diamβ

(

Fβ(y)
)

≤
(1 − kβ)

4
diamα(S) for every y ∈ E.

So, for u, v ∈ S,

dβ(f(u), f(v)) ≤ Dβ

(

Fβ(u), Fβ(v)
)

+ diamβ(Fβ(u)) + diamβ(Fβ(v))

≤ kβdβ(u, v) +
(1 − kβ)

2
diamα(S)

≤ kβ diamβ(S) +
(1 − kβ)

2
diamα(S)

≤
(1 + kβ)

2
diamβ(S).

Hence

diamα(f(S)) ≤ diamβ(f(S)) ≤
(1 + kβ)

2
diamβ(S). (5.2)

On the other hand, observe that for A and Fβ(A) bounded sets in E,

Dβ(F
2
β (A), Fβ(A)) ≤ kβDβ(A,Fα(A)).

Indeed, for ε > 0 and for y ∈ Fβ(A), there exists z ∈ A such that

dβ(y, z) ≤ Dβ(A,Fβ(A)) + ε.

So,

Dβ(Fβ(y), Fβ(z)) ≤ kβ
(

Dβ(A,Fβ(A)) + ε
)

,

Interchanging the roles of y and z and using the fact that ε is arbitrary, we obtain that

Dβ(F
2
β (A), Fβ(A)) ≤ kβDβ(A,Fβ(A)).
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Therefore F 2
β (A) is bounded. Repeating the argument permits to conclude that

Dβ(F
n+1
β (A), Fβ(A)) ≤

1

1 − kβ
Dβ(A,Fβ(A)) =:

rβ
2

∀n ∈ N.

We conclude that

Fnβ (A) ⊂ Bβ(A, rβ) = {y ∈ E : ∃x ∈ A such that dβ(x, y) ≤ rβ} ∀n ∈ N. (5.3)

Let x ∈ E. For n ∈ N, define

Cn = {fn(x), fn+1(x), . . . }.

For α ∈ Λ, fn+1(x) ∈ Fα(fn(x)) ⊂ Fnα (x) for every n ∈ N since f(y) ∈ Fα(y) for every

y ∈ E. So, Cn+1 ⊂ Fα(Cn) for every n ∈ N and α ∈ Λ.

Let β ≥ α be given by condition (iii) such that Fβ(x) is bounded and

diamβ

(

Fβ(y)
)

≤
(1 − kβ)

4
diamα(Cn) for every y ∈ E.

It follows from (5.3) with A = {x} that the orbit

C1 ⊂ Bβ(x, rβ) ⊂ Bα(x, rβ). (5.4)

Also, equation (5.2) implies that

diamβ(Cn+1) ≤
(1 + kβ)

2
diamβ(Cn) for every n ∈ N,

and hence by (5.4), for all n ∈ N,

diamα(Cn+1) ≤ diamβ(Cn+1) ≤

(

1 + kβ
2

)n

diamβ(C1) ≤ 2rβ

(

1 + kβ
2

)n

.

This permits to conclude that {fn(x)} is a Cauchy sequence converging to some z ∈ E.

Therefore, z = f(z) ⊂ Fα(z) for all α ∈ Λ. If y = f(y), (5.2) with S = {y, z} implies that

dα(y, z) = dα(f(y), f(z)) ≤ dβ(f(y), f(z)) ≤
(1 + kβ)

2
dβ(y, z),

and hence y = z.

In the case where E = (E, d) is a hyperconvex metric space, and Fα has closed

bounded values, then (iii) can be replaced by

(iii)′ ∀ε > 0 ∃α ∈ Λ such that diam(Fα(x)) < ε ∀x ∈ E.

Recall that E is hyperconvex if for every X metric space, Y ⊂ X, and g : Y → E

non-expansive, there exists ĝ : X → E a non-expansive extension of g.

Let us mention that Esṕınola and Kirk’s results were recently generalized by Esṕınola

and Petruşel [18].

6. Multi-valued contractions in gauge spaces. In this section, we present two fixed

point results for multi-valued contractions in gauge spaces obtained by Frigon [21]. As in

the previous section, (E, {dα}α∈Λ) is a complete gauge space but we do not assume that

Λ is a directed set.
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Definition 6.1. Let X ⊂ E. A multi-valued map F : X → E is called an admissible

contraction with constant k = {kα}α∈Λ ∈ [0, 1)Λ if

(i) for every α ∈ Λ, Dα(F (x), F (y)) ≤ kαdα(x, y) for every x, y ∈ X;

(ii) for every x ∈ X and every ε ∈ (0,∞)Λ, there exists y ∈ F (x) such that dα(x, y) ≤

distα(x, F (x)) + εα for every α ∈ Λ.

