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Abstract. It is well-known that any locally Lebesgue integrable function generates a unique
distribution, a so-called regular distribution. It is also well-known that many non-integrable
functions can be regularized to give distributions, but in general not in a unique fashion. What
is not so well-known is that to many distributions one can associate an ordinary function, the
function that assigns the distributional point value of the distribution at each point where the
value exists, and that in many cases this ordinary function determines the distribution in a
unique fashion. In this talk we consider several classes of distributions that are given in terms
of the ordinary function of their point values. In particular, we consider distributions that have
a point value everywhere, those that have lateral limits at each point, and then introduce the
class of distributionally integrable functions. We study several properties of distributions of these
classes and apply these ideas to study the boundary behavior of solutions of partial differential
equations.

1. Introduction. Distributions are classified as regular distributions, which are those
generated by locally Lebesgue integrable functions, and singular distributions, which are
the rest. It is clear that one can treat the regular distributions as ordinary functions,
but this does not mean that all singular distributions are not ordinary functions. In this
article we consider whether singular distributions are ordinary functions.

The importance of these questions can be seen by the construction of a distributional
integral of ordinary functions. Indeed, integration of functions is a very important and
much studied topic, even for functions defined on the real line. On the other hand, the
problem of the construction of primitives of distributions of one real variable is basically
trivial, since any distribution of the space f ∈ D′(R) has primitives F ∈ D′(R), and all
primitives are of the form F = F0 + C, where F0 is a particular primitive and C is a
constant. Therefore one could try to define a new integration process for functions as
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follows: Start with a function f, to it associate a corresponding distribution f, find a
primitive of this distribution, F, and then find the function F that corresponds to F.

Then the function F would be a primitive of the initial function f, and we could compute
integrals as ∫ b

a

f(x) dx = F (b)− F (a). (1)

This would be a very powerful integration process, but for it to work first we need to
understand whether there is a way to associate, in a unique fashion, ordinary functions f
to distributions f and conversely. A second problem is that we need to make sure that the
function F is defined everywhere on R, so that the right side of (1) makes sense for all a
and b; however, once the first problem is solved, the second will be solved automatically.

We emphasize that we want to integrate functions, not distributions. The definite
integral of a distribution f over [a, b] can be computed as F(b) − F(a), if those values
exist [2]. This a well understood subject. The distributional integration that we describe,
however, is a quite different construction.

Therefore our aim is to identify classes of distributions that correspond to ordinary
functions in a unique, natural way. It turns out that while distributions are defined by
their action on test functions and do not have values at points, in general, there is a rather
useful notion of distributional point value, introduced by Łojasiewicz [18], that allows us
to assign an ordinary function to a distribution in many cases, even if the distribution is
singular.

We start our tour in Section 2 by considering a basic but surprisingly confusing issue,
namely, what is the meaning of the concept of “function” in mathematical analysis. Indeed,
can one say what the value of a function f ∈ L1(R) at a particular given point x0 is?, or
can we modify f on a set of measure zero, such as {x0}, to obtain that the value f(x0) is
arbitrary? Next we move to the corresponding question for distributions, giving several
examples where the distribution is or is not an ordinary function.

In Section 3 we explain the ideas of point values in the sense of Łojasiewicz, the
notion of the Cesàro behavior of distributions, and the various methods of summability
of distributional evaluations.

In [18] Łojasiewicz proved that a distribution that has distributional point values equal
to zero at all points must vanish. This means, precisely, that a distribution that has values
everywhere is determined by the ordinary function that gives those values. We explain
these matters in Section 4. Recently this analysis was extended to the distributionally
regulated functions [26]; we give those ideas in Section 5. In this article, in Section 6
we shall further generalize these ideas to the locally distributionally integrable functions
which are determined by the ordinary function that gives their point values, but now
those point values exist just almost everywhere.

We study several properties of distributions of these classes. In particular, in Section 7
we apply these ideas to study the boundary behavior of solutions of partial differential
equations. Our basic tool for this analysis is the φ-transform, also studied in Section 7.
We also consider in Section 8 the Fourier transform of distributions that correspond to
ordinary functions and use the characterization of point values of Fourier series [8] and
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Fourier transforms [26, 25] in order to give the pointwise inversion formulas. Finally,
in Section 9 we give an illustration of these ideas in the interpretation of the Poisson
summation formula in terms of distributional point values and use this to derive a direct
extension to Łojasiewicz functions of an uncertainty principle result for Fourier transforms
which is valid for continuous integrable functions.

2. What is a function? Let us start with a simple question: What is an ordinary
function?

This seems like a silly question, one whose solution is well-known by everyone, but
keep reading! The usual definition that one teaches in elementary schools is the following:
If X and Y are two sets, then a function f from X to Y is a correspondence f : X → Y

with the property that ∀x ∈ X ∃!y ∈ Y such that f(x) = y. However, is this what we
use in analysis?

In complex variables one uses “functions” like
√
z or ln z that are “multivalued.” Of

course one can think of such functions as defined in an appropriate Riemann surface, but
that is not usually said.

A more serious situation is found when working with Lebesgue integrable functions.
Indeed, the elements of the space Lp(X) that we use so frequently in analysis are not
ordinary functions but equivalence classes of them. Nevertheless, if f ∈ Lp(R) most
mathematicians would think of f as a “function,” despite the fact that it is not clear
what f(x0) is if x0 ∈ R. Observe that trying to assign a value f(x0) seems like an
impossible task since one can modify f on a set of measure 0, such as {x0} for instance,
without changing its equivalence class.

Therefore, it seems like calling an element f ∈ Lp(R) an “ordinary function” is com-
pletely wrong since the value of f at any x0 ∈ R is never clearly defined. The interesting
thing, however, is that if the concept of the value f(x0) is properly defined then the value
will exist almost everywhere and thus an element of Lp(R) is really an ordinary function
defined in a set of the form R \Z, where Z has measure 0. The key question is then how
f(x0) is defined, and in this case we could ask, for example, that x0 be a Lebesgue point
of f in the sense that v = f(x0) is the only number v that satisfies

lim
ε→0

1
ε

∫
|x−x0|<ε

|f(x)− v|dx = 0.

