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Abstra
t. Let E be a Bana
h fun
tion spa
e and let X be a real Bana
h spa
e. We examineweakly 
ompa
t linear operators from a Köthe-Bo
hner spa
e E(X) endowed with some naturalmixed topology γE(X) (in the sense of Wiweger) to a Bana
h spa
e Y .
1. Introdu
tion and preliminaries. The paper is devoted to the study of weakly
ompa
t operators a
ting from a Köthe-Bo
hner spa
e E(X) endowed with the mixedtopology γE(X) to a Bana
h spa
e Y .The problem of 
hara
terizing weakly 
ompa
t operators has been 
onsidered by manyauthors (see [Ga℄, [G℄, [D℄, [Ru℄). In [G, III. 3, Corollary 1 of Theorem 11℄ A. Grothendie
khas proved that every linear 
ontinuous operator from a quasinormable Hausdor� lo
ally
onvex spa
e X into a Bana
h spa
e Y , whi
h transforms bounded sets into relativelyweakly 
ompa
t sets is weakly 
ompa
t. Grothendie
k's result was partially extended byD. van Dulst to the 
ase when Y is Fré
het spa
e, but under the additional assumptionabout the spa
e X (see [D℄ for more details). Both those results were later extended by W.Ruess in [Ru℄ for operators a
ting between gDF-spa
es and Fré
het spa
es. gDF spa
eshave been introdu
ed and studied by K. Noureddine in [No1℄, [No2℄ under the name of
Db-spa
es (�espa
es Db� in Fren
h). Sin
e not only many properties of 
lassi
al DF-spa
esof Grothendie
k 
arry over to Db-spa
es, but also some fruitful DF-te
hniques 
an beapplied to them, W. Ruess de
ided in [Ru℄ to 
hange their original name of Noureddineto the gDF-spa
es (generalized DF-spa
es), in order to stress their 
lose relationship withDF-spa
es.2000 Mathemati
s Subje
t Classi�
ation: 47B38, 46E40, 46E30.Key words and phrases: Köthe-Bo
hner spa
es, mixed topologies, weakly 
ompa
t operators,DF-spa
es, gDF-spa
es, 
onditional weak 
ompa
tness, weak 
ompa
tness, almost re�exivity.The paper is in �nal form and no version of it will be published elsewhere.[71℄ 
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72 K. FELEDZIAKGiven a topologi
al ve
tor spa
e (L, ξ), by (L, ξ)∗ or L∗
ξ we will denote its topolog-i
al dual and by Bd(L, ξ) we will denote the family of all ξ-bounded subsets of L. Wedenote by σ(L, K) and τ (L, K) the weak topology and the Ma
key topology on L withrespe
t to a dual system 〈L, K〉 respe
tively. Re
all that a subset Z of L is said to be
onditionally σ(L, K)-
ompa
t (resp. relatively σ(L, K)-sequentially 
ompa
t) wheneverea
h sequen
e in Z 
ontains a σ(L, K)-Cau
hy subsequen
e (resp. ea
h sequen
e in Z
ontains a subsequen
e whi
h is σ(L, K)-
onvergent to some element of L).For terminology 
on
erning Riesz spa
es and fun
tion spa
es we refer to [AB℄, [KA℄.Throughout the paper let (Ω, Σ, µ) be an atomless, 
omplete and σ-�nite measure spa
eand let L0 denote the 
orresponding spa
e of µ-equivalen
e 
lasses of Σ-measurable realvalued fun
tions. Then L0 is super Dedekind 
omplete Riesz spa
e under the ordering

u1 ≤ u2 whenever u1(ω) ≤ u2(ω) a.e. on Ω. A Bana
h spa
e (E, ‖ · ‖E) is assumed to bea Bana
h fun
tion spa
e, that is, E is an ideal of L0 with supp E = Ω and ‖ · ‖E is aRiesz norm. The Köthe dual of E is de�ned by
E′ =

{
v ∈ L0 :

