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Abstract. Let F be a Banach function space and let X be a real Banach space. We examine
weakly compact linear operators from a Kothe-Bochner space F(X) endowed with some natural
mixed topology vg(x) (in the sense of Wiweger) to a Banach space Y.

1. Introduction and preliminaries. The paper is devoted to the study of weakly
compact operators acting from a Koéthe-Bochner space F(X) endowed with the mixed
topology vg(x) to a Banach space Y.

The problem of characterizing weakly compact operators has been considered by many
authors (see [Gal, [G], [D], [Ru]). In [G, III. 3, Corollary 1 of Theorem 11] A. Grothendieck
has proved that every linear continuous operator from a quasinormable Hausdorff locally
convex space X into a Banach space Y, which transforms bounded sets into relatively
weakly compact sets is weakly compact. Grothendieck’s result was partially extended by
D. van Dulst to the case when Y is Fréchet space, but under the additional assumption
about the space X (see [D] for more details). Both those results were later extended by W.
Ruess in [Ru] for operators acting between gDF-spaces and Fréchet spaces. gDF spaces
have been introduced and studied by K. Noureddine in [Noj], [Nog] under the name of
Dy-spaces (“espaces Dy” in French). Since not only many properties of classical DF-spaces
of Grothendieck carry over to Dj-spaces, but also some fruitful DF-techniques can be
applied to them, W. Ruess decided in [Ru] to change their original name of Noureddine
to the gDF-spaces (generalized DF-spaces), in order to stress their close relationship with
DF-spaces.
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Given a topological vector space (L,&), by (L,&)* or L we will denote its topolog-
ical dual and by Bd(L,£) we will denote the family of all £&-bounded subsets of L. We
denote by o(L, K) and 7(L, K) the weak topology and the Mackey topology on L with
respect to a dual system (L, K) respectively. Recall that a subset Z of L is said to be
conditionally o (L, K)-compact (resp. relatively o(L, K)-sequentially compact) whenever
each sequence in Z contains a o(L, K)-Cauchy subsequence (resp. each sequence in Z
contains a subsequence which is o (L, K)-convergent to some element of L).

For terminology concerning Riesz spaces and function spaces we refer to [AB], [KA].
Throughout the paper let (2,2, ) be an atomless, complete and o-finite measure space
and let L° denote the corresponding space of p-equivalence classes of Y-measurable real
valued functions. Then L° is super Dedekind complete Riesz space under the ordering
u1 < ug whenever u; (w) < ug(w) a.e. on Q. A Banach space (F, || - ||g) is assumed to be
a Banach function space, that is, E is an ideal of L? with suppE = Q and || - || is a
Riesz norm. The Ko6the dual of F is defined by

E’:{UELO /|u |d,u<ooforallu6E}
The associated norm || - ||gr on E’ is defined for v € E’ by
ol =sup {| [ awrotran

It is known that supp E’ = Q (see [KA, Theorem 6.1.3]). Recall that a Banach function
space (E, || - ||g) is said to be perfect if E” = E and ||u||g» = ||u||g for u € E. It is well
known that F is perfect if and only if the norm || - || g satisfies both the o-Fatou property

:u€E7||u|E§1}.

(i.e., 0 < up T win E implies |luy||g T ||u|lg) and the o-Levy property (i.e., if 0 < u, T
in F and sup ||u,| g < 0o, then there exists u in E such that u, T u) (see [KA, Theorem
6.1.7]). We denote by E, the ideal of elements of order continuous norm in F, i.e.,

E,={u€FE:|ul>u,|0in E imply |lu,| — 0}.
From now on in this paper we assume that (F, || - ||g) is a perfect Banach function
space and supp(E’), = Q. Note that (L') = L> and (L*°), = {0}. Hence the space L'
is excluded.