It is well-known that almost all points are Lebesgue points. Later on we shall need more
general definitions of value at a point, but this suffices in this case.

Let us now turn our attention to distributions. If f is a locally Lebesgue integrable
function, f ∈ L1

loc(R), then to f there correspond a unique distribution f ∈ D′(R), given
by

〈f, φ〉 =
∫ ∞
−∞

f(x)φ(x) dx,

for any test function φ ∈ D(R). We say that f is a regular distribution in this case. In
the texts one immediately identifies f and f, and starts using the same notation for both
objects, but for the purposes of this talk it is important to distinguish between them,
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so that we may write f ↔ f, but consider f and f as different objects. We shall always
denote the evaluation of a distribution f on a test function φ as 〈f, φ〉 or as 〈f(x), φ(x)〉.

The distributions that are not regular are called singular. It is now clear that any
regular distribution is an ordinary function (defined almost everywhere). The question is
then if a singular distribution can be an ordinary function. Naturally if f ∈ D′(R) is a
distribution then 〈f, φ〉 is defined for all test functions φ ∈ D(R), but this is a “global”
definition and it is not clear if one can define the value of f at any point in R.

Let us consider some examples.

Example 2.1. Let us start with the most famous distribution, namely, the Dirac delta
“function” δ(x) whose action on a test function φ ∈ D(R) is given by

〈δ(x), φ(x)〉 = φ(0).

Is δ(x) an ordinary function? It will follow from our definition of point values to be given
in Section 3 that the value δ(x0) exists for any x0 ∈ R\{0} and actually δ(x0) = 0 for
any x0 6= 0. But for an ordinary function the value at just one point, x0 = 0 in this case,
is irrelevant and thus one would obtain that if δ(x) were an ordinary function then it
would vanish. Consequently, δ(x) is not an ordinary function.

Example 2.2. Let us now consider a non-integrable function, again one of the first
examples that one finds in any textbook in the theory of distributions. Indeed, is 1/x an
ordinary function? The fact that 1/x is not defined at x = 0 is irrelevant, since one just
needs it to be defined almost everywhere. The important question is different: we want
to know if a distribution is an ordinary function or not, and thus we first need to know
if 1/x is a distribution.

If one goes to the textbooks one finds that it is possible to “regularize” the non
locally integrable function 1/x, that is, we can construct distributions g ∈ D′(R), called
regularizations of 1/x, that satisfy

〈g(x), φ(x)〉 =
∫ ∞
−∞

φ(x)
x

dx,

whenever the integral converges. We apologize for using the standard but so overused
term “regularization” which is employed with so many different meanings in several other
areas, even in the theories of generalized functions. Unfortunately, there is no unique way
to define the right regularization of 1/x. One may consider the principal value distribution
p.v.(1/x) defined by the principal value integral,〈

p.v.
(

1
x

)
, φ(x)

〉
= p.v.

∫ ∞
−∞

φ(x)
x

dx

= lim
ε→0

∫
|x|>ε

φ(x)
x

dx,

or the distributions 1/(x+ i0) and 1/(x− i0), defined as〈
1

x± i0
, φ(x)

〉
= lim
y→0+

∫ ∞
−∞

φ(x)
x± iy

dx.
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Therefore, the proper questions one could ask are the following. Is p.v.(1/x) an ordi-
nary function?; is 1/(x+ i0) an ordinary function?; or is 1/(x− i0) an ordinary function?
The answer is no in the three cases because of the non-uniqueness: In the three cases the
“ordinary function” would be given by 1/x for x 6= 0.

It is very interesting that many trivial but annoying problems with the use of distri-
butions in several applied areas are related to problems similar to that of 1/x. Indeed,
1/x is an ordinary function, defined in R\{0}; there is no question about that. However,
1/x is not a uniquely defined distribution and thus it is not a distribution corresponding
to an ordinary function. Therefore, if different authors obtain “different” formulas that
seem to contradict each other it is, in many cases, because they use different definitions
for the regularizations of non-integrable functions.

Example 2.3. The trigonometric functions tanx, cotx, secx, and cscx are studied start-
ing in elementary school, and thus it is easy to forget that they are not uniquely defined
distributions. They do have standard regularizations, the principal value ones, but these
distributions are not ordinary functions. A very interesting related case is that of the
hyperbolic cotangent and its distributional derivatives [16], [11].

Example 2.4. The well-known distributions xα+ are defined if α ∈ C\{ − 1,−2,−3, . . .}.
They are regular distributions for <e α > −1, but if <e α ≤ −1 they are not ordinary
functions.

Example 2.5. Let us now consider the distribution sα(x) = |x|α sin(1/x) for α ∈ C. If
<e α > −1 then the function |x|α sin(1/x) is locally Lebesgue integrable and thus it is a
regular distribution given by

〈sα(x), φ(x)〉 =
∫ ∞
−∞
|x|α sin(1/x)φ(x) dx. (2)

It is easy to show that sα admits an analytic continuation from the right side half-plane
<e α > −1 to the whole complex plane. If −1 ≥ <e α > −2 then the function |x|α sin(1/x)
is not Lebesgue integrable near x = 0 but it is Denjoy integrable and sα(x) can still be
defined by (2). Is sα(x) an ordinary function when −1 ≥ α > −2? It seems fair to say
that the answer is yes! Interestingly, using the notion of distributional point value [18],
Łojasiewics defined a new integral for which the right side of (2) is defined for all α ∈ C,
and gives the evaluation 〈sα(x), φ(x)〉 for all α ∈ C. We can then say that sα(x) is a
distribution that corresponds to an ordinary function for all complex numbers α.