∫

Ω

|u(ω)v(ω)|dµ < ∞ for all u ∈ E

}
.The asso
iated norm ‖ · ‖E′ on E′ is de�ned for v ∈ E′ by

‖v‖E′ = sup

{∣∣∣∣
∫

Ω

u(ω)v(ω)dµ

∣∣∣∣ : u ∈ E, ‖u‖E ≤ 1

}
.It is known that supp E′ = Ω (see [KA, Theorem 6.1.3℄). Re
all that a Bana
h fun
tionspa
e (E, ‖ · ‖E) is said to be perfe
t if E′′ = E and ‖u‖E′′ = ‖u‖E for u ∈ E. It is wellknown that E is perfe
t if and only if the norm ‖ · ‖E satis�es both the σ-Fatou property(i.e., 0 ≤ un ↑ u in E implies ‖un‖E ↑ ‖u‖E) and the σ-Levy property (i.e., if 0 ≤ un ↑in E and sup ‖un‖E < ∞, then there exists u in E su
h that un ↑ u) (see [KA, Theorem6.1.7℄). We denote by Ea the ideal of elements of order 
ontinuous norm in E, i.e.,

Ea = {u ∈ E : |u| ≥ un ↓ 0 in E imply ‖un‖ → 0}.From now on in this paper we assume that (E, ‖ · ‖E) is a perfe
t Bana
h fun
tionspa
e and supp(E′)a = Ω. Note that (L1)′ = L∞ and (L∞)a = {0}. Hen
e the spa
e L1is ex
luded.Let Z be a σ(E, (E′)a)-bounded subset of E. Then Z is also |σ|(E, (E′)a)-bounded(see [AB, Theorem 2.33℄), so one 
an de�ne a Riesz seminorm pZ on (E′)a by
pZ(v) = sup

{∫

Ω

|u(ω)v(ω)|dµ : u ∈ Z

}
.Then by [N2, Theorem 1.1℄ we have

Bd(E, σ(E, (E′)a)) = Bd(E, ‖ · ‖E).Hen
e for every σ(E, (E′)a)-bounded subset Z of E the seminorm pZ on (E′)a is order
ontinuous. Making use of [N4, Proposition 1.1℄ and [BD, Corollary 5.2℄ we getProposition 1.1. For a subset Z of E the following statements are equivalent:(i) Z is 
onditionally σ(E, (E′)a)-
ompa
t.(ii) Z is relatively σ(E, (E′)a)-sequentially 
ompa
t.



WEAKLY COMPACT OPERATORS ON KÖTHE-BOCHNER SPACES 73(iii) Z is σ(E, (E′)a)-bounded.(iv) Z is ‖ · ‖E-bounded.Now we establish terminology and some basi
 results 
on
erning ve
tor-valued fun
-tion spa
es (see [Bu1℄, [Bu2℄, [L, Chap. 3℄). Let (X, ‖ · ‖X) be a real Bana
h spa
e andlet X∗ stand for the Bana
h dual of X. Let BX denote the 
losed unit ball in X. By
L0(X) we denote the set of µ-equivalen
e 
lasses of all strongly Σ-measurable fun
tions
f : Ω → X. The F -norm

‖f‖L0(X) =

∫

Ω

‖f(ω)‖X

1 + ‖f(ω)‖X

w(ω)dµ for f ∈ L0(X),where w : Ω → (0,∞) is a Σ-measurable fun
tion with ∫
Ω

w(ω)dµ = 1, determines thetopology T0(X) on L0(X) of 
onvergen
e in measure on sets of �nite measure.For f ∈ L0(X) let us set f̃(ω) = ‖f(ω)‖X for ω ∈ Ω. The linear spa
e
E(X) = {f ∈ L0(X) : f̃ ∈ E}provided with the norm ‖f‖E(X) := ‖f̃‖E is a Bana
h spa
e and is 
alled a Köthe-Bo
hnerspa
e (see [L℄). For r > 0 we will write

