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Abstract. We consider various generalizations of linear homogeneous distributions on adeles

and construct a number of algebras of non-linear generalized functions on adeles and totally

disconnected groups such as the discrete adeles.

1. Introduction. The algebra of adeles over the field of rational numbers Q was intro-
duced by A. Weil. Invertible adeles, now known as ideles, were introduced by C. Cheval-
ley [4]. Adeles became a powerful analytic tool in number theory [20]; they have applica-
tions in representation theory [9] and in modern mathematical physics [6].

There is no interesting topology on the field of rational numbers. However it is possible
to embed this field into the canonically associated algebra of adeles having a non-trivial
topology and a Haar measure. Thus numerous tools of functional analysis can be applied.
Here we summarize some developments in linear and non-linear theory of generalized
functions on adeles. See [5] for basics of the non-linear theory on the real axis. An abstract
approach to the non-linear theory is presented in [2,15].

2. The linear theory

2.1. p-adic numbers and adeles. According to Ostrowski’s theorem [17] there are
countably many non-trivial essentially different valuations on the field Q. One of them is
the usual absolute value | · |∞ = | · |, and others are p-adic valuations | · |p corresponding
to the primes p ∈ {2, 3, 5, . . .}. The p-adic valuation is defined by |x|p = p−γ for x =
pγ · mn 6= 0 with integers m,n not divisible by p. Notice that | · |p satisfies the strong
triangle inequality |x+ y|p ≤ max{|x|p, |y|p}.
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The real field Q∞ = R is the completion of Q with respect to | · |∞. Similarly, the
field of p-adic numbers Qp is the completion of Q with respect to | · |p. Each element
x ∈ Qp, x 6= 0, has a unique representation x = pγ(x)(x0 + x1p + x2p

2 + . . .), where
xk ∈ {0, 1, . . . , p− 1} are p-adic digits, x0 6= 0. The field Qp is locally compact, so there
exists a unique shift invariant Haar measure dpx on Qp. We normalize it by dpx(Zp) = 1,
where Zp = {x : |x|p ≤ 1} is the ring of p-adic integers. For details see [17,18].

Consider finite subsets S of the set V = {∞, 2, 3, . . . , p, . . .} with∞ ∈ S and the rings
AS of sequences given by

AS = {x = (xv)v∈V : ∀v ∈ S xv ∈ Qv and ∀ v 6∈ S xv ∈ Zv}
with pointwise operations. The ring A of adeles is the union of all such AS . Each AS has
the Tychonoff topology and A is equipped with the topology of inductive limit.

The field Q is embedded diagonally into A by q 7→ (q, q, q, . . .). The embedding is
well-defined since |q|p = 1 for all but a finite number of p’s. Thus A is an algebra over Q
and the image of the embedding forms a discrete co-compact subgroup of A with respect
to addition.

The multiplicative group A× of ideles has a topology induced by the embedding
λ 7→ (λ, λ−1) into A× A. For each idele λ one defines its modulus

|λ| =
∏
v

|xv|v ∈ (0,+∞) (the first adelic formula states that |q| = 1 for q ∈ Q×).

One has A = R×A0, where A0 is the discrete adele group. The groups A, A0 and A×
are locally compact. For details we refer to [9,20].

Bruhat–Schwartz distributions. The Bruhat–Schwartz space S(A) of test functions
on adeles consists of finite linear combinations of cylindrical functions ϕ(λ) =

∏
ν ϕν(λν),

where ϕ∞ ∈ S(R), ϕp ∈ S(Qp) and all but finitely many of ϕp are equal to the
characteristic function of Zp. Recall that S(Qp) consists of locally constant and com-
pactly supported functions on Qp. The Bruhat–Schwartz space S(A0) also consists of
locally constant compactly supported functions and can be represented as an inductive
limit of compactly supported spaces; S(A0) carries the strongest locally-convex topology,
so S(A) = S(R)⊗S(A0). Elements of the dual spaces S ′(A) and S ′(A0) are called Bruhat–
Schwartz distributions [3].