Let Z be a o(E,(E’),)-bounded subset of E. Then Z is also |¢|(E,(E’),)-bounded
(see [AB, Theorem 2.33]), so one can define a Riesz seminorm pz on (E’), by

—Sup{/u w)|du uEZ}

Then by [N3, Theorem 1.1] we have
Bd(E,o(E, (E').)) = Bd(E, | - ||)-

Hence for every o(E, (E’),)-bounded subset Z of E the seminorm pz on (E’), is order
continuous. Making use of [Ny, Proposition 1.1] and [BD, Corollary 5.2] we get
PROPOSITION 1.1. For a subset Z of E the following statements are equivalent:

(i) Z is conditionally o(F,(E'),)-compact.
(i1) Z is relatively o(F, (E"),)-sequentially compact.
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(iii) Z is o(E, (E")4)-bounded.
(iv) Z is || - |g-bounded.

Now we establish terminology and some basic results concerning vector-valued func-
tion spaces (see [Buy], [Bus], [L, Chap. 3]). Let (X, || - |lx) be a real Banach space and
let X* stand for the Banach dual of X. Let Bx denote the closed unit ball in X. By
L°(X) we denote the set of y-equivalence classes of all strongly Y-measurable functions
f:Q — X. The F-norm

flco = [ A wan for 1 e 29x),

where w : Q@ — (0,00) is a X-measurable function with [, w(w)dy = 1, determines the
topology 7o(X) on L°(X) of convergence in measure on sets of finite measure.
For f € L°(X) let us set f(w) = || f(w)||x for w € Q. The linear space

E(X)={feL'(X): fe E}

provided with the norm || f|| g(x) := || fll & is a Banach space and is called a Kthe-Bochner
space (see [L]). For r > 0 we will write

Bpx)(r) ={f € E(X) : [flzc) <r}-

Let L°(X*, X) be the set of weak*-equivalence classes of all weak*-measurable func-
tions g : © — X*. One can define the so-called abstract norm ¥ : L°(X* X) — L°
by ¥(g9) = sup{|gs| : ® € Bx}, where g,(w) = g(w)(z) for w € Q and =z € X.
Then for f € L°(X) and g € L°(X*,X) the function (f,g) : @ — R defined by
(f,9)(w) = (f(w),g(w)) is measurable and |(f,g)| < fd(g). Moreover, ¥(g) = § for
g € LY(X*). For an ideal M of E' let

M(X*,X) = {g € L°(X", X) : 9(g) € M},

Then M(X*, X) is an ideal of E'(X*, X), i.e., if ¥(¢91) < ¥(g2) with ¢g; € E'(X*, X)
and g2 € M(X*, X), then g; € M(X*,X). M(X*, X) can be provided with the norm

19lla1(x+.x) = [[0(g)l[ for g € M(X", X).
In particular, we will consider the dual pair (E(X), (E').(X™*, X)) with the duality:

(f.g) = /Q (@) g(@))du for e E(X), g€ (E)a(X",X).

2. Mixed topologies on Ko6the-Bochner spaces. In this section we consider the
mixed topology ¥[7g(X), 70(X)|g(x)] on E(X) (briefly vg(x)), where T (X) stands for
the topology on E(X) of the norm | - ||g(x). For the definition and basic properties of
Ye(x) see [F], [W]. In case when X = R the mixed topology e (= Yg(r)) on E has been
studied in [N;] and [Ny|. It is known that 7o(X)|gx) C Yex) C Te(X). We will need
the following:

PROPOSITION 2.1. We have Bd(E(X),vg(x)) = Bd(E(X), | - [lgx))-

Proof. Using [KA, Lemma 4.3.4] we see that Bg(x)(1) is closed in (E(X), 7o(X)|g(x))-
Hence by [W, Theorem 2.4.1] we get Bd(E(X),vg(x)) = Bd(E(X),| - |gx)). =
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The mixed topology vg(x) is a Hausdorff locally convex-solid topology on E(X) (see
[F, §3]) and it is the finest locally convex topology on E(X) which agrees with 7o(X)
on || - ||g(x)-bounded sets in E(X) (see [W, 2.2.2]). Since (Bg(x)(2") : n € N) is a
fundamental sequence of g x)-bounded sets in E(X), (E(X),vgx)) is a generalized
DF space (see [Ru, Definition 1.1]).