BE(X)(r) = {f ∈ E(X) : ‖f‖E(X) ≤ r}.Let L0(X∗, X) be the set of weak∗-equivalen
e 
lasses of all weak∗-measurable fun
-tions g : Ω → X∗. One 
an de�ne the so-
alled abstra
t norm ϑ : L0(X∗, X) → L0by ϑ(g) = sup{|gx| : x ∈ BX}, where gx(ω) = g(ω)(x) for ω ∈ Ω and x ∈ X.Then for f ∈ L0(X) and g ∈ L0(X∗, X) the fun
tion 〈f, g〉 : Ω → R de�ned by
〈f, g〉(ω) = 〈f(ω), g(ω)〉 is measurable and |〈f, g〉| ≤ f̃ϑ(g). Moreover, ϑ(g) = g̃ for
g ∈ L0(X∗). For an ideal M of E′ let

M(X∗, X) = {g ∈ L0(X∗, X) : ϑ(g) ∈ M}.Then M(X∗, X) is an ideal of E′(X∗, X), i.e., if ϑ(g1) ≤ ϑ(g2) with g1 ∈ E′(X∗, X)and g2 ∈ M(X∗, X), then g1 ∈ M(X∗, X). M(X∗, X) 
an be provided with the norm
‖g‖M(X∗,X) := ‖ϑ(g)‖E′ for g ∈ M(X∗, X).In parti
ular, we will 
onsider the dual pair 〈E(X), (E′)a(X∗, X)〉 with the duality:

〈f, g〉 =

∫

Ω

〈f(ω), g(ω)〉dµ for f ∈ E(X), g ∈ (E′)a(X∗, X).2. Mixed topologies on Köthe-Bo
hner spa
es. In this se
tion we 
onsider themixed topology γ[TE(X), T0(X)|E(X)] on E(X) (brie�y γE(X)), where TE(X) stands forthe topology on E(X) of the norm ‖ · ‖E(X). For the de�nition and basi
 properties of
γE(X) see [F℄, [W℄. In 
ase when X = R the mixed topology γE (= γE(R)) on E has beenstudied in [N1℄ and [N2℄. It is known that T0(X)|E(X) ⊂ γE(X) ⊂ TE(X). We will needthe following:Proposition 2.1. We have Bd(E(X), γE(X)) = Bd(E(X), ‖ · ‖E(X)).Proof. Using [KA, Lemma 4.3.4℄ we see that BE(X)(1) is 
losed in (E(X), T0(X)|E(X)).Hen
e by [W, Theorem 2.4.1℄ we get Bd(E(X), γE(X)) = Bd(E(X), ‖ · ‖E(X)).



74 K. FELEDZIAKThe mixed topology γE(X) is a Hausdor� lo
ally 
onvex-solid topology on E(X) (see[F, �3℄) and it is the �nest lo
ally 
onvex topology on E(X) whi
h agrees with T0(X)on ‖ · ‖E(X)-bounded sets in E(X) (see [W, 2.2.2℄). Sin
e (BE(X)(2
n) : n ∈ N) is afundamental sequen
e of γE(X)-bounded sets in E(X), (E(X), γE(X)) is a generalizedDF spa
e (see [Ru, De�nition 1.1℄).Re
all that a lo
ally solid topology τ on E(X) is said to be uniformly Lebesgueif fn → 0 for τ in E(X) whenever ‖fn‖L0(X) → 0 with supn ‖fn‖E(X) < ∞ (see[F, De�nition 2.2℄).The basi
 properties of γE(X) are given in the following (see [F, Theorem 3.1℄):Proposition 2.2. We have(i) γE(X) is the �nest uniformly Lebesgue toplogy on E(X).(ii) fn → 0 in E(X) for γE(X) if and only if ‖fn‖L0(X) → 0 and supn ‖fn‖E(X) < ∞.A linear operator T : E(X) → Y is said to be γ-linear if ‖T (fn)‖Y → 0 whenever