Observe that if Λ = N, E is metrizable with some metric d. However, a multi-valued

map F can be an admissible contraction without being a contraction in the usual sense

when E is endowed with the metric d.

We start with a generalization of Nadler’s fixed point theorem (Theorem 3.1) and of

Cain and Nashed’s result (Theorem 5.1).

Theorem 6.2. Let E be a complete gauge space, and F : E → E an admissible multi-

valued contraction with closed values. Then F has a fixed point.

Proof. Let k ∈ [0, 1)Λ be a constant of contraction of F . Fix x0 ∈ E. For every α ∈ Λ,

choose rα > 0 such that distα(x0, F (x0)) < (1 − kα)rα. We can choose x1 ∈ F (x0) such

that

dα(x1, x0) < (1 − kα)rα for every α ∈ Λ.

Then, choose x2 ∈ F (x1) such that for every α ∈ Λ,

dα(x1, x2) < distα(x1, F (x1)) + kα
(

(1 − kα)rα − dα(x0, x1)
)

≤ Dα(F (x0), F (x1)) + kα
(

(1 − kα)rα − dα(x0, x1)
)

≤ kαdα(x0, x1) + kα
(

(1 − kα)rα − dα(x0, x1)
)

= kα(1 − kα)rα.

Repeating this process permits to obtain a sequence {xn} such that

dα(xn, xn+1) < knα(1 − kα)rα for every α ∈ Λ.

Therefore, {xn} is a Cauchy sequence and hence converges to some x. The continuity

of F implies that x ∈ F (x).

Here is a continuation result on a closed subset which can have empty interior.

Theorem 6.3. Let E be a complete gauge space, X ⊂ E closed, and H : X × [0, 1] → E

be a multi-valued map with closed values. Assume that

(i) there exists k ∈ [0, 1)Λ such that for every t ∈ [0, 1], H(·, t) is an admissible con-

traction with constant k;

(ii) for every α ∈ Λ, there exists Mα < 1 such that Dα(H(x, t), H(x, s)) ≤Mα|t− s| for

every s, t ∈ [0, 1] and every x ∈ X;

(iii) x 6∈ H(x, t) for all t ∈ [0, 1] and x ∈ Xk,M where

Xk,M =
{

y ∈ X :
⋂

α

Bα(y, rα) 6⊂ X for every r = (rα)α∈Λ ∈ [0,∞)Λ

with inf
α

rα(1 − kα)

Mα

> 0
}

.

If H(·, 0) has a fixed point, then H(·, t) has a fixed point for all t ∈ [0, 1].
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Proof. The argument is similar to the proof of Theorem 4.1. Consider

Q = {(x, t) ∈ X × [0, 1] : x ∈ H(x, t)}.

We define on Q the partial order

(x, t) ≤ (y, s) if and only if t ≤ s and dα(x, y) ≤
2Mα(s− t)

1 − kα
for every α ∈ Λ.

It is easy to show that every totally ordered subset of Q has an upper bound.

From Zorn’s Lemma, Q has a maximal element (x0, t0) ∈ Q, so x0 ∈ H(x0, t0). To

conclude, we need to show that t0 = 1. If this is false, since x0 6∈ Xk,M , there exist

r ∈ [0,∞)Λ and t1 ∈ (t0, 1] such that

B :=
⋂

α∈Λ

Bα(x0, rα) ⊂ X and
2Mα(t1 − t0)

1 − kα
= rα for every α ∈ Λ.

On the other hand, for every α ∈ Λ,

distα(x0, H(x0, t1)) ≤ distα(x0, H(x0, t0)) +Dα(H(x0, t0), H(x0, t1))

≤Mα(t1 − t0) < (1 − kα)rα.

Arguing as in Theorem 6.3, there exists x1 ∈ B a fixed point of H(·, t1). So, (x1, t1) ∈ Q

and (x0, t0) < (x1, t1), which is a contradiction.

In the previous theorem, if X = U with U open, Uk,M = ∂U and hence, (iii) can be

replaced by

(iii)′ x 6∈ H(x, t) for all x ∈ ∂U and all t.

Agarwal, Cho and O’Regan [1] generalized this result in the particular case of U an

open subset of E and for H : U × [0, 1] → E satisfying a more general condition of

contraction. Condition (iii) was also weakened.

Acknowledgments. The author would like to thank the referee for his careful reading of
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[17] R. Esṕınola, W. A. Kirk, Set-valued contractions and fixed points, Nonlinear Anal. 54 (2003),

485–494.
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