Example 2.6. Let C ⊂ [0, 1] be the Cantor set and let ψ : [0, 1] −→ [0, 1] be the Cantor
function, so that ψ is continuous, increasing, onto, and satisfies ψ′(x) = 0 for x ∈ [0, 1]\C.
Extend ψ to R by setting ψ(x) = 0 if x < 0, and ψ(x) = 1 if x > 1. Let ν = ψ′, the
derivative in the distributional sense. Then ν is a distribution that vanishes on R\C. The
distribution ν does not correspond to an ordinary function.

After looking at these examples our problem is clearer. Identify classes of distributions
f for which there is an “ordinary” function f, defined on a set of the form R\Z, where Z
has measure 0, such that there is a unique correspondence f ↔ f. One expects the values
of f and of f to be the same on R\Z. Observe that in a sense these ordinary functions
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are actually equivalence classes of measurable functions equal almost everywhere. If f
is locally Lebesgue integrable then we obtain the regular distributions, but there are
many distributions that correspond to ordinary functions that are not locally Lebesgue
integrable and, quite clearly, there are many distributions that are not given by ordinary
functions.

3. Point values. In this section we make a parenthesis in our study of distributions
that are ordinary functions in order to give the definition of distributional point values
[18] that we need to employ in our analysis. We will also recall the basic ideas involved
in the Cesàro behavior of distributions [9].

The spaces of test functions D, E , and S and the corresponding spaces of distributions
are well-known [17, 23, 24]. In general [30], we call a topological vector space A a space of
test functions if D ⊆ A ⊆ E , where the inclusions are continuous, and if d

dx is a continuous
operator of A. An useful space, particularly in the study of distributional asymptotic
expansions [13, 14, 22, 27] is K′, the dual of K. The space K′ plays a fundamental role in
the theory of summability of distributional evaluations [9].

In a seminal article, Łojasiewicz [18] defined the value of a distribution f ∈ D′ at the
point x0 as the limit

f(x0) = lim
ε→0

f(x0 + εx),

if the limit exists in D′(R), that is if

lim
ε→0
〈f(x0 + εx), φ(x)〉 = f(x0)

∫ ∞
−∞

φ(x) dx, (3)

for each φ ∈ D(R). It was shown by Łojasiewicz [18] that the existence of the distributional
point value f(x0) = γ is equivalent to the existence of n ∈ N, and a primitive of order n
of f, that is F (n) = f, which is continuous and satisfies

lim
x→x0

n!F (x)
(x− x0)n

= γ.

Since (3) is only supposed to hold for φ ∈ D(R), we emphasize this fact saying
that f(x0) = γ in D′, in case that (3) is satisfied. Suppose now that f ∈ S ′ and
f(x0) = γ in D′; initially, (3) does not have to be true for φ ∈ S. However, it is shown in
[10, Corollary 1] that if (3) holds for φ ∈ D, it will remain true for φ ∈ S; so we can say
f(x0) = γ in S ′, and this is equivalent to the existence of f(x0) in D′. Actually using the
notion of the Cesàro behavior of a distribution at infinity [9] explained bellow, (3) will
hold if f(x) = O(|x|β) (C), as |x| → ∞, φ(x) = O(|x|α), strongly |x| → ∞, and α < −1,
α + β < −1. An asymptotic estimate is strong if it remains valid after differentiation of
any order.

The notion of distributional point value introduced by Łojasiewicz has been shown
to be of fundamental importance in analysis [2, 8, 20, 21, 26, 25, 28, 29]. It seems to be
originated in the idea of generalized differentials introduced by Denjoy [4]. There are other
notions of distributional point values as that of Campos Ferreira [2], who also introduced
the very useful concept of bounded distributions.
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Notice that the distributional limit limx→x0 f(x) can be defined for f ∈ D′(R \ {x0}).
If the point value f(x0) exists distributionally then the distributional limit limx→x0 f(x)
exists and equals f(x0). On the other hand, if limx→x0 f(x) = L distributionally then
there exist constants a0, . . . , an such that f(x) = f0(x) +

∑n
j=0 ajδ

(j)(x− x0), where the
distributional point value f0(x0) exists and equals L.

We may also consider lateral limits. We say that the distributional lateral value f(x+
0 )

exists if f(x+
0 ) = limε→0+ f(x0 + εx) in D′(0,∞), that is,

lim
ε→0+

〈f(x0 + εx), φ(x)〉 = f(x+
0 )
∫ ∞

0

φ(x) dx , φ ∈ D(0,∞).

Similar definitions apply to f(x−0 ). Notice that the distributional limit limx→x0 f(x) exists
if and only if the distributional lateral limits f(x−0 ) and f(x+

0 ) exist and coincide.
The Cesàro behavior of a distribution at infinity is studied by using the order symbols

O(xα) and o(xα) in the Cesàro sense. If f ∈ D′(R) and α ∈ R\{−1,−2,−3, ...}, we say
that f(x) = O(xα) as x→∞ in the Cesàro sense and write

f(x) = O(xα) (C, N), as x→∞,

if there exists N ∈ N such that every primitive F of order N , i.e., F (N) = f, is an ordinary
function for large arguments and satisfies the ordinary order relation

F (x) = p(x) +O(xα+N ), as x→∞,

for a suitable polynomial p of degree at most N − 1. Note that if α > −1, then the poly-
nomial p is irrelevant. A similar definition applies to the little o symbol. The definitions
when x → −∞ are clear. One can also consider the case when α = −1,−2,−3, ... [14,
Definition 6.3.1]. When the value of N is not important we shall use the simpler notation
f(x) = O(xα) (C) as x→∞.

The elements of S ′ can be characterized by their Cesàro behavior at ±∞, in fact,
f ∈ S ′ if and only if there exists α ∈ R such that f(x) = O(xα) (C), as x → ∞, and
f(x) = O(|x|α) (C), as x→ −∞. On the other hand, this is true for all α ∈ R if and only
if f ∈ K′.