‖fn‖L0(X) → 0 and supn ‖fn‖E(X) < ∞.Proposition 2.3. For a linear operator T : E(X) → Y the following statements areequaivalent:(i) T is (γE(X), ‖ · ‖Y )-
ontinuous.(ii) T is sequentially (γE(X), ‖ · ‖Y )-
ontinuous.(iii) T is γ-linear.(iv) T is (γE(X)|BE(X)(r), ‖ · ‖Y )-
ontinuous for every r > 0.Proof. (i)⇒(ii) It is obvious.(ii)⇒(iii) It follows from Proposition 2.2(i).(iii)⇒(iv) It is obvious, be
ause γE(X)|BE(X)(r) = T0(X)|BE(X)(r) for r > 0.(iv)⇔(i) See [W, 2.2.4℄.Re
all that a Bana
h spa
e X is said to be almost re�exive if every norm-boundedsubset of X is 
onditionally weakly 
ompa
t (see [C℄, [H℄). The fundamental l1-Rosenthaltheorem [R℄ says that X is almost re�exive if and only if it 
ontains no isomorphi
 
opyof l1.From now on for a subset H of E(X) we will denote
H̃ = {f̃ : f ∈ H}.The following result extends Proposition 1.1 to the ve
tor-valued setting.Proposition 2.4. Let X be an almost re�exive Bana
h spa
e. Then for a subset H of

E(X) the following statements are equivalent:(i) supf∈H ‖f‖E(X) < ∞.(ii) H is 
onditionally σ(E(X), (E′)a(X∗, X))-
ompa
t.Moreover, if X is a re�exive Bana
h spa
e, then the statements (i)�(ii) are equivalent tothe following:(iii) H is relatively σ(E(X), (E′)a(X∗, X))-
ompa
t.



WEAKLY COMPACT OPERATORS ON KÖTHE-BOCHNER SPACES 75Proof. (i)⇒(ii) Assume that supf∈H ‖f‖E(X) < ∞, i.e., H̃ is a ‖ · ‖E-bounded subset of
E. Then by Proposition 1.1 H̃ is 
onditionally σ(E, (E′)a)-
ompa
t. Making use of [N4,Corollary 2.3℄ we obtain that H is 
onditionally σ(E(X), (E′)a(X∗, X))-
ompa
t.(ii)⇒(i) Assume that H is 
onditionally σ(E(X), (E′)a(X∗, X))-
ompa
t. Then H̃ is
onditionally σ(E, (E′)a)-
ompa
t in E (see [N4, Theorem 2.2℄), so by Proposition 1.1
supf∈H ‖f‖E(X) < ∞.(i)⇔(iii) See [N3, Corollary 2.4℄.3. Weakly 
ompa
t operators on Köthe-Bo
hner spa
es. In this se
tion we exam-ine linear operators T : E(X) → Y whenever E(X) is provided with the mixed topology
γE(X). Re
all that a linear operator T : E(X) → Y is said to be (γE(X), ‖ · ‖Y )-weakly
ompa
t if there exists a neighbourhood V of 0 for γE(X) su
h that T (V ) is a relatively
σ(Y, Y ∗)-
ompa
t subset of Y .Theorem 3.1. For a linear operator T : E(X) → Y the following statements are equiv-alent:(i) T is (γE(X), ‖ · ‖Y )-weakly 
ompa
t.(ii) T is (γE(X), ‖ · ‖Y )-
ontinuous and (‖ · ‖E(X), ‖ · ‖Y )-weakly 
ompa
t.Proof. (i)⇒(ii) It is obvious.(ii)⇒(i) Assume that T is (γE(X), ‖ · ‖Y )-
ontinuous and (‖ · ‖E(X), ‖ · ‖Y )-weakly
ompa
t. Hen
e for every r > 0, T (BE(X)(r)) is a relatively σ(Y, Y ∗)-
ompa
t subset of
Y . Sin
e Bd(E(X), γE(X)) = Bd(E(X), ‖ · ‖E(X)) (see Proposition 2.1), in view of [Ru,Theorem 3.1℄ T is (γE(X), ‖ · ‖E(X))-weakly 
ompa
t, as desired.Remark. For the proof of the impli
ation (ii)⇒(i) one 
an also use the earlier resultof Grothendie
k. Indeed, sin
e (E(X), γE(X)) is a generalized DF-spa
e, it is as well aquasinormable Hausdor� lo
ally 
onvex spa
e. Moreover, T is (γE(X), ‖ · ‖Y )-
ontinuousand (‖ · ‖E(X), ‖ · ‖)-weakly 
ompa
t, so T transforms ‖ · ‖E(X)-bounded sets into rela-tively σ(Y, Y ∗)-
ompa
t sets in Y . Thus by [G, III. 3, Corollary 1 of Theorem 11℄ T is
(γE(X), ‖ · ‖Y )-weakly 
ompa
t, be
ause Bd(E(X), γE(X)) = Bd(E(X), ‖ · ‖E(X)).Corollary 3.2. Assume that a linear operator T : E(X) → Y is (‖·‖E(X), ‖·‖Y )-weakly
ompa
t. Then the following statements are equivalent:(i) T is (γE(X), ‖ · ‖Y )-weakly 
ompa
t.(ii) T is (γE(X), ‖ · ‖Y )-
ontinuous.Corollary 3.3. Assume that a linear operator T : E(X) → Y is (γE(X), ‖ · ‖Y )-
ontinuous. Then the following statements are equivalent:(i) T is (γE(X), ‖ · ‖Y )-weakly 
ompa
t.(ii) T is (‖ · ‖E(X), ‖ · ‖Y )-weakly 
ompa
t.Now we are ready to present our main results.Theorem 3.4. Let X be an almost re�exive Bana
h spa
e and let Y be a weakly sequen-tially 
omplete Bana
h spa
e. Then for a linear operator T : E(X) → Y the following



