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Abstract. Algebras of ultradifferentiable generalized functions satisfying some regularity as-

sumptions are introduced. We give a microlocal analysis within these algebras related to the

affine regularity type and the ultradifferentiability property. As a particular case we obtain new

algebras of Gevrey generalized functions.

1. Introduction. Current research in the regularity problem in the Colombeau algebra
G(Ω) is based, e.g. see [10], on the Oberguggenberger subalgebra G∞(Ω), which served
as the first intrinsic measure of regularity within the Colombeau algebra. The subalgebra
G∞(Ω) plays the same role as C∞(Ω) in D′(Ω), and has indicated the importance of the
asymptotic behavior of the representative nets of a Colombeau generalized function in
studying regularity problems. However, the G∞-regularity does not exhaust the regularity
questions inherent to the Colombeau algebra, see [17]. Candidates proposed for measuring
the regularity within G(Ω) involve the growth in ε and the asymptotic behavior of the
net of smooth functions representing a Colombeau generalized function.

The aim of this paper is to introduce and to study new classes of generalized functions
measuring regularity both by the asymptotic behavior of the net of smooth functions rep-
resenting a Colombeau generalized function and by their ultradifferentiable smoothness.
We define the subalgebra GM,A(Ω) of G(Ω) representing classes of nets (uε)ε of smooth
functions having simultaneously ultradifferentiable smoothness of Denjoy-Carleman type
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M = (Mp)p∈Z+ and affine regular asymptotic behavior in ε. Elements of GM,A(Ω) are
called affine ultraregular generalized functions. The importance of ultradifferentiable
functions in the study of partial differential equations is well established, see [12], [8],
[19] and [3]. Affine ultraregular generalized functions of (M,A) type will without doubt
contribute to regularity theory in the Colombeau algebra.

Sections two and three recall respectively generalized functions of Colombeau type and
ultradifferentiable functions and give some of their main properties. Section four intro-
duces the algebras GM,A(Ω) of affine ultraregular generalized functions and show their im-
portant properties. Section five is devoted to the GM,A-microlocal analysis of Colombeau
generalized functions. The last section is devoted to the extension of Hörmander’s theorem
on the product of distributions in the case of affine ultraregular generalized functions.

Let us mention the papers [1] and [18] where algebras of generalized ultradistributions
are studied. One of the main purposes of these papers is to embed spaces of ultradistri-
butions into algebras of generalized functions of Colombeau type, whereas our algebra
GM,A(Ω) is a subalgebra of the Colombeau algebra G(Ω), and it is aimed to give new
measures of regularity of Colombeau generalized functions.

2. Colombeau algebra. For a deep study of the Colombeau algebra see [4], [7] and
[15]. Let Ω be a non-void open subset of Rn, define Em(Ω) as the space of elements (uε)ε
of C∞(Ω)]0,1] such that for every compact K ⊂ Ω, ∀α ∈ Zn+,∃m ∈ Z+, ∃C > 0,∃η ∈
]0, 1],∀ε ∈ ]0, η],

sup
x∈K
|∂αuε(x)| ≤ Cε−m.

By N (Ω) we denote the elements (uε)ε ∈ Em(Ω) such that for every compact K ⊂
Ω,∀α ∈ Zn+,∀m ∈ Z+, ∃C > 0,∃η ∈ ]0, 1],∀ε ∈ ]0, η],

sup
x∈K
|∂αuε(x)| ≤ Cεm.

Definition 2.1. The Colombeau algebra, denoted G(Ω), is the quotient algebra

G(Ω) =
Em(Ω)
N (Ω)

.

G(Ω) is a commutative and associative differential algebra containing D′(Ω) as a sub-
space and C∞(Ω) as a subalgebra. The subalgebra of generalized functions with compact
support, denoted GC(Ω), is the space of elements f of G(Ω) satisfying: there exist a
representative (fε)ε∈]0,1] of f and a compact subset K of Ω,∀ε ∈ ]0, 1], suppfε ⊂ K.

One defines the subalgebra of regular elements G∞(Ω), introduced by Oberguggen-
berger in [16], as the quotient algebra

E∞m (Ω)
N (Ω)

,

where E∞m (Ω) is the space of elements (uε)ε of C∞(Ω)]0,1] such that for every compact
K ⊂ Ω, ∃m ∈ Z+,∀α ∈ Zn+, ∃C > 0,∃η ∈ ]0, 1],∀ε ∈ ]0, η],

sup
x∈K
|∂αuε(x)| ≤ Cε−m.
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The following fundamental result is proved in [16]:

G∞(Ω) ∩ D′(Ω) = C∞(Ω).

This means that the subalgebra G∞(Ω) plays in G(Ω) the same role as C∞(Ω) in D′(Ω),
consequently one can introduce a local analysis by defining the generalized singular sup-
port of u ∈ G(Ω). This was the first notion of regularity in the Colombeau algebra.
Recently, different measures of regularity in algebras of generalized functions have been
proposed, see [2], [6], [14] and [17].