Using these ideas, one can define the limit of a distribution at ∞ in the Cesàro sense.
We say that f ∈ D′ has a limit L at infinity in the Cesàro sense and write

lim
x→∞

f(x) = L (C),

if f(x) = L+ o(1) (C), as x→∞.
The Cesàro behavior of a distribution f at infinity is related to the parametric behavior

of f(λx) as λ → ∞. In fact, one can show [14, Theorem 6.5.1] that if α > −1, then
f(x) = O(xα) (C) as x→∞ and f(x) = O(|x|α) (C) as x→ −∞ if and only if

f(λx) = O(λα) as λ→∞,

where the last relation holds weakly in D′, i.e., for all φ ∈ D fixed, 〈f(λx), φ(x)〉 = O(λα),
λ → ∞. On the other hand, a distribution f belongs to the space K′ if and only if it
satisfies the moment asymptotic expansion [13].

Let f ∈ D′(R) with support bounded on the left. If φ ∈ E(R) then the evaluation
〈f(x), φ(x)〉 will not be defined, in general. We say that the evaluation exists in the
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Cesàro sense and equals L, written as

〈f(x), φ(x)〉 = L (C), (4)

if g(x) = L + o(1) (C) as x → ∞, where g is the primitive of fφ with support bounded
on the left. A similar definition applies if supp f is bounded on the right. Observe that if
f corresponds to a locally integrable function f with supp f ⊂ [a,∞) then (4) means that∫ ∞

a

f(x)φ(x) dx = L (C).

Naturally, this will hold for any integration method we use. If f(x) =
∑∞
n=0 anδ(x − n)

then (4) tells us that
∞∑
n=0

anφ(n) = L (C).

In the general case when the support of f extends to both −∞ and +∞, there are
various different but related notions of evaluations in the Cesàro sense (or in any other
summability sense, in fact). If f admits a representation of the form f = f1+f2, with supp f1
bounded on the left and supp f2 bounded on the right, such that 〈fj(x), φ(x)〉 = Lj (C)
exist, then we say that the (C) evaluation 〈f(x), φ(x)〉 (C) exists and equals L = L1 +L2.

This is clearly independent of the decomposition. The notation (4) is used in this situation.
It happens many times that 〈f(x), φ(x)〉 (C) does not exist, but the symmetric limit,

limx→∞{g(x)− g(−x)} = L, where g is any primitive of fφ, exists in the (C) sense. Then
we say that the evaluation 〈f(x), φ(x)〉 exists in the principal value Cesàro sense, and
write

p.v.〈f(x), φ(x)〉 = L (C).

Observe that p.v.
∑∞
n=−∞ anφ(n) = L (C) if and only if

∑N
−N anφ(n)→ L (C) asN →∞

while p.v.
∫∞
−∞ f(x)φ(x) dx = L (C) if and only if

∫ A
−A f(x)φ(x) dx → L (C) as A→∞.

A very useful intermediate notion is the following. If there exists k such that

lim
x→∞

{g(ax)− g(−x)} = L (C, k), ∀a > 0,

we say that the distributional evaluation exists in the e.v. Cesàro sense and write

e.v.〈f(x), φ(x)〉 = L (C, k),

or just e.v.〈f(x), φ(x)〉 = L (C) if there is no need to call the attention to the value of k.
We shall also use the notation

s.v.〈f(x), φ(x)〉 = L (C, k),

if we have that
lim
x→∞

{g(a+ x)− g(−x)} = L (C, k), ∀a ∈ R.

4. Łojasiewicz distributions. In this section we introduce a large class of distribu-
tions that correspond to ordinary functions, the class of Łojasiewicz distributions. In
general Łojasiewicz distributions are not regular distributions, that is, they correspond
to ordinary functions that are not locally Lebesgue integrable functions.
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The simplest class of distributions that correspond to functions are those that come
from continuous functions. If f ↔ f and f is continuous then it is an ordinary function:
We can always say what f(x0) is for any x0. The function f is not just defined almost
everywhere but it is actually defined everywhere.

Interestingly, there is another case when f corresponds in a unique way to an ordinary
function, one that is defined everywhere, the case of the Łojasiewicz distributions and
the corresponding Łojasiewicz functions.

Definition 4.1. A distribution f is a Łojasiewicz distribution if the distributional point
value f(x0) exists for every x0 ∈ R.

Definition 4.2. A function f defined in R is called a Łojasiewicz function if there exists
a Łojasiewicz distribution f such that

f(x) = f(x) ∀x ∈ R.

The correspondence f ↔ f is clear in the case of Łojasiewicz functions and distri-
butions. The Łojasiewicz functions can be considered as a distributional generalization
of continuous functions. They are defined at all points, and furthermore the value at
each given point is not arbitrary but the (distributional) limit of the function as one
approaches the given point. The Łojasiewicz functions and distributions were introduced
in [18] but the name, which is only quite natural, has been used by this writer for some
time in order to call attention to the work of Łojasiewicz.

4.1. Properties. The most important properties of these distributions and functions
are the following.

1. f ↔ f, i.e., f = 0 ⇔ f = 0.

2. If f0 is a Łojasiewicz distribution, and f1 is a primitive, f ′1 = f0, then f1 is also a
Łojasiewicz distribution.

3. If f is a Łojasiewicz distribution and ψ is a smooth function, then ψf is a Łojasiewicz
distribution and

(ψf)(x) = ψ(x)f(x).

4. If f is Łojasiewicz function (f ↔ f), then we can define its definite integral as∫ b

a

f(x) dx = f1(b)− f1(a), (5)

where f ′1 = f.

5. If f ∈ D′(R) is a Łojasiewicz distribution (f ↔ f), then the evaluation of f on a test
function φ, 〈f, φ〉, can actually be given as an integral, namely,

〈f, φ〉 =
∫ ∞
−∞

f(x)φ(x) dx =
∫ b

a

f(x)φ(x) dx, φ ∈ D(R) , (6)

where suppφ ⊂ [a, b].
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6. If f ∈ S ′(R) is a Łojasiewicz distribution (f ↔ f), then the evaluation of f on a test
function φ ∈ S(R) is given by

〈f, φ〉 =
∫ ∞
−∞

f(x)φ(x) dx (C).

