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Abstract. The structure of the section space of a real analytic vector bundle on a real analytic

manifold X is studied. This is used to improve a result of Grothendieck and Poly on the zero

spaces of elliptic operators and to extend a result of Domański and the author on the non-

existence of bases to the present case.

It was shown first by Grothendieck in the scalar case and then by Poly in the general
case of a linear differential operator on a real analytic manifold acting between real
analytic vector bundles, that the space of zero solutions of an elliptic operator (in the
sense that the C∞-solutions are even real analytic) is complemented in C∞, resp. in the
space of C∞-sections of a given bundle, if and only if, it is finite dimensional. In the case of
a differential polynomial in dimension ≥ 2 this implies that it is never complemented. We
improve this result in the way that even complementedness in the space of real analytic
sections, or in any superspace of these sections, implies finite dimensionality. For the
proof we show that any complemented Fréchet subspace of a real analytic section space
is finite dimensional. This generalizes a result of P. Domański and the author in [2] from
the case of spaces of real analytic functions on open subsets of Rd to the present case.
The results of [2] then imply that for non-compact X none of the section spaces of real
analytic vector bundles has a (Schauder) basis.

We use common terminology of functional analysis, see e.g. [7] and for homologi-
cal concepts [12]. For concepts of sheaf theory and complex function theory in several
variables we refer to [4], for real analytic functions to [6].
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Let X be a d-dimensional, connected and σ-compact real analytic manifold. By a
theorem of Grauert ([3, Theorem 3]) we may assume that X is a closed submanifold of
RN where N is sufficiently large. Let (E, π,X) be a p-dimensional real analytic vector
bundle with base X and AE(X) the space of real analytic sections on X.

We want to prove that every complemented Fréchet subspace of AE(X) is finite di-
mensional. In the case of a trivial bundle this can be done by a simple reduction to the
results of [2]. In this case we have AE(X) = A(X,Cp) where A(X,Cp) denotes the space
of Cp-valued real analytic functions.

Lemma 1. If F ⊂ A(X,Cp) is a complemented subspace, which is a Fréchet space in the
induced topology, then F is finite dimensional.

Proof. We assume that X is a closed submanifold of RN . Then there is an open neigh-
borhood Ω of X in RN and a real analytic retraction ϕ from Ω onto X (see [6, Theo-
rem 2.7.10]). The map f 7→ f ◦ ϕ−1 imbeds A(X,Cp) into A(Ω,Cp) as a complemented
subspace. Hence E is isomorphic to a complemented Fréchet subspace of A(Ω,Cp) and
therefore finite dimensional (see [2, Theorem 3.7]). Notice that the arguments leading to
[2, Theorem 3.7] also apply to A(Ω,Cp).

The general case needs a more careful analysis.
Let X ⊂ RN be a closed connected real analytic submanifold. Then there exists

an open holomorphically convex subset Ω ⊂ CN and a connected complex submanifold
Y ⊂ Ω, such that X = Y ∩ RN . Y is called a complexification of X. We assume that we
are given a coherent Y O-sheaf G on Y .

Now we will describe the topology of the section space G(X) := Γ(X,G ). To do this
in a proper way, we consider G , by trivial extension, as a coherent sheaf on Ω.

Let I ⊂ X be compact and U ⊂⊂ Ω an open neighborhood of I. We choose a finite set
of generators s1, . . . , sm ∈ G(Ω) of G(I) over H(I) (see [4, Chap. VII, Sec. A, Theorem 7]
together with [5, Lemma 5.4.1]). For s ∈ G(I) we set

‖s‖U,I = inf
{

max
j=1,...,m

‖fj‖U : f1, . . . , fm ∈ H∞(U),
m∑
j=1

fjsj = s
}

where the inf is understood as +∞ if there is no such representation. We set

G(U, I) = {s ∈ G(I) : ‖s‖U,I < +∞}

and this defines a Banach space. We have G(I) =
⋃
U G(U, I), where U runs through

the relatively compact neighborhoods of I. We equip G(I) with the inductive topology
of the G(U, I). Then it is an (LB)-space and its topology does not depend on the set of
generators which we have chosen. We choose for every I a fixed set of generators.

The topology on G(X) is now defined as the projective topology of the G(I). For any

covering I1 ⊂
◦
I2⊂ I2 ⊂

◦
I3⊂ . . . of X we have G(X) = limprojG(In). Therefore G(X)

is a (PLS)-space, that is a projective limit of (LB)-spaces with compact linking maps
in the (LB)-steps, and Proj1G(X) = Proj1G(In) is well defined and independent of the
covering.
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Lemma 2. Proj1G(X) = 0 and therefore G(X) is ultrabornological.

Proof. Let U : U1 ⊂⊂ U2 ⊂⊂ . . . be a covering of X by connected open sets then,
by the real analytic version of Cartan’s Theorem B (see [1, Théorème 3]) we have
H1(X,G |X) = 0 and Hq(Un,G |X) = 0 for all q ≥ 1 and n. Therefore, by Leray’s theo-
rem, H1(U ,G |X) = 0. Since the projective spectrum G(Un) is cofinal to the projective
spectrum G(In), this implies Proj1G(X) = 0. By [11, Lemma 3.2] this implies that G(X)
is ultrabornological.

First we use [2, Lemma 3.3.] to prove a more general version of the same lemma.