3. Ultradifferentiable functions. We recall some classical results on ultradifferen-
tiable function spaces. A sequence of positive numbers (Mp)p∈Z+ is said to satisfy the
following conditions:

(H1) logarithmic convexity, if

M2
p ≤Mp−1Mp+1,∀p ≥ 1;

(H2) stability under ultradifferential operators, if there exist A > 0 and H > 0 such that

Mp ≤ AHpMqMp−q,∀p ≥ q;

(H3)′ non-quasi-analyticity, if
∞∑
p=1

Mp−1

Mp
< +∞.

Remark 3.1. Some results remain valid, see [11], when (H2) is replaced by the following
weaker condition:

(H2)′ stability under differential operators, if there exist A > 0 and H > 0 such that

Mp+1 ≤ AHpMp,∀p ∈ Z+.

The associated function of the sequence (Mp)p∈Z+ is the function M̃ , defined by

M̃(t) = sup
p

ln
tp

Mp
, t ∈ R∗+.

Some results on the associated function are given in the following propositions proved
in [11].

Proposition 3.2. A positive sequence (Mp)p∈Z+ satisfies condition (H1) if and only if

Mp = M0 sup
t>0

[tp exp(−M̃(t))], p ∈ Z+.

Proposition 3.3. A positive sequence (Mp)p∈Z+ satisfies (H2) if and only if ∃A >

0,∃H > 0,∀t > 0,
2M̃(t) ≤ M̃(Ht) + ln(AM0).

Remark 3.4. We will always suppose that the sequence (Mp)p∈Z+satisfies the condition
(H1) and M0 = 1.
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The space of ultradifferentiable functions of class M , denoted EM (Ω), is the set of all
f ∈ C∞(Ω) satisfying for every compact K ⊂ Ω, ∃c > 0,∀α ∈ Zn+,

sup
x∈K
|∂αf(x)| ≤ c|α|+1M|α|.

This space is also called the space of Denjoy-Carleman.

Example 3.5. If (Mp)p∈Z+ = (p!σ)p∈Z+ , σ > 1, we obtain Eσ(Ω) the Gevrey space of
order σ, and A(Ω) := E1(Ω) is the space of real analytic functions defined on the open
set Ω.

The basic properties of the space EM (Ω) are summarized in the following proposition,
for the proof see [13] and [11].

Proposition 3.6. The space EM (Ω) is an algebra. Moreover, if (Mp)p∈Z+ satisfies
(H2)′, then EM (Ω) is stable by any differential operator of finite order with coefficients
in EM (Ω) and if (Mp)p∈Z+ satisfies (H2) then any ultradifferential operator of class M
operates also as a sheaf homomorphism. The space DM (Ω) = EM (Ω) ∩ D(Ω) is well
defined and is not trivial if and only if the sequence (Mp)p∈Z+ satisfies (H3)′.

Remark 3.7. The strong dual of DM (Ω), denoted D′M (Ω), is called the space of Roumieu
ultraditributions.

4. Affine ultraregular generalized functions. The purpose of this section is to in-
troduce a notion of regularity within Colombeau algebra taking into account both the
asymptotic growth and the smoothness property of generalized functions. We introduce
algebras of ultradifferentiable regular generalized functions of class M , where the sequence
M = (Mp)p∈Z+satisfies the conditions (H1) with M0 = 1, (H2) and (H3)′.

Definition 4.1. The space of affine ultraregular moderate elements of class M , denoted
by EM,A

m (Ω), is the space of (fε)ε ∈ C∞(Ω)]0,1] satisfying for every compact subset K of
Ω, ∃a ≥ 0,∃b ≥ 0,∃C > 0,∃ε0 ∈ ]0, 1],∀α ∈ Zn+,∀ε ≤ ε0,

sup
x∈K
|∂αfε(x)| ≤ C |α|+1M|α|ε

−a|α|−b.

The space of null elements is defined as NM,A(Ω) := N (Ω) ∩ EM,A
m (Ω).

The main properties of the spaces EM,A
m (Ω) and NM,A(Ω) are given in the following

proposition.

Proposition 4.2.

1) The space EM,A
m (Ω) is a subalgebra of Em(Ω) stable under the action of differential

operators.
2) The space NM,A(Ω) is an ideal of EM,A

m (Ω).

Proof. 1) Let (fε)ε, (gε)ε ∈ EM,A
m (Ω) and K a compact subset of Ω,

∃a1 ≥ 0,∃b1 ≥ 0,∃C1 > 0,∃ε1 ∈ ]0, 1], such that ∀β ∈ Zn+,∀x ∈ K, ∀ε ≤ ε1,∣∣∂βfε(x)
∣∣ ≤ C |β|+1

1 M|β|ε
−a1|β|−b1
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∃a2 ≥ 0,∃b2 ≥ 0,∃C2 > 0,∃ε2 ∈ ]0, 1], such that ∀β ∈ Zn+,∀x ∈ K,∀ε ≤ ε2,∣∣∂βgε(x)
∣∣ ≤ C |β|+1