This formula also holds if the Łojasiewicz distribution belongs to K′(R) and the test
function φ belongs to K(R).

It seems as if (6) is the key relation between a distribution and an ordinary function,
f ↔ f, for a suitable integration method.

A typical example of a Łojasiewicz function is

sα,β(x) =
{
|x|α sin |x|−β , x 6= 0,
0, x = 0,

for α ∈ C and β > 0. If H is the Heaviside function, then the functions H(±x)sα,β(x) and
their linear combinations are also Łojasiewicz functions. It is not hard to see that this
implies that derivatives of arbitrary order of sα,β , where sα,β ↔ sα,β , are also Łojasiewicz
distributions.

These are rapidly oscillating functions. However, not all fast oscillating functions are
Łojasiewicz functions. Curiously, the regular distribution sin(ln |x|) is not a Łojasiewicz
distribution since the distributional value at x = 0 does not exist in the Łojasiewicz sense
(even though it exists and equals 0 in the Campos Ferreira sense [2]).

5. Distributionally regulated functions. Another case when a distribution is an
“ordinary function” is the case of regulated distributions, introduced and studied in [26].
They are generalizations of the ordinary regulated functions [5], which are functions whose
lateral limits exist at all points, although they may be different. They are related to the
recently introduced “thick” points [12].

Definition 5.1. A distribution f is called a regulated distribution if the distributional
lateral limits

f(x0 + 0) and f(x0 − 0),

exist ∀x0 ∈ R, and there are no delta functions at any point.

If f(x0 + 0) = f(x0 − 0) then f(x0) exists, since these distributions do not have delta
functions, and therefore we can define the function

f(x0) = f(x0),

for these x0. Then f is a distributionally regulated function. The function f is defined in
the set R \S, where S is the set of points x0 where f(x0 + 0) 6= f(x0− 0). The set S has
measure zero since in fact it is countable at the most [26].

One can actually define

f(x0) =
f(x0 + 0) + f(x0 − 0)

2
,

and this is defined everywhere.
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Example 5.2. If a, b, c, d are constants, and H is the Heaviside function, then

f0(x) =
(
a+ b sin

1
x

)
H(x) +

(
c+ d sin

1
x

)
H(−x),

is a distributionally regulated function; it is not a classical regulated function and it
is not a function of bounded variation. One can use some condensation of singularities
technique to obtain examples that show this behavior not only at x = 0 but over a dense
set. For instance, if {ωn}∞n=0 is dense in R, and if

∑∞
n=0 |an| <∞, then

f1(x) =
∞∑
n=0

anf0(x− ωn),

is a distributionally regulated function with distributional jumps at the points x = ωn.

Similarly, if q > 1, the function

f2(x) =
∞∑
n=1

f0(sinnx)
nq

,

is continuous at all the irrational points and has distributional jump discontinuities at
each rational number.

5.1. Properties. The basic properties of the distributionally regulated functions and
the corresponding regulated distributions are the following.

1. f ↔ f , i.e., f = 0 ⇐⇒ f = 0.

2. If f0 is a regulated distribution, and f1 is a primitive, f ′1 = f0, then f1 is a Łojasiewicz
distribution.

3. If f is a regulated distribution and ψ is a smooth function, then ψf is a regulated
distribution and

(ψf)(x) = ψ(x)f(x).

4. If f is regulated function (f ↔ f), then we can define its definite integral as∫ b

a

f(x) dx = f1(b)− f1(a), (7)

where f ′1 = f.

5. If f ∈ D′(R) is a regulated distribution (f ↔ f), then

〈f, φ〉 =
∫ ∞
−∞

f(x)φ(x) dx, φ ∈ D(R).

6. If f is a regulated distribution (f ↔ f), and f ∈ S ′(R) and φ ∈ S(R), or f ∈ K′(R) and
φ ∈ K(R), then the evaluation of f on the test function φ is given by

〈f, φ〉 =
∫ ∞
−∞

f(x)φ(x) dx (C).
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6. Integrable distributions. We have considered two classes of distributions that cor-
respond to ordinary functions. The Łojasiewicz functions are a generalization of the
continuous functions, while the distributionally regulated functions are a generalization
of the ordinary regulated functions; both classes consist of functions that can be defined
everywhere in R. We shall now consider a class of distributions and a corresponding
class of ordinary functions that are just defined almost everywhere, more like the locally
Lebesgue integrable functions. In order to introduce these classes we need to define a new
integral.

Let f be a function defined almost everywhere in R, that is, in a set of the form R\Z,
where Z has measure zero. We say that f is distributionally (locally) integrable if there
exist two distributions f0 and f1, of the space D′(R) such that:

a) f ′1 = f0.

b) f0(x) exist for almost every x ∈ R and

f(x) = f0(x) (a.e.).

c) f1(x) = f1(x) exist for every x ∈ R.
d) The function f1 is absolutely continuous in the following generalized sense: for each
interval [a, b], there exists a sequence of subsets {En}∞n=1 such that [a, b] =

⋃∞
n=1En, and

f1 is absolutely continuous in En.
In this case we write:

(dist)
∫ b

a

f(x) dx = f1(b)− f1(a), (8)

and call (dist)
∫ b
a
f(x) dx the distributional integral of the function f. When there is no

possibility of confusion one may write just
∫ b
a
f(x) dx, but for the purposes of this article

we will not do so.

Naturally one can consider distributional integration for functions defined just in an
interval, not on the whole real line.

Observe that the distribution f0 is unique, if it exists, while f1 is unique up to an
additive constant. We say that f0 is a (locally) integrable distribution.

6.1. Properties. The basic properties of the locally integrable distributions, f, and the
distributionally locally integrable functions, f, are the following.