Recall that a locally solid topology 7 on E(X) is said to be uniformly Lebesgue
if f, — 0 for 7 in E(X) whenever |f,|/zoxy — 0 with sup, ||fullpx) < oo (see
[F, Definition 2.2]).

The basic properties of yg(x) are given in the following (see [F, Theorem 3.1]):

PRrROPOSITION 2.2. We have
(i) ve(x) s the finest uniformly Lebesgue toplogy on E(X).
(ii) fn — 0in E(X) foryp(x) if and only if || fullro(x) — 0 and sup,, || full5(x) < oo
A linear operator T : E(X) — Y is said to be ~y-linear if | T(f,)|ly — 0 whenever
[ fnllo(x) — 0 and sup,, [ fullp(x) < oo

PROPOSITION 2.3. For a linear operator T : E(X) — Y the following statements are
equaivalent:

(i) T is (ve(x) || - [ly)-continuous.

(ii) T is sequentially (vp(x), | - |ly)-continuous.

(iii) T is y-linear.

(iv) T is (YE(x)|Bx) () ||+ Iy)-continuous for every r > 0.
Proof. (i)=-(ii) It is obvious.

(ii)=-(iii) It follows from Proposition 2.2(i).

(iil)=(iv) It is obvious, because Yg(x)|By x,(r) = To(X)

(iv)e(i) See [W, 2.2.4]. m

‘BE(X)(T) for r > 0.

Recall that a Banach space X is said to be almost reflexive if every norm-bounded
subset of X is conditionally weakly compact (see [C], [H]). The fundamental /*-Rosenthal
theorem [R] says that X is almost reflexive if and only if it contains no isomorphic copy
of I1.

From now on for a subset H of E(X) we will denote

H={f:feH}
The following result extends Proposition 1.1 to the vector-valued setting.

PROPOSITION 2.4. Let X be an almost reflexive Banach space. Then for a subset H of
E(X) the following statements are equivalent:

(i) supsep [Ifllex) < oo.
(i1) H is conditionally o(E(X),(E").(X*, X))-compact.

Moreover, if X is a reflexive Banach space, then the statements (1)—(ii) are equivalent to
the following:

(iil) H is relatively o(E(X), (E").(X™, X))-compact.
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Proof. (i)=(ii) Assume that sup e || fllpx) < o0, i-e., H is a || - || g-bounded subset of
E. Then by Proposition 1.1 H is conditionally o(E,(E"),)-compact. Making use of [Ny,
Corollary 2.3] we obtain that H is conditionally o(E(X), (E').(X*, X))-compact.
(ii)=(i) Assume that H is conditionally o(E(X), (E')q(X*, X))-compact. Then H is
conditionally o(FE, (E’),)-compact in E (see [Ng, Theorem 2.2]), so by Proposition 1.1

supsep || fllex) < oo
(i)« (iii) See [N3, Corollary 2.4]. =

3. Weakly compact operators on Kéthe-Bochner spaces. In this section we exam-
ine linear operators T : E(X) — Y whenever E(X) is provided with the mixed topology
Ye(x)- Recall that a linear operator 7' : E(X) — Y is said to be (vg(x), | - [|y)-weakly
compact if there exists a neighbourhood V' of 0 for vg(x) such that T'(V) is a relatively
o(Y,Y™)-compact subset of Y.

THEOREM 3.1. For a linear operator T : E(X) — Y the following statements are equiv-
alent:

G) T i
(i) T i
Proof. (i)=-(ii) It is obvious.