2 M|β|ε
−a2|β|−b2 .

It is clear that (fε + gε)ε ∈ EM,A
m (Ω). Let α ∈ Zn+,

|∂α(fεgε)(x)| ≤
α∑
β=0

(
α

β

) ∣∣∂α−βfε(x)
∣∣ ∣∣∂βgε(x)

∣∣ .
Take a = max(a1, a2) and b = b1 + b2. From (H1), we have MpMq ≤ Mp+q, so for
ε ≤ min {ε1, ε2} and x ∈ K

εa|α|+b

M|α|
|∂α(fεgε)(x)| ≤

α∑
β=0

(
α

β

)
εa1|α−β|+b1

M|α−β|

∣∣∂α−βfε(x)
∣∣ εa2|β|+b2

M|β|

∣∣∂βgε(x)
∣∣

≤
α∑
β=0

(
α

β

)
C
|α−β|+1
1 C

|β|+1
2 ≤ C |α|+1,

where C = max {C1C2, C1 + C2}, which proves that (fεgε)ε ∈ EM,A
m (Ω). Let now α, β ∈

Zn+, where |β| = 1, for ε ≤ ε1 and x ∈ K, we have∣∣∂α(∂βfε)(x)
∣∣ ≤ C |α|+2

1 M|α|+1ε
−N|α|+1 .

From (H2)′,∃A > 0, H > 0, such that M|α|+1 ≤ AH |α|M|α|, then∣∣∂α(∂βfε)(x)
∣∣ ≤ AC2

1 (C1H)|α|M|α|ε−a1|α|−a1−b1 ≤ C |α|+1M|α|ε
−a|α|−b,

where a = a1 and b = a1 + b2, which means (∂βfε)ε ∈ EM,A
m (Ω).

2) The fact that NM,A(Ω) = N (Ω)∩ EM,A
m (Ω) ⊂ EM,A

m (Ω) and N (Ω) = NA(Ω) is an
ideal of EAm(Ω) implies that NM,A(Ω) is an ideal of EM,A

m (Ω).

The following definition introduces the algebra of affine ultraregular generalized func-
tions.

Definition 4.3. The set of affine ultraregular generalized functions of class (Mp)p∈Z+

is the quotient algebra

GM,A(Ω) :=
EM,A
m (Ω)
NM,A(Ω)

.

The basic properties of GM,A(Ω) are given in the following assertion.

Proposition 4.4. GM,A(Ω) is a differential subalgebra of G(Ω).

Proof. All algebraic properties hold from Proposition 4.2.

Example 4.5. If a = 0 we obtain as a particular case the algebra GM,B(Ω) of [14] denoted
there by GL(Ω).

Example 4.6. If we take (Mp)p∈Z+ = (p!σ)p∈Z+ we obtain a new subalgebra Gσ,A(Ω) of
G(Ω): the algebra of Gevrey affine regular generalized functions of order σ.

Example 4.7. If a = 0 and (Mp)p∈Z+ = (p!σ)p∈Z+ we obtain a new algebra, denoted
Gσ,∞(Ω), that we will call the Gevrey-Oberguggenberger algebra of order σ.
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The space EM (Ω) is embedded into GM,A(Ω) by the canonical map

σ : EM (Ω) → GM,A(Ω)
u → [uε]

,

where uε = u for all ε ∈ ]0, 1], which is an injective homomorphism of algebras.

Proposition 4.8. The diagram

EM (Ω) → C∞(Ω) → D′(Ω)
↓ ↓ ↓

GM,B(Ω) → GB(Ω) → G(Ω)

is commutative, where GB(Ω) = G∞(Ω).

Proof. The embeddings in the diagram are canonical except the embedding D′(Ω) →
G(Ω), which is now well known in the framework of Colombeau generalized functions,
see [7] for details. The commutativity of the diagram is then obtained easily from the
commutativity of the classical diagram

C∞(Ω) → D′(Ω)
↘ ↓

G(Ω)

which completes the proof.

A fundamental result on regularity in G(Ω) is the following.

Theorem 4.9. We have GM,B(Ω) ∩ D′(Ω) = EM (Ω).

Proof. Let u = cl(uε)ε ∈ GM,B(Ω)∩C∞(Ω), i.e. (uε)ε ∈ EM,B
m (Ω), then we have for every

compact set K ⊂ Ω,∃N ∈ Z+,∃c > 0,∃η ∈ ]0, 1],∀α ∈ Zn+,∀ε ∈ ]0, η] ,

sup
x∈K
|∂αu(x)| ≤ c|α|+1M|α|ε

−N .

When choosing ε = η, we obtain

∀α ∈ Zn+, sup
x∈K
|∂αu(x)| ≤ c|α|+1M|α|η

−N ≤ c|α|+1
1 M|α|,

where c1 depends only on K. Then u is in EM (Ω), this shows GM,B(Ω) ∩ C∞(Ω) ⊂
EM (Ω). As the reverse inclusion is obvious, we have proved GM,B(Ω)∩C∞(Ω) = EM (Ω).
Consequently

GM,B(Ω) ∩ D′(Ω) = (GM,B(Ω) ∩ GB(Ω)) ∩ D′(Ω)

= GM,B(Ω) ∩ (GB(Ω) ∩ D′(Ω))

= GM,B(Ω) ∩ C∞(Ω) = EM (Ω),

which completes the proof.