1. f ↔ f , i.e., f = 0 ⇐⇒ f = 0 (a.e.).

2. If f0 is a locally integrable distribution, and f1 is a primitive, f ′1 = f0, then f1 is a
Łojasiewicz distribution.

3. If f is a locally integrable distribution and ψ is a smooth function, then ψf is a locally
integrable distribution and

(ψf)(x) = ψ(x)f(x) (a.e.).

4. If f ∈ D′(R) is a locally integrable distribution (f ↔ f), then

〈f, φ〉 = (dist)
∫ ∞
−∞

f(x)φ(x) dx , φ ∈ D(R).
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5. If f is a locally integrable distribution (f ↔ f), and f ∈ S ′(R) and φ ∈ S(R), or
f ∈ K′(R) and φ ∈ K(R), then the evaluation of f on the test function φ is given by

〈f, φ〉 = (dist)
∫ ∞
−∞

f(x)φ(x) dx (C).

Observe that any locally Lebesgue integrable function is distributionally locally in-
tegrable. More generally, if f is Denjoy-Perron-Henstock locally integrable, then it is
distributionally locally integrable; in this case

F (x) =
∫ x

a

f(t) dt

is a continuous function. If f is distributionally locally integrable then in general F will
not be a continuous function but rather a Łojasiewicz function.

In general if f is locally distributionally integrable and E ⊂ R is measurable with
characteristic function χE , then χEf is not locally distributionally integrable. Thus one
cannot talk about

(dist)
∫
E

f(x) dx.

This is also true for any non-absolute integral such as the Denjoy-Perron-Henstock in-
tegral. However, if m(E) = 0, then χEf is locally distributionally integrable and has
integral 0, so that

(dist)
∫
E

f(x) dx = 0 if m(E) = 0.

Furthermore, if f a locally distributionally integrable and E =
⋃N
n=1 In is a finite union

of non-overlapping intervals then χEf is locally distributionally integrable and

(dist)
∫

SN
n=1 In

f(x) dx =
N∑
n=1

(dist)
∫
In

f(x) dx.

It follows from the results of [18] that if f is a Łojasiewicz function then it is locally
distributionally integrable and actually the definition of the integral (5) is the same as
the definition (8). Similarly, if f is a distributionally regulated function then it is locally
distributionally integrable and (7) coincides with (8).

Distributional integration satisfies many of the usual properties of non-absolute inte-
grals, such as mean value theorems, integration by parts formulas, etc. Strikingly, these
properties are all that one needs to obtain many important results in analysis, and thus
several classical results that hold for Lebesgue integrable functions remain true for dis-
tributionally integrable functions.

Example 6.1. The unique Łojasiewicz distribution sα,β for α ∈ C, β > 0, sα,β ↔ sα,β ,

such that
sα,β(x) = |x|α sinx−β , x 6= 0,

and sα,β(0) = 0, is always locally integrable. The reader may want to analyze when
|x|α sinx−β is regular or when it is Denjoy integrable.
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Example 6.2. The regular distribution xiH(x) is not a Łojasiewicz distribution, there-
fore its distributional derivative, a regularization of ixi−1H(x), is not distributionally
integrable.

Example 6.3. Examples of distributions that are not integrable include the following.
The Dirac delta function δ(x) is not integrable because its primitives, H(x) +C, are not
Łojasiewicz distributions. The same can be said of any regularization of the function 1/x.
Another interesting example is provided by ν = ψ′, the derivative of the Cantor function:
In fact a distribution concentrated on a set of measure 0 cannot be integrable.

7. The φ-transform. Following [26], we introduce the φ-transform, a function of two
variables that we now define. Let φ ∈ D(R) be a fixed test function that satisfies∫ ∞

−∞
φ(x) dx = 1. (9)

If f ∈ D′(R) we introduce the function of two variables F = Fφ{f} by the formula

F (x, y) = 〈f(x+ yξ), φ(ξ)〉 , x ∈ R, y > 0,

the distributional evaluation with respect to the variable ξ. We call F the φ-transform of
f. Observe that if f is locally integrable, f ↔ f, then

F (x, y) = (dist)
∫ ∞
−∞

f(x+ yξ)φ(ξ) dξ. (10)

The φ-transform can also be defined if φ does not belong to D(R) as long as we
consider only distributions f of a more restricted class. Indeed, we can consider the case
when φ ∈ A(R) and f ∈ A′(R) for any suitable space of test functions A(R), such as
S(R), K(R), or E(R). It would be needed to evaluate (10) in the (C) sense in some cases.
Observe that we assume (9) in every case. The φ-transform has been studied by various
authors, under different names, such as “standard average with kernel φ” [6].

The basic property of the φ-transform is that f(x) is the distributional boundary value
of F (x, y) as y → 0, that is, if f ∈ D′(R) then

lim
y→0+

F (x, y) = f(x),

distributionally in the space D′(R), namely,

lim
y→0
〈F (x, y), ψ(x)〉 = 〈f(x), ψ(x)〉 , ∀ψ ∈ D(R).

The result will also hold when f ∈ E ′(R) and φ ∈ E(R) if φ ∈ L1(R). Another case when
f(x) is the distributional boundary value of F (x, y) as y → 0 is if

f(x) = O(|x|β) (C) , as |x| → ∞, (11)

φ(x) = O(|x|α) , strongly as |x| → ∞, (12)

and
α < −1 , α+ β < −1, (13)

as follows from [10, Theorem 1]. It is true in particular if f ∈ S ′(R) and φ ∈ S(R).
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For future reference, we say that if f ∈ D′(R) and φ ∈ D(R) we are in Case I.
If (11), (12), and (13) are satisfied, we say that we are in Case II. When f ∈ S ′(R) and
φ ∈ S(R) we say that we are in Case III. Most results will hold in any of these three cases.
However, the results are usually false when we just assume that f ∈ E ′(R) and φ ∈ E(R).