Pontryagin duality and Fourier transform. The fractional part of x ∈ Qp is the
number

{x}p =

{
0, if γ(x) ≥ 0 or x = 0,

pγ(x0 + . . .+ x|γ|−1p
|γ|−1), if γ(x) < 0

∈ Q.

Consider the map χ : A→ C given by

χ(x) = exp(2πi(−{x∞}+ {x2}2 + {x3}3 + . . .+ {xp}p + . . .)).

One checks [9] that χ is a character (i.e. χ(x + y) = χ(x)χ(y), |χ(x)| = 1, see [11]
for a general theory). The Pontryagin dual group Â can be identified with A by the
homeomorphism s 7→ χs given by χs(t) = χ(st).

The Fourier transform F : S(A)→ S(A) acts on cylindrical functions by F : ⊗vϕv 7→
⊗v(Fvϕv). The Fourier transform on S ′(A0) is defined by duality 〈Fu, ϕ〉 = 〈u,Fϕ〉. The
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Fourier transform is a linear isomorphism both on S(A) and on S ′(A). A convolution is
also defined on S(A). It is connected with the Fourier transform in the usual way.

2.2. Adelic distributions ∆g,θ and a functional equation. Let R+ = (0,+∞).
Consider a locally integrable tempered complex-valued function g ∈ Lloc

1 (R+) ∩ S ′(R+).
Let θ be a character of the group A×/Q×; θ can be seen as a character of A× satisfying
θ(q) = 1 for q ∈ Q×. We define the Bruhat–Schwartz distribution ∆g,θ as the integral
over ideles with respect to the idelic Haar measure

∆g,θ(ϕ) =
∫

A×
ϕ(λ)θ(λ)g(|λ|) d∗λ, ϕ ∈ S(A).

The case g(t) = ts gives the famous Tate distributions (also known as homogeneous
distributions [9, 10]). In general, the integral above does not converge and one needs
a regularization.

Lemma 2.1. If supp(g) ⊂ [T,+∞) for some T > 0 then ∆g,θ is well-defined.

This lemma and the Poisson-Tate summation formula∑
q∈Q

ϕ(qλ) =
1
|λ|
∑
q∈Q

ϕ̃
( q
λ

)
, λ ∈ A×, ϕ ∈ S(A),

allow us to write the following regularization formula [14]

∆g,θ(ϕ) = ∆+
g,θ(ϕ) + ∆+

gτ ,θ̄
(Fϕ) + εθ(Fϕ)(0)

∫
(0,1]

g(t)
t
d∗t− εθϕ(0)

∫
(0,1]

g(t)d∗t.

Here ∆+
g,θ denotes the well-defined distribution ∆f,θ, where f(t) = I[1,+∞)g(t), I[1,+∞) is

the characteristic function of the interval, gτ (t) = t · g(t−1), εθ = 1 if θ ≡ 1, and εθ = 0
otherwise. To complete the regularization in case θ ≡ 1 one should assume that certain
values have been assigned to

∫
(0,1]

g(t)
t d∗t and

∫
(0,1]

g(t) d∗t. Assuming also that certain

values have been assigned to
∫

(0,1]
gτ (t) d∗t and

∫
(0,1]

gτ (t)
t d∗t we can write the Fourier

image of ∆g,θ in the following form

(F∆g,θ)(ϕ) = ∆gτ ,θ̄(ϕ) + εθϕ(0)
∫

(0,+∞)

g(t)
t
d∗t− εθ(Fϕ)(0)

∫
(0,+∞)

g(t)d∗t.

Using the regularization technique as above we deduce

Theorem 2.2. Any Bruhat–Schwartz function on the group of idele classes can be re-
garded as an adelic distribution. Precisely, there is a continuous embedding S(A×/Q×)→
S ′(A).