Proposition 4.10. The algebra GM,A(Ω) is a sheaf of subalgebras of G(Ω).

Proof. Let Ω be a non-void open of Rn and (Ωλ)λ∈Λ be an open covering of Ω. we have
to show the properties

S1) If f, g ∈ GM,A(Ω) such that f/Ωλ = g/Ωλ ,∀λ ∈ Λ, then f = g.
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S2) If for each λ ∈ Λ, we have fλ ∈ GM,A(Ωλ), such that for all λ, µ ∈ Λ with
Ωλ ∩ Ωµ 6= φ,

fλ/Ωλ∩Ωµ = fµ/Ωλ∩Ωµ ,

then there exists a unique f ∈ GM,A(Ω) with f/Ωλ = fλ,∀λ ∈ Λ.
The property S1 is evident. To show S2, let (χj)

∞
j=1 be a EM -partition of unity

subordinate to the covering (Ωλ)λ∈Λ. Define

f := (fε)ε +NM,A(Ω),

where fε =
∑∞
j=1 χjfλjε and (fλjε)ε is a representative of fλj . Moreover, we set fλjε = 0

on Ω\Ωλj , so that χjfλjε is C∞ on all of Ω. First let K be compact subset of Ω, we have
Kj = K ∩ suppχj is a compact subset of Ωλj and (fλjε)ε ∈ EM,A

m

(
Ωλj

)
, then

(
χjfλjε

)
satisfies EM,A

m -estimate on each Kj , we have χj(x) ≡ 0 on K except for a finite number
of j, i.e. ∃N > 0, such that

∞∑
j=1

χjfλjε(x) =
N∑
j=1

χjfλjε(x),∀x ∈ K.

So (
∑
χjfλjε) satisfies EM,A

m -estimate on K, which means (fε)ε ∈ EM,A
m (Ω). It remains

to show that f/Ωλ = fλ,∀λ ∈ Λ. Let K be a compact subset of Ωλ, choose N > 0 in such
a way that

∑N
j=1 χj(x) ≡ 1 on a neighborhood Ω′ of K with Ω′ is compact of Ωλ. For

x ∈ K,

fε(x)− fλε(x) =
N∑
j=1

χj(x)
(
fλjε(x)− fλε(x)

)
.

Since (fλjε − fλε) ∈ NM,A(Ωλj ∩ Ωλ) and Kj = K ∩ suppχj is a compact subset of
Ω ∩ Ωλj , then (

∑N
j=1 χj(fλjε − fλε)) satisfies the NM,A-estimate on K. The uniqueness

of such f ∈ GM,A(Ω) follows from S1.

Definition 4.11. The (M,A)-singular support of a generalized function u ∈ G(Ω), de-
noted sing suppM,A (u), is the complement of the largest open set Ω′ such that u ∈
GM,A (Ω′) .

The basic property of sing suppM,A is summarized in the following, easy to prove,
proposition.

Proposition 4.12. Let P (x,D) be a generalized linear partial differential operator with
coefficients in GM,A(Ω), then

sing suppM,A (P (x,D)u) ⊂ sing suppM,A(u),∀u ∈ G(Ω).

We introduce a local analysis within the Colombeau algebra; a generalized partial
differential operator P (x,D) with GM,A(Ω) coefficients is called (M,A)-hypoelliptic in Ω,
if

sing suppM,A (P (x,D)u) = sing suppM,A(u),∀u ∈ G(Ω).
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5. (M,A)-Microlocal analysis. We have defined the (M,A)-singular support of a gen-
eralized function u ∈ G(Ω), we will now show how to microlocalize this concept.

A basic (M,A)-microlocal analysis in G(Ω) can be developed thanks to the following
result.

Proposition 5.1. Let f = cl(fε)ε ∈ GC(Ω), then f is affine ultraregular of class M =
(Mp)p∈Z+ if and only if ∃a ≥ 0,∃b ≥ 0,∃C > 0,∃k > 0, ∃ε0 ∈ ]0, 1] ,∀ε ≤ ε0, such that

|F(fε) (ξ)| ≤ Cε−b exp−M̃ (kεa |ξ|) ,∀ξ ∈ Rn, (1)

where F denotes the Fourier transform.