Suppose now that f(x0) = γ, distributionally. In any of the cases I, II, or III, we
have [26]

lim
(x,y)→(x0,0)

F (x, y) = γ,

in any sector y ≥ m|x− x0| for any m > 0.

Theorem 7.1. If f is a locally integrable distribution, f ↔ f , then

lim
(x,y)→(w,0)

angularly

F (x, y) = f(w),

almost everywhere with respect to w, and if f is a Łojasiewicz distribution, for all w ∈ R.

These results apply to general distributions and test functions. When the test function
φ is of certain special forms, however, the φ-transform becomes a particular solution of a
partial differential equation, and those results become results on the boundary behavior
of solutions of partial differential equations.

Suppose first that φ = φ1 where

φ1(x) =
p(x)
q(x)

,

p and q are polynomials, α = deg q − deg p ≥ 2, q does not have real zeros, and∫∞
−∞ φ1(x) dx = 1. Let

q(x) =
n∑
k=0

akx
k.

Then if f ∈ D′(R) satisfies the estimate f(x) = O(|x|β) (C), |x| → ∞, where α+ β < −1,
then the φ-transform

F1(x, y) = 〈f(x+ yξ), φ1(ξ)〉, x ∈ R, y > 0,

is a solution of the partial differential equation
n∑
k=0

an−k
∂nF

∂xk∂yn−k
= 0,

with F (x, 0+) = f(x) distributionally, since
n∑
k=0

an−k
∂nF

∂xk∂yn−k
=

n∑
k=0

an−k〈f(n)(x+ yξ)ξn−k, φ1(ξ)〉

= 〈f(n)(x+ yξ)q(ξ), φ1(ξ)〉 = 〈f(n)(x+ yξ), p(ξ)〉 = 0.

Observe that if f is a locally integrable distribution, f ↔ f, then

F1(x, y) = (dist)
∫ ∞
−∞

f(x+ yξ)φ1(ξ) dξ (C).
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In the particular case when q(x) = x2 + 1, p(x) = 1/π, we obtain

φ2(x) =
1

π(x2 + 1)
,

and F2(x, y) is the Poisson “integral” of f, which in case f(x) = O(|x|β) (C), |x| → ∞, for
some β < 1, is the harmonic function with F2(x, 0+) = f(x) distributionally that satisfies
F2(x, y) = O(|x|β) (C), |x| → ∞, for each fixed y > 0. Observe that

F2(x, y) =
y

π
(dist)

∫ ∞
−∞

f(ξ) dξ
(x− ξ)2 + y2

,

if f is a locally integrable distribution, f ↔ f.

Theorem 7.2. If f is a distributionally integrable function then F1(x, y), and in particu-
lar F2(x, y), satisfies that F1(x, y)→ f(w) as (x, y)→ (w, 0) in any sector y ≥ m|x−w|
for m > 0, almost everywhere with respect to w, and for all w if f is a Łojasiewicz
function.

Let us now take φ = ϕν where its Fourier transform is given by

ϕ̂ν(u) = e−u
ν

,

where ν = 2p is an even positive integer. Alternatively, ϕν is the only solution in S of
the ordinary differential equation

ϕ(ν−1)(ξ) = (−1)p
ξ

ν
ϕ(ξ),

with
∫∞
−∞ ϕ(ξ) dξ = 1. Then if f ∈ S ′(R), and F is the φ-transform corresponding to ϕν ,

the function
Gν(x, t) = F (x, t1/ν), x ∈ R, t > 0,

is a solution of the initial value problem
∂G

∂t
= (−1)p−1 ∂

νG

∂xν
,

G(x, 0+) = f(x), distributionally.

In particular, if ν = 2, then

ϕ̂ν(u) = e−u
2
, ϕν(ξ) =

1
2
√
π
e−ξ

2/4,

and G2(x, t) is the solution of the heat equation G,t = G,xx that satisfies G(x, 0+) =
f(x), distributionally, and with G(x, t) ∈ S ′(R) for each fixed t > 0.

Theorem 7.3. If f is a locally integrable distribution, f ↔ f then G2(x, t) takes the form

G2(x, t) =
1

2
√
πt

(dist)
∫ ∞
−∞

f(ξ)e−
(ξ−x)2

4t dξ .

If f is a distributionally integrable function, then Gν(x, t) → f(w) in any region of the
form t ≥ m|x − w|ν almost everywhere with respect to w. If f is a Łojasiewicz function
this holds for all w ∈ R.
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8. The Fourier transform of locally integrable distributions. We shall now give
the characterization of the Fourier transform of tempered locally integrable distributions.

The characterization of the Fourier series of those periodic distributions that have a
distributional point value was given in [8]: If f(θ) =

∑∞
n=−∞ ane

inθ in the space D′(R)
then

f(θ0) = γ, distributionally,

if and only if there exists k such that

lim
x→∞

∑
−x≤n≤ax

ane
inθ0 = γ (C, k), ∀a > 0.

Therefore, if f is a periodic locally distributionally integrable function, of period 2π,
then the coefficients

an = (dist)
∫ 2π

0

f(θ)e−inθ dθ,

are well-defined for all n ∈ Z, and

lim
x→∞

∑
−x≤n≤ax

ane
inθ = f(θ) (C, k), ∀a > 0, (14)

almost everywhere with respect to θ. If f is a Łojasiewicz function (14) holds for all
θ ∈ R.

Recently a similar result for general Fourier transforms was obtained [26, 25]. Indeed,
let f ∈ S ′(R), and let x0 ∈ R, then

f(x0) = γ, distributionally,

if and only if
e.v.〈̂f(u), e−iux0〉 = 2πγ (C).

We have chosen the constants in the Fourier transform in such a way that

f̂(u) =
∫ ∞
−∞

f(x)eixudx,

if the integral makes sense. In case f̂ is locally distributionally integrable this means that

e.v.(dist)
∫ ∞
−∞

f̂(u)e−iux0du = 2πγ (C).