Let ∆(g(t)) denote a distribution ∆g,θ, where θ ≡ 1. Let δ denote the Dirac delta,
and let 1 denote the distribution in S ′(A) corresponding to the constant 1. For the
characteristic function of a segment, g(t) = I[a,b](t), a, b > 0, one has

F∆(I[a,b]) = ∆(t · I[1/b,1/a]) + δ · (log b− log a)− 1 · ϕ(0)(b− a).

For g(t) = ts · h(t) depending on s ∈ C our functional equation simplifies to

F∆(ts · h(t)) = ∆(t1−s · h(t−1)) + δ · (Mh)(s− 1)− 1 · (Mh)(s),
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where (Mh)(s) denotes the Mellin transform of h at s. In this case analytic continuation
with respect to s can be applied. For example,

F∆
(

ts

a+ tr

)
= ∆

(
t1−s

a+ t−r

)
+ δ · πa

(s−1)
r −1

r sin π(s−1)
r

− 1 · πa
s
r−1

r sin πs
r

, a > 0, s /∈ rZ.

2.3. A multi-index generalization of Tate distribution. Let ξ = (ξ2, ξ3, . . . , ξp, . . .)
∈ A0 and let α = (α2, α3, . . . , αp, . . .) ∈ R∞ be an infinite multi-index. The formal
expression |ξ|α =

∏
p |ξp|

αp
p generalizes homogeneous distributions on the group of discrete

adeles [7, 19].

Theorem 2.3. If limp→∞ αp ln p = 0, then |ξ|α represents a function finite almost every-
where with respect to the Haar measure. It belongs to Llocq (A0), 1 ≤ q < +∞, if αp > −1/q
for all p. It does not belong to Lq(A0) for any 1 ≤ q < +∞.

Corollary 2.4. If limp→∞ αp ln p = 0 and αp > −1 for all p, then |ξ|α is finite almost
everywhere. In particular, |ξ|α ∈ S ′(A0).

Assume that limp→∞ αp ln p = 0 and αp > −1/2 for all p. The Vladimirov operator
V α is a pseudo-differential operator with the symbol |ξ|α:

(V αϕ)(x) =
∫
A

|ξ|α ϕ(ξ)χ0(−ξx) dξ, ϕ(x) ∈ S(A0).

Here χ0 is a basic character for discrete adeles similar to χ in section 2.1.

Theorem 2.5. The operator V α with the domain S(A0) is essentially self-adjoint. Its
closure (let us denote it by V α again) with the domain

D(V α) = {ϕ ∈ L2(A0) : |ξ|αϕ(ξ) ∈ L2(A0)}

is a self-adjoint operator with spectrum σ(Vα) = [0,+∞).

3. Non-linear generalized functions on adeles

3.1. The case of a totally disconnected self-dual group. Now we pass to the non-
linear theory of adelic generalized functions. First we describe a more general approach to
construct algebras of non-linear generalized functions (mnemofunctions) than in [13,14].
It applies to any totally disconnected self-dual group G such as Qp or A0, see [1,12] for
the p-adic theory. Let us fix some isomorphism α : G→ Ĝ ∼= G and consider the self-dual
Haar measure m on G.

Everywhere below H denotes an open compact subgroup of G. Its annihilator H⊥ :=
{g ∈ G : ∀h ∈ H 〈α(g), h〉 = 1} ⊂ G is also an open compact subgroup.

We call H a small subgroup if H ⊂ H⊥. LetH denote the family of all small subgroups
(subgroup H0 ∩H⊥0 is small for any open compact H0, so H is not empty). The family
H is ordered by inverse inclusion. One checks that H forms a neighborhood filter at zero.
Everywhere below H is small.

The Bruhat–Schwartz space S ≡ S(G) consists of all locally constant compactly
supported functions ϕ (i.e. for some H one has (x − y) ∈ H ⇒ ϕ(x) = ϕ(y) and
suppϕ ⊂ H⊥).
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Consider the following algebra GM of nets indexed by H and the ideal N ⊂ GM :

GM
def= {g = (gH)H∈H : gH ∈ S} = SH,

N def= {g ∈ GM : ∃H0 ∀H � H0 gH ≡ 0}.