76 K. FELEDZIAKstatements are equivalent:(i) T is (γE(X), ‖ · ‖Y )-
ontinuous.(ii) T is (γE(X), ‖ · ‖Y )-weakly 
ompa
t.Proof. (i)⇒(ii) Assume that T is (γE(X), ‖ · ‖Y )-
ontinuous. In view of Corollary 3.3it is enough to show that T transforms ‖ · ‖E(X)-bounded sets in E(X) into relatively
σ(Y, Y ∗)-
ompa
t sets in Y . Indeed, let H be a ‖ · ‖E(X)-bounded set in E(X). Thenby Proposition 2.4 H is 
onditionally σ(E(X), (E′)a(X∗, X))-
ompa
t. In view of [F,Theorem 3.2℄ it is seen that the topology γE(X) is 
oarser than the Ma
key topology
τ (E(X), (E′)a(X∗, X)). Hen
e T is also (τ (E(X), (E′)a(X∗, X)), ‖ · ‖Y )-
ontinuous andit follows that T is (σ(E(X), (E′)a(X∗, X)), σ(Y, Y ∗))-
ontinuous. Thus T (H) is a 
ondi-tionally σ(Y, Y ∗)-
ompa
t subset of Y , and sin
e Y is σ(Y, Y ∗)-sequentially 
omplete, weobtain that T (H) is relatively σ(Y, Y ∗)-sequentially 
ompa
t in Y . It follows that T (H)is relatively σ(Y, Y ∗)-
ompa
t in Y , as desired.(ii)⇒(i) See Theorem 3.1.Theorem 3.5. Let X be a re�exive Bana
h spa
e. Then for a linear operator T :

E(X) → Y the following statements are equivalent:(i) T is (γE(X), ‖ · ‖Y )-
ontinuous.(ii) T is (γE(X), ‖ · ‖Y )-weakly 
ompa
t.Proof. (i)⇒(ii) Assume that T is (γE(X), ‖ · ‖Y )-
ontinuous. Sin
e γE(X) ⊂ τ (E(X),

(E′)a(X∗, X)), T is also (τ (E(X), (E′)a(X∗, X)), ‖ · ‖Y )-
ontinuous. It follows that T isalso (σ(E(X), (E′)a(X∗, X)), σ(Y, Y ∗))-
ontinuous. Note that T transforms ‖ · ‖E(X)-bounded sets in E(X) into relatively σ(Y, Y ∗)-
ompa
t sets in Y . Indeed, let H bea ‖ · ‖E(X)-bounded set in E(X). Then by Proposition 2.4, H is relatively (σ(E(X),

(E′)a(X∗, X))-
ompa
t, and 
onsequently T (H) is relatively σ(Y, Y ∗)-
ompa
t in Y . ByCorollary 3.3, T is (γE(X), ‖ · ‖Y )-weakly 
ompa
t.(ii)⇒(i) It is obvious.
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