Suppose now that f is a locally integrable tempered distribution, f ↔ f. Then

e.v.〈̂f(u), e−iux0〉 = 2πf(x0) (C), (15)

almost everywhere with respect to x0, and actually everywhere if f is a Łojasiewicz
function. When f̂ is also locally integrable, f̂ ↔ f̂ , then (15) becomes

e.v.(dist)
∫ ∞
−∞

f̂(u)e−iux0du = 2πf(x0) (C).

9. The Poisson summation formula. The Poisson summation formula
∞∑

k=−∞

f(k) =
∞∑

m=−∞
f̂(2πm),

is a rather useful tool in many areas of mathematics. Unfortunately, one needs strong
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convergence assumptions for it to hold. Furthermore, it cannot hold in this form for
general distributions because one needs the point values of f and its Fourier transform.
There are generalizations where the convergence is replaced by summability and there is
actually a parametric version that holds for all tempered distributions [7]. Here we shall
consider a different, pointwise distributional version.

Definition 9.1. Let f ∈ S ′(R). We shall say that f satisfies condition (B) if f satisfies
that for each smooth function φ such that φ(k)(x) = O(1) as |x| → ∞ for all k, the
evaluation s.v.〈f(x), φ(x)〉 (C) exists.

If f satisfies condition (B) then for each p > 0 we can define a periodic distribution
gp ∈ S ′(R) by putting

〈gp(x), φ(x)〉per = s.v.〈f(x), φ(x)〉 (C), (16)

for any smooth periodic function of period p, where 〈gp(x), φ(x)〉per is the evaluation in
the space of periodic distributions and periodic test functions of period p, or in the circle,
if one prefers. Notice that

gp(x) =
∞∑

k=−∞

f(x+ kp) (C), (17)

in the space S ′(R). Observe also that if f̂ is a Łojasiewicz distribution then

f̂

(
2πm
p

)
= 〈gp(x), e2πimx/p〉per.

Now, since gp is a periodic distribution, it has a distributionally convergent Fourier
series, which because of (16) and (17) becomes

∞∑
k=−∞

f(x+ kp) =
∞∑

m=−∞
f̂

(
−2πm

p

)
e2πimx/p (C), (18)

in S ′(R); the (C) corresponds to the series on the left, the one on the right is convergent.
Moreover, if gp is an ordinary function, gp ↔ gp, then the series on the right side of (18)
is Cesàro summable almost everywhere with respect to x, to the value gp(x), i.e., (18)
would become valid almost everywhere with respect to x, but in that case both series
would need to be understood in the (C) sense.

As an application of this version of the Poisson summation formula we shall consider
an interesting “uncertainty principle” result for Fourier transforms. There is vast literature
on uncertainty principles in Fourier analysis [15], that basically say that both a function
and its Fourier transform cannot both have certain “nice” properties. A very simple
example is the fact that if both f and f̂ have compact support, then they must vanish.
A similar but much more interesting result is the Theorem of Benedicks [1] according to
which if both f and f̂ correspond to continuous Lebesgue integrable functions in Rn and
if both sets

Σ(f) = {x ∈ Rn : f(x) 6= 0},

and Σ(f̂ ) have finite measure, then f must vanish. Actually the theorem can be stated by
just requiring that f ∈ L1(Rn) since this immediately yields that f, f̂ ∈ L1(Rn)∩C(Rn).



DISTRIBUTIONS THAT ARE FUNCTIONS 109

Benedicks’ result is plainly false for distributions, as consideration of a Dirac comb∑∞
k=−∞ δ(x−k) shows. Naturally, such Dirac combs do not correspond to ordinary func-

tions. However, as we shall presently see, the result is valid for Łojasiewicz distributions
that satisfy condition (B). Strikingly, the proof is basically the same as that of Benedicks
[1, 15]. We will present the proof in the one variable case because in this article we have
considered only distributions of one variable, but employing the corresponding ideas in
several variables [3, 19] the same proof can be used in Rn.

Theorem 9.2. Let f ∈ S ′(R) satisfy condition (B). Suppose both f and f̂ are Łojasiewicz
distributions and that both sets Σ(f) and Σ(f̂ ) have finite measure. Then f = 0.

Proof. Indeed, suppose f ∈ S ′(R) is a Łojasiewicz distribution that satisfies condition (B).
Then so is f(x)eiax for any a ∈ R. Let w be the distribution of two variables given by

w(x, a) =
∞∑

m=−∞
f̂(2π(m+ a))e−2πimx/p, (19)

or, because of (18), by

w(x, a) =
∞∑

k=−∞

f(x+ k)eia(x+k). (20)

Performing a dilation, if needed, we may assume that the set Σ(f) has measure smaller
than 1. Then we can find subsets A, B, and F of R such that A and B have full measure,
and have the following properties. First, the sum in (19) is finite whenever a ∈ A, and
thus that sum is a trigonometric polynomial in x, wa(x), if a ∈ A. Similarly, the sum
in (20) is finite whenever x ∈ B, and thus that sum is a trigonometric polynomial in a,
wx(a), if x ∈ B. Finally, because m(Σ(f)) < 1, we can choose F ⊂ [0, 1] with positive
measure, m(F ) > 0, such that f(x+k) = 0 for all x ∈ F and all k ∈ Z, so that wx(a) = 0
for all (x, a) ∈ F × R.

Now, if a ∈ A is fixed, we have that the trigonometric polynomial wa(x), wa ↔ wa,

is equal distributionally in x to a distribution corresponding to the measurable function
wx(a), and thus wa(x) = wx(a) almost everywhere in x. Therefore wa(x) = 0 on a set of
positive measure, and thus wa = 0. Hence f̂(2π(m + a)) = 0 for all (a,m) ∈ A × Z, and
this yields that f̂(u) = 0 almost everywhere in u, and since f̂ is a Łojasiewicz distribution
it follows that f̂ = 0.
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