We call the factor algebra G = GM/N the algebra of Egorov type mnemofunctions on
G (for the original construction of Egorov see [8]). As usual, we say that g, h ∈ GM are
associated if (gH − fH)→ 0 in S ′. This definition extends to mnemofunctions in G.

Consider the canonical δ-net (δH)H∈H and the canonical 1-net (1H)H∈H defined by

δH = m(H)−1 · IH ∈ S, 1H = FδH = IH⊥ ∈ S,

where m(H) is the Haar measure of H and FδH is the Fourier image of δH .
We define the regularization operator R : S ′ → GM and the embedding τ : S ′ → G of

distribution space into our mnemofunctional algebra by

R : S ′ → GM : u 7→ R(u) def= ((u ∗ δH) · 1H)H∈H,

τ : S ′ → G : u 7→ [R(u)] def= R(u) +N .

Lemma 3.1. For any u ∈ S ′ its regularization R(u) converges to u in S ′.

In particular, δH = R(δ)H converges to the Dirac delta-function, and 1H = R(1)H
converges to the constant 1 ∈ S ′. Lemma 3.1 implies injectivity of R and τ .

Theorem 3.2. The restriction τ : S ′ → G onto the subalgebra S ⊂ S ′ coincides with the
canonical embedding τ ′ : S → G : a 7→ [(a)H∈H]. Thus τ yields an injective homomor-
phism of the algebra S.

The relation between the embedding and the multiplication is described by

Theorem 3.3. 1◦ For any a ∈ S, u ∈ S ′ the product (au) belongs to S ′ and τ(au) =
τ(a)τ(u). In other words, τ preserves the structure of S-module on S ′. 2◦ For any contin-
uous u, v ∈ C(G) their pointwise product (uv) belongs to C(G) and the mnemofunctions
τ(u)τ(v), τ(uv) are associated.

Note that the analogue of 1◦ in Theorem 3.3 does not hold in the real case [16].
We define the Fourier transform on G by

F : G → G : [(gH)H∈H] 7→ [(FgH)H∈H].

Theorem 3.4. The embedding τ intertwines the Fourier transform of distributions and
the Fourier transform of mnemofunctions, i.e. for all u ∈ S ′ one has the equality

F(τ(u)) = τ(Fu).

The above is again in contrast with the real case, because we have an exact equality
here, but not the property of being associated.

The problem of defining a convolution on S ′, i.e. a bilinear map ∗ : S ′×S ′ → S ′ that
would be a reasonable continuation of the convolution on S, is equivalent to the problem
of multiplication. This is easily seen after taking the Fourier transform.
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We define the convolution on G by the formula

∗ : G × G → G : ([(fH)H∈H], [(gH)H∈H]) 7→ [(fH ∗ gH)H∈H].

The definition is correct, since N ∗N ⊂ N and N ∗ a ⊂ N for all a ∈ GM .

Theorem 3.5. 1◦ The restriction of τ onto S is a morphism of convolution algebras, i.e.

τ(a ∗ b) = τ(a) ∗ τ(b), a, b ∈ S.

2◦ The convolution algebra (G, ∗,+) is isomorphic to (G,×,+). The isomorphism is the
Fourier transform.

The developed technique is easily applied in the p-adic case [12,14].

Lemma 3.6. Small subgroups H ⊂ Qp have the form H = pnZp, n ∈ {0, 1, 2, . . .}. The
ordered set H is isomorphic to {0, 1, 2, . . .} with the usual order.

Example 3.7. The p-adic homogeneous distribution ∆s = |x|s−1
p , s /∈ 2πi

log pZ, is repre-
sented by the following mnemofunction

R(∆s)n = |x|s−1
p · IBn\B−n + (1− p−1)

p(1−s)n

1− p−s
· IB−n .

Here Bn = B[0, pn] is a closed ball.

Example 3.8. The Vladimirov finite part P 1
|x|p is represented by

R(P 1
|x|p )n = |x|−1

p · IBn\B−n(x)− (1− p−1)npn · IB−n(x).