Proof. Suppose that f = cl(fε)ε ∈ GC(Ω)∩GM,A(Ω), then ∃C > 0,∃a ≥ 0,∃b ≥ 0,∃ε1 >

0,∀α ∈ Zn+,∀x ∈ K,∀ε ≤ ε0, suppfε ⊂ K, such that

|∂αfε| ≤ C |α|+1M|α|ε
−a|α|−b,

so we have, ∀α ∈ Zn+,

|ξα| |F(fε)(ξ)| ≤
∣∣∣∣∫ exp (−ixξ) ∂αfε(x)dx

∣∣∣∣
then, ∃C > 0,∀ε ≤ ε0,

|ξ||α| |F(fε)(ξ)| ≤ C |α|+1M|α|ε
−−a|α|−b,

which give

|F(fε) (ξ)| ≤ C
C |α|M|α|

|ξ||α|
ε−a|α|−b ≤ Cε−b inf

α

{(
ε−aC

|ξ|

)|α|
M|α|

}

≤ Cε−b exp−M̃
(
εa |ξ|√
nC

)
,

i.e. we have (1).
Suppose now that (1) is valid, then ∃C > 0,∃ε0 ∈ ]0, 1],∀ε ≤ ε0,

|∂αfε(x)| ≤ Cε−b sup
ξ
|ξ||α| exp(−M̃(kεa|ξ|))

≤ Cε−b(kεa)−|α| sup
ξ
|kεaξ||α| exp(−M̃(kεa|ξ|))

≤ Cε−b(kεa)−|α| sup
η
|η||α| exp(−M̃(|η|)).

Proposition 3.2 gives ∃C > 0 such that

|∂αfε(x)| ≤ C |α|+1M|α|ε
−a|α|−b,

where C = max
(
C, 1

k

)
, then f ∈ GM,A(Ω).

Corollary 5.2. Let f = cl(fε)ε ∈ GC(Ω), then f is a Gevrey affine ultraregular gener-
alized function of order σ, i.e. f ∈ Gσ,A(Ω), if and only if ∃a ≥ 0,∃b ≥ 0,∃C > 0,∃k > 0,
∃ε0 > 0,∀ε ≤ ε0, such that

|F(fε)(ξ)| ≤ Cε−b exp(−kεa|ξ| 1σ ),∀ξ ∈ Rn.
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In particular, f is a Gevrey generalized function of order σ, i.e. f ∈ Gσ,∞(Ω), if and only
if ∃b ≥ 0,∃C > 0,∃k > 0, ∃ε0 > 0,∀ε ≤ ε0, such that

|F(fε)(ξ)| ≤ Cε−b exp(−k|ξ| 1σ ),∀ξ ∈ Rn.

The above results permit to define the concept of GM,A-wave front of u ∈ G(Ω) and
give the basic elements of a (M,A)-generalized microlocal analysis within the Colombeau
algebra G(Ω).

Definition 5.3. Define the cone ΣMA (f) ⊂ Rn\{0}, f ∈ GC(Ω), as the complement of
the set of points having a conic neighborhood Γ and ∃a ≥ 0,∃b ≥ 0,∃C > 0,∃k > 0,
∃ε0 > 0,∀ε ≤ ε0, such that

|F(fε)(ξ)| ≤ Cε−b exp−M̃(kεa|ξ|),∀ξ ∈ Γ.

Proposition 5.4. For every f ∈ GC(Ω), we have

1) The set ΣMA (f) is a closed subset;
2) ΣMA (f) = ∅ ⇔ f ∈ GM,A(Ω).

Proof. The proof of 1) is trivial, and 2) holds from Proposition 5.1.

Proposition 5.5. For every f ∈ GC(Ω), we have

ΣMA (ψf) ⊂ ΣMA (f),∀ψ ∈ EM (Ω).

Proof. Let ξ0 /∈ ΣMA (f), i.e. ∃Γ a conic neighborhood of ξ0,∃a ≥ 0,∃b ≥ 0,∃k1 > 0,∃c1 >
0,∃ε1 ∈ ]0, 1] ,∀ε ≤ ε1,

|F(fε)(ξ)| ≤ c1ε−b exp−M̃ (k1ε
a|ξ|) ,∀ξ ∈ Γ.

Let χ ∈ DM (Ω), χ = 1 on a neighborhood of suppf , then χψ ∈ DM (Ω),∀ψ ∈ EM (Ω),
hence, see [11], ∃k2 > 0,∃c2 > 0,∀ξ ∈ Rn,

|F(χψ)(ξ)| ≤ c2 exp−M̃ (k2 |ξ|) .

Let Λ be a conic neighborhood of ξ0 such that Λ ⊂ Γ, then we have, for ξ ∈ Λ,

F (χψfε) (ξ) =
∫
Rn

F(fε)(η)F(χψ)(η − ξ)dη

=
∫
A

F(fε)(η)F(χψ)(η − ξ)dη +
∫
B

F(fε)(η)F(χψ)(η − ξ)dη,

where A = {η; |ξ − η| ≤ δ(|ξ|+ |η|)} and B = {η; |ξ − η| > δ(|ξ|+ |η|)}. Take δ > 0
sufficiently small such that |ξ|2 < |η| < 2|ξ|,∀η ∈ A, then ∃c > 0,∀ε ≤ ε1,∣∣∣∣∫

A

F(fε) (η)F(χψ) (η − ξ) dη
∣∣∣∣ ≤ cε−b exp−M̃

(
k1ε

a |ξ|
2

)∫
A

exp−M̃ (k2 |η − ξ|) dη,

so ∃c > 0,∃k > 0,∣∣∣∣∫
A

F(fε) (η)F(χψ)(η − ξ)dη
∣∣∣∣ ≤ cε−b exp(−M̃(kεa|ξ|)). (2)