(i) =(
compact. Hence for every r > 0, T(Bg(x)(r)) is a relatively o(Y,Y™)-compact subset of
Y. Since Bd(E(X),vp(x)) = Bd(E(X), | - | gx)) (see Proposition 2.1), in view of [Ru,
Theorem 3.1] T'is (vg(x), || - [|5(x))-weakly compact, as desired. =

s (v, | - Iy -weakly compact
s (Ve(x), | - lv)-continuous and (|| - || p(x), || - |v)-weakly compact.

i) Assume that T is (vg(x),| - [|y)-continuous and (|| - [|g(x), || - |y )-weakly

REMARK. For the proof of the implication (ii)=-(i) one can also use the earlier result
of Grothendieck. Indeed, since (E(X),vg(x)) is a generalized DF-space, it is as well a
quasinormable Hausdorff locally convex space. Moreover, T is (Yg(x), || - |y)-continuous
and (|| - [[g(x), || - ||)-weakly compact, so T" transforms || - || g(x)-bounded sets into rela-
tively o(Y,Y™*)-compact sets in Y. Thus by [G, III. 3, Corollary 1 of Theorem 11] T is
(303, | - 1 weakly compact, becanse BA(E(X), v(x)) = BAE(X), |- l1ncx))-

COROLLARY 3.2. Assume that a linear operator T : E(X) — Y is (||| g(x), || - ||y ) -weakly
compact. Then the following statements are equivalent:

(i) T is (ve(x), | - [|v)-weakly compact.
(ii) T is (Ye(x), || - ||y )-continuous.

COROLLARY 3.3. Assume that a linear operator T : E(X) — Y is (vex), || - lv)-
continuous. Then the following statements are equivalent:

(i) T is (ve(x), || - [ly)-weakly compact.
(i) T is (|- e, | - 1) -weakly compact.

Now we are ready to present our main results.

THEOREM 3.4. Let X be an almost reflexive Banach space and let Y be a weakly sequen-
tially complete Banach space. Then for a linear operator T : E(X) — Y the following
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statements are equivalent:

(i) T is (ve(x), || - |ly)-continuous.
(i) T is (Ye(x) || - ||y )-weakly compact.

Proof. (i)=(ii) Assume that T is (yg(x), | - |ly)-continuous. In view of Corollary 3.3
it is enough to show that T transforms || - || g(x)-bounded sets in E(X) into relatively
o(Y,Y*)-compact sets in Y. Indeed, let H be a || - | g(x)-bounded set in E(X). Then
by Proposition 2.4 H is conditionally o(E(X), (E").(X*, X))-compact. In view of [F,
Theorem 3.2] it is seen that the topology vg(x) is coarser than the Mackey topology
T(E(X), (E)e(X*, X)). Hence T is also (7(E(X), (E')a(X*, X)), || - |ly)-continuous and
it follows that T'is (o (E(X), (F')«(X™, X)), o(Y,Y™))-continuous. Thus T'(H) is a condi-
tionally o (Y, Y™*)-compact subset of Y, and since Y is o (Y, Y*)-sequentially complete, we
obtain that T'(H) is relatively o(Y, Y ™*)-sequentially compact in Y. It follows that T'(H)
is relatively o(Y,Y™*)-compact in Y, as desired.
(ii)=-(i) See Theorem 3.1. =

THEOREM 3.5. Let X be a reflexive Banach space. Then for a linear operator T :
E(X) — Y the following statements are equivalent:

(i) T is (ve(x), || - [ly)-continuous.
(ii) T is (Ye(x), || - |lv)-weakly compact.

Proof. (i)=(ii) Assume that T is (yg(x), || - [[y)-continuous. Since vgx) C 7(E(X),
(E)o(X*, X)), T is also (1(E(X), (E")(X*, X)), | - ||y)-continuous. It follows that T is
also (0(E(X), (E')q(X", X)),o(Y,Y™))-continuous. Note that 7' transforms [ - || g(x)-
bounded sets in E(X) into relatively o(Y,Y™*)-compact sets in Y. Indeed, let H be
a || - ||g(x)-bounded set in E(X). Then by Proposition 2.4, H is relatively (o(£(X),
(E")o(X*, X))-compact, and consequently T(H) is relatively o(Y, Y*)-compact in Y. By
Corollary 3.3, T'is (vg(x), || - [|y)-weakly compact.
(ii)=-(i) It is obvious. m
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