3.2. Mnemofunctions on discrete adeles A0

Lemma 3.9. Small subgroups H ⊂ A0 have the form H =
∏
p p

αpZp, where αp ∈ Z,
αp ≥ 0, and αp = 0 for almost all p.

The ordered set H can be described by non-negative rational divisors α ∈ Div+Q.
Divisors are elements of the free Abelian group Div Q generated by all non-Archimedean
completions of Q, α ≡

∑
p αp(p), where αp ∈ Z and αp = 0 for almost all p. There is

a natural order � on Div Q, namely α � β
def⇔ αν ≥ βν for all ν. We call a divisor α

non-negative if α � 0 with respect to it. There is an isomorphism of ordered sets between
divisors and open compact subgroups

Div Q 3 α ≡
∑
p

αp(p)↔
∏
p

pαpZp ≡ Hα.

The following lemma is important for computations.

Lemma 3.10. For any divisor α ∈ Div Q we have H⊥α = H−α.

Thus H ∼= Div+Q. Note that Div+Q is also isomorphic to the set of positive integers
with the divisibility order. The isomorphism is given by α↔

∏
p p

αp .

Example 3.11. Let s ∈ C, Re s > 1. Consider the non-Archimedean part ∆(0)
s of the

Tate distribution ∆s,θ in the case θ ≡ 1 given by
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∆(0)
s =

⊗
p

|xp|s−1
p

1− p−1
.

Identifying H with the positive integers we check that [13, 14]

Rn(∆(0)
s ) =

ζ(s)
ns−1

⊗
p

(
InZp(xp) +

1− p−s

1− p−1
·
∣∣∣xp
n

∣∣∣s−1

p
In−1Zp\nZp(xp)

)
.

Here ζ(s) is the Riemann zeta-function.

3.3. Adelic mnemofunctions. The group A of adeles is not totally disconnected, so
the construction of subsection 3.1 cannot be applied directly. Instead we will use the
group of Arakelov divisors of the rational field DivAQ def= R × DivQ. Its elements are
formal sums over all completions of the rational field of the form

α = α∞(∞) +
∑
p

αp(p), α∞ ∈ R, αp ∈ Z, αp = 0 for almost all p.

There is a natural order on DivAQ, namely α � β
def⇔ αν ≥ βν for all ν. We denote the

set of all non-negative α � 0 by Div+
AQ.

The algebra GM in our case is simply GM = SDiv+
AQ and the ideal N is defined by

N def= {g ∈ GM : ∃α0 ∀α � α0 gα ≡ 0} ⊂ GM .

There are no open compact subgroups attached to divisors. Instead we use an auxiliary
function as in the real case [16]. Let ψ : R→ [0, 1] be an infinitely differentiable compactly
supported function equal to 1 in some neighborhood of zero. Let (1ψ,α)α∈Div+

AQ be a 1-net
given by

1ψ,α = 1(∞)
ψ,Λ ⊗

⊗
p

1(p)
αp = ψ

(x∞
Λ

)
⊗
⊗
p

IZp(pαp · xp), Λ = exp(α∞).

The Fourier images δψ,α
def= F1ψ,α given by

δψ,α = δ
(∞)
ψ,Λ ⊗

⊗
p

δ(p)
αp = (Λψ̂(Λ · x∞))⊗

⊗
p

(pαp · IZp(p−αp · xp))

form a δ-net.
The corresponding regularization operator Rψ and the embedding τψ of the space

S ′(A) of distributions into the mnemofunction algebra G are given by

Rψ : S ′(A)→ GM : u 7→ ((u ∗ δψ,α) · 1ψ,α)α∈Div+
AQ,

τψ : S ′(A)→ G : u 7→ [R(u)] def= R(u) +N .

One can prove analogous results concerning convergence, embedding, multiplication and
Fourier transform to the results of subsection 3.1. The only difference is that all equalities
in the theorems therein should be replaced with the relation of being associated.
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