As f ∈ GC(Ω), then ∃q ∈ Z+,∃m > 0,∃c > 0,∃ε2 > 0,∀ε ≤ ε2,

|F(fε)(ξ)| ≤ cε−q |ξ|m ,∀ξ ∈ Rn,
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hence for ε ≤ min (ε1, ε2) , ∃c > 0, such that we have∣∣∣∣∫
B

F(fε) (η)F(χψ)(η − ξ)dη
∣∣∣∣ ≤ cε−q ∫

B

|η|m exp(−M̃(k2|η − ξ|))dη

≤ cε−q
∫
B

|η|m exp−M̃(k2δ(|ξ|+ |η|))dη.

Proposition 3.3 gives ∃H > 0,∃A > 0,∀t1 > 0,∀t2 > 0,

−M̃ (t1 + t2) ≤ −M̃
(
t1
H

)
− M̃

(
t2
H

)
+ lnA,

so ∣∣∣∣∫
B

F(fε)(η)F(χψ)(η − ξ)dη
∣∣∣∣ ≤ cAε−q exp−M̃

(
k2δ

H
|ξ|
)

·
∫
B

|η|m exp−M̃
(
k2δ

H
|η|
)
dη.

Hence ∃c > 0,∃k > 0, such that∣∣∣∣∫
B

f̂ε(η)ψ̂(η − ξ)dη
∣∣∣∣ ≤ cε−q exp−M̃ (kεa |ξ|) , (3)

consequently (2) and (3) give ξ0 /∈ ΣMA (ψf) .

We define the set ΣMA,x0
(f) for a generalized function f and a point x0 and the affine

wave front set of class M in G(Ω).

Definition 5.6. Let f ∈ G(Ω) and x0 ∈ Ω, the cone of affine singular directions of class
M = (Mp) of f at x0 is

ΣMA,x0
(f) :=

⋂{
ΣMA (φf) : φ ∈ DM (Ω) andφ = 1 on a neighborhood of x0

}
.

The following lemma indicates the relation between the local and microlocal (M,A)-
analysis in G(Ω).

Lemma 5.7. Let f ∈ G(Ω), then

ΣMA,x0
(f) = ∅ ⇔ x0 /∈ sing suppM,A(f).

Proof. See the proof of the similar lemma 22 in [1].

Definition 5.8. A point (x0, ξ0) /∈WFMA (f) ⊂ Ω×Rn\{0} if ∃φ ∈ DM (Ω), φ ≡ 1 on a
neighborhood of x0, a conic neighborhood Γ of ξ0, a ≥ 0, b ≥ 0, k > 0, c > 0, ε0 ∈ ]0, 1] ,
such that ∀ε ≤ ε0,∀ξ ∈ Γ,

|F (φfε) (ξ)| ≤ cε−b exp−M̃(kεa|ξ|).
Remark 5.9. A point (x0, ξ0) /∈WFMA (f) ⊂ Ω×Rn\{0} means ξ0 /∈ ΣMA,x0

(f).

The basic properties of WFMA are given in the following proposition.

Proposition 5.10. Let f ∈ G(Ω), then

1) The projection of WFMA (f) on Ω is the sing suppM,A(f);
2) If f ∈ GC(Ω), then the projection of WFMA (f) on Rn\{0} is ΣMA (f);
3) WFMA (∂αf) ⊂WFMA (f),∀α ∈ Zn+;
4) WFMA (gf) ⊂WFMA (f),∀g ∈ GM,A(Ω).
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Proof. 1) and 2) hold by definition, Proposition 5.4 and Lemma 5.7.
3) Let (x0, ξ0) /∈WFMA (f), then ∃φ ∈ DM (Ω), φ ≡ 1 on U , where U is a neighborhood

of x0, there exists a conic neighborhood Γ of ξ0, ∃a ≥ 0,∃b ≥ 0,∃k2 > 0,∃c1 > 0,∃ε0 ∈
]0, 1], such that ∀ξ ∈ Γ,∀ε ≤ ε0,

|F (φfε) (ξ)| ≤ c1ε−b exp−M̃ (k2ε
a|ξ|) . (4)

We have, for ψ ∈ DM (U) such that ψ (x0) = 1,

|F (ψ∂fε) (ξ)| = |F (∂ (ψfε)) (ξ)−F ((∂ψ) fε) (ξ)|
≤ |ξ| |F (ψφfε) (ξ)|+ |F ((∂ψ)φfε) (ξ)| .

As WFMA (ψf) ⊂ WFMA (f), so (4) holds for both |F (ψφfε) (ξ)| and |F ((∂ψ)φfε) (ξ)| .
Then

|ξ| |F (ψφfε) (ξ)| ≤ cε−b |ξ| exp−M̃ (k2ε
a|ξ|)

≤ c′ε−b−a exp−M̃ (k3ε
a |ξ|) ,

with c′ > 0, k3 > 0 such that εa |ξ| ≤ c′ exp(M̃(k2ε
a|ξ|) − M̃(k3ε

a|ξ|)) for ε sufficiently
small. Hence (4) holds for |F(ψ∂fε)(ξ)|, which proves (x0, ξ0) /∈WFMA (∂f).

4) Let (x0, ξ0) /∈WFMA (f), then there exist φ ∈ DM (Ω), φ(x) = 1 on a neighborhood
U of x0, a conic neighborhood Γ of ξ0, a1 ≥ 0, b1 ≥ 0, k1 > 0, c1 > 0, ε1 ∈ ]0, 1], such that
∀ε ≤ ε1,∀ξ ∈ Γ,

|F(φfε)(ξ)| ≤ c1ε−b1 exp−M̃(k1ε
a1 |ξ|).

Let ψ ∈ DM (Ω) and ψ = 1 on suppφ, then F(φgεfε) = F(ψgε) ∗ F(φfε). We have
ψg ∈ GM,A(Ω), then ∃c2 > 0, ∃a2 ≥ 0,∃b2 ≥ 0,∃k2 > 0,∃ε2 > 0,∀ξ ∈ Rn,∀ε ≤ ε2,

|F(ψgε)(ξ)| ≤ c2ε−b2 exp−M̃(−k2ε
a2 |ξ|).

We have

F(φgεfε)(ξ) =
∫
A

F(φfε)(η)F(ψgε)(η − ξ)dη +
∫
B

F(φfε)(η)F(ψgε)(η − ξ)dη,

where A and B are the same as in the proof of Proposition 5.5. By the same reasoning
we obtain the proof.

A microlocalization of Proposition 4.12 is given in the following result.

Corollary 5.11. Let P (x,D) be a generalized linear partial differential operator with
GM,A(Ω) coefficients, then

WFMA (P (x,D) f) ⊂WFMA (f),∀f ∈ G(Ω).

The reverse inclusion will give a generalized microlocal affine ultraregularity of a
generalized linear partial differential operator with GM,A(Ω) coefficients. The first case
of G∞-microlocal hypoellipticity has been studied in [15], [5] and [10].

A general interesting problem of (M,A)-generalized microlocal elliptic affine ultrareg-
ularity is to prove the following inclusion

WFMA (f) ⊂WFMA (P (x,D) f) ∪ Char(P ),∀f ∈ G(Ω),

where P (x,D) is a generalized partial differential operator with GM,A(Ω) coefficients and
Char(P ) is the set of generalized characteristic points of P (x,D).
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6. Generalized Hörmander’s theorem. We extend Hörmander’s result on the wave
front set of the product of two distributions, the proof follows the same steps as the proof
of theorem 26 in [1]. We recall the following fundamental lemma, see [9] for the proof.

Lemma 6.1. Let Σ1 and Σ2 be closed cones in Rn\{0}, such that 0 /∈ Σ1 + Σ2, then

(i) the closure of the set Σ1 + Σ2 in Rn\{0} is (Σ1 + Σ2) ∪ Σ1 ∪ Σ2;
(ii) for any open conic neighborhood Γ of Σ1 + Σ2 in Rn\{0}, one can find open conic

neighborhoods Γ1, Γ2 in Rm\{0} of, respectively, Σ1,Σ2, such that Γ1 + Γ2 ⊂ Γ.

Let us recall that

WFMA (f) +WFMA (g) =
{

(x, ξ + η) : (x, ξ) ∈WFMA (f), (x, η) ∈WFMA (g)
}
. (5)

The principal result of this section is the following theorem.

Theorem 6.2. Let f, g ∈ G(Ω) such that

(x, 0) /∈WFMA (f) +WFMA (g),∀x ∈ Ω,

then

WFMA (fg) ⊆
(
WFMA (f) +WFMA (g)

)
∪WFMA (f) ∪WFMA (g) .

Proof. Let

(x0, ξ0) /∈
(
WFMA (f) +WFMA (g)

)
∪WFMA (f) ∪WFMA (g),

then there exists φ ∈ DM (Ω) such that

φ (x0) = 1, ξ0 /∈
(
ΣMA (φf) + ΣMA (φg)

)
∪ ΣMA (φf) ∪ ΣMA (φg) .

From (5) we have 0 /∈ ΣMA (φf) + ΣMA (φg) then by lemma 6.1 (i), we have ξ0 is not in the
closure of the set ΣMA (φf) + ΣMA (φg) in Rn\{0}. Let Γ0 be an open conic neighborhood
of ΣMA (φf) + ΣMA (φg) in Rn\{0} such that ξ0 /∈ Γ0, then thanks to lemma 6.1 (ii), there
exist open cones Γ1 and Γ2 in Rn\{0} such that

ΣMA (φf) ⊂ Γ1,ΣMA (φg) ⊂ Γ2 and Γ1 + Γ2 ⊂ Γ0.

Define Γ = Rn\Γ0, so

Γ ∩ Γ2 = ∅ and (Γ− Γ2) ∩ Γ1 = ∅. (6)

Let ξ ∈ Γ and ε ∈ ]0, 1], we have

F (φfεφgε) (ξ) = (F(φfε) ∗ F (φgε)) (ξ)

=
∫

Γ2

F(φfε) (ξ − η)F (φgε) (η)dη +
∫

Γc2

F (φfε) (ξ − η)F (φgε) (η)dη

= I1(ξ) + I2(ξ).

From (6), ∃a1 ≥ 0, b1 ≥ 0, k1 > 0, c1 > 0, ε1 ∈ ]0, 1], such that ∀ε ≤ ε1,∀ξ ∈ Γ2,

|F(φfε) (ξ − η)| ≤ c1ε−b1 exp−M̃ (k1ε
a1 |ξ|) .

As (φgε) ∈ GC(Ω) we can show easily that ∀a2 ≥ 0,∀k2 > 0,∃b2 ≥ 0,∃c2 > 0, , ∃ε2 ∈ ]0, 1],
such that ∀ε ≤ ε2,

|F (φgε) (η)| ≤ c2ε−b2 exp M̃ (k2ε
a2 |η|) ,∀η ∈ Rn.
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Let γ > 0 sufficiently small such that |ξ − η| ≥ γ(|ξ| + |η|),∀η ∈ Γ2, hence for ε ≤
min (ε1, ε2), we have

|I1(ξ)| ≤ c1c2ε−b1−b2
∫

Γ2

exp
(
−M̃ (k1ε

a1 |ξ − η|) + M̃ (k2ε
a2 |η|)

)
dη.

Proposition 3.3 gives ∃H > 0,∃A > 0,∀t1 > 0,∀t2 > 0,

−M̃ (t1 + t2) ≤ −M̃
(
t1
H

)
− M̃

(
t2
H

)
+ lnA,

so

|I1(ξ)| ≤ c1c2ε−b1−b2 exp
(
−M̃

(
k1

H
εa1γ|ξ|

))
·
∫

Γ2

exp
(
−M̃

(
k1

H
εa1γ|η|

)
+ M̃ (k2ε

a2 |η|)
)
dη

≤ c1c2ε−b1−b2 exp
(
−M̃

(
k1

H
εa1γ|ξ|

))
·
∫

Γ2

exp
(
−M̃

((
k1

H2
εa1γ − k2ε

a2

)
|η|
))

dη.

Take k = γk1
H and k1

H2 ε
a1γ − k2ε

a2 > 0, then ∃b = b(b1 + b2, a1, a2, k1, k2, H),∃c = c1c2,

|I1(ξ)| ≤ cε−b exp(−M̃(kεa1 |ξ|)).

Let r > 0, then

I2(ξ) = I21(ξ) + I22(ξ),

where

I21(ξ) =
∫

Γc2∩{|η|≤r|ξ|}
F(φfε)(ξ − η)F(φgε)(η)dη

and

I22(ξ) =
∫

Γc2∩{|η|≥r|ξ|}
F(φfε)(ξ − η)F(φgε)(η)dη.

Choose r sufficiently small such that if |η| ≤ r|ξ| ⇒ ξ−η /∈ Γ1. Then |ξ−η| ≥ (1−r)|ξ| ≥
(1− 2r)|ξ|+ |η|, consequently ∃c > 0,∃a1, a2, b1, k1, k2 > 0,∃ε1 > 0 such that ∀ε ≤ ε1,

|I21(ξ)| ≤ cε−b
∫

Γ2

exp(−M̃(k1ε
a1 |ξ − η|)− M̃(k2ε

a2 |η|))

≤ cε−b exp(−M̃(k′1ε
a1 |ξ|))

∫
exp(−M̃(k1ε

a1 |η|)− M̃(k2ε
a2 |η|))dη

≤ c′ε−b
′
exp(−M̃(k′1ε

a1 |ξ|)).

If |η| ≥ r|ξ| we have |η| ≥ |η|+r|ξ|
2 , then ∃c > 0, ∃a1, b1, k1 > 0, ∀a2, k2 > 0, ∃b2 > 0,
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∃ε2 > 0 such that ∀ε ≤ ε2,

|I21(ξ)| ≤ cε−b1−b2
∫

Γ2

exp(M̃(k2ε
a2 |ξ − η|)− M̃(k1ε

a1 |η|))dη

≤ cε−b1−b2
∫

Γ2

exp
(
M̃ (k2ε

a2 |ξ − η|)− M̃
(
k1

2
εa1 |η|+ k1r

2
εa1 |ξ|

))
dη

≤ cε−b1−b2 exp
(
−M̃

(
k1r

2H
εa1 |ξ|

))
·
∫

Γ2

exp
(
M̃ (k2ε

a2 |ξ − η|)− M̃
(
k1

2H
εa1 |η|

))
dη.

If we take k2 and 1
a2

sufficiently small, we obtain ∃a > 0,∃b > 0,∃c > 0,∃ε3 > 0, such
that ∀ε ≤ ε3,

|I21(ξ)| ≤ cε−b exp(−M̃(kεa|ξ|)),
which finishes the proof.
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