Lemma 3. Let I ⊂ J be connected compact sets in X and I ⊂ U ⊂⊂ Ω, U open. Let
0 < α < 1. Then there are open sets I ⊂ V ⊂⊂ Ω, J ⊂ W ⊂⊂ Ω and a constant C > 0
such that for every s ∈ G(X) with ‖s‖U,I < 1 and every r > 0 there exist σ ∈ G(V, I),
τ ∈ G(W,J) so that s = σ + τ on I and

‖σ‖V,I ≤ C
1
rα
, ‖τ‖W,J ≤ C r1−α.

Proof. Let s1, . . . , sm ∈ G(Ω) be the generators for G(I) and s ∈ G(X), ‖s‖U,I < 1.
Then there are functions f1, . . . , fm ∈ H∞(U) such that s =

∑m
j=1 fjsj and ‖fj‖U < 1

for all j.
By [2, Lemma 3.3] we find open sets I ⊂ V ⊂⊂ Ω, J ⊂W ⊂⊂ Ω and C > 0 such that

for every f ∈ H(U) with ‖f‖U ≤ 1 and every r > 0 there exist g ∈ H(V ), h ∈ H(W ) so
that f = g + h on I and

‖g‖V ≤ C
1
rα
, ‖h‖W ≤ C r1−α.

We apply this to f1, . . . , fm and obtain g1, . . . , gm ∈ H∞(V ) and h1, . . . , hm ∈
H∞(W ). We set

σ =
m∑
j=1

gjsj , τ =
m∑
j=1

hjsj .

It follows immediately that ‖σ‖V,I ≤ C 1
rα .

If σ1, . . . , σM are the generators for G(J), then we have expansions sj =
∑M
k=1 aj,kσk

with aj,k ∈ H∞(W0), where J ⊂ W0 ⊂⊂ Ω is open. We may assume that W ⊂ W0,
otherwise we replace W by W ∩W0. Inserting these expansions into the formula for τ we
obtain by straightforward estimates ‖τ‖W,J ≤ C ′ r1−α with a new constant C ′ > 0.

We proceed now as in [2] after Lemma 3.3.
A Fréchet space with a fundamental sequence of seminorms (‖ · ‖n) defining the

topology is said to have property (Ω) if

∀ k ∃ m ∀ n, ϑ ∈ ]0, 1[ ∃ C ∀ u ∈ E′ ‖u‖∗m ≤ C ‖u‖∗k
ϑ‖u‖∗n

1−ϑ
,

Here ‖ · ‖∗ denotes the dual norm for ‖ · ‖.

Remark. A Fréchet space E has (Ω) if and only if

∀ U1 ∃ U2 ∀ U3, γ > 0 ∃ C ∀ r > 0 U2 ⊂ C
(

1
rγ
U1 + rU3

)
,

where Uj, j = 1, 2, 3 are 0-neighbourhoods in E.
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Arguing, on the basis of Lemma 3, precisely as in the proof of [2, Theorem 3.4] we
obtain:

Theorem 4. Every Fréchet space E which is a quotient of G(X) has property (Ω).

To investigate the topological properties of Fréchet spaces imbedded into G(X) we
have to strengthen our assumptions. We assume that G is locally free (see [4, Chap. VII,
Sec. C]).

We need the following linear topological concept. A Fréchet space with a fundamental
sequence of seminorms (‖ · ‖n) defining the topology is said to have property (DN) if

∃ n ∀ k ∃ l, C > 0, τ ∈ ]0, 1[ ‖x‖k ≤ C‖x‖τn‖x‖1−τl

for every x ∈ E.

Lemma 5. If Y is a connected Stein manifold and G a locally free sheaf, then G(Y ) has
property (DN).

Proof. Let Y1, Y2, . . . be a covering of Y by relatively compact open sets such that G |Yj ∼=
Op|Yj . Therefore G(Yj) ∼= H(Yj ,Cp). Let ϕj : G(Yj) → H(Yj ,Cp) be the isomorphism.
By possibly shrinking the Yj we may assume that ϕj(G(Y )) ⊂ H∞(Yj ,Cp). We may
also assume that all Yj are hyperconvex, e.g. we can choose them as polydiscs under
some local chart. An open bounded set U is called hyperconvex whenever it is connected
and there is a continuous plurisubharmonic negative function ρ on U such that the sets
{z ∈ U : ρ(z) < c} are relatively compact in U for every negative c, see [5, p. 80].

We choose a sequence V1, V2, . . . of open sets such that Vj ⊂⊂ Yj for all j and still⋃
j Vj = Y . Since Y is connected we may assume that the Vj are ordered in a way that

(
⋃n
j=1 Vj) ∩ Vn+1 6= ∅ for all n.
For f = (f1, . . . , fp) ∈ H(Yj ,Cp) we put ‖f‖Vj = sup{|fj(z)| : z ∈ Vj , j = 1, . . . , p},

and for s ∈ G(Y )
‖s‖n = sup

j=1,...,n
‖ϕj(s)‖Vj .

The norms ‖ · ‖n are a fundamental system of seminorms for the Fréchet space G(Y ). In
particular for any n there is mn ≥ n and Cn ≥ 1 such that

sup
j=1,...,n

‖ϕj(s)‖Yj ≤ Cn‖s‖mn .

We show that there is a constant C ′n ≥ Cn and 0 < τn < 1 such that

‖s‖n ≤ C ′n‖s‖
τn
n−1‖s‖1−τnmn

for all s ∈ G(Y ).
If ‖s‖n = ‖ϕj(s)‖Vj where j ≤ n − 1, this inequality is trivial. So we assume that

‖s‖n = ‖ϕn(s)‖Vn . We set Wn = (
⋃n−1
j=1 Vj) ∩ Vn. Then from [13, Proposition 1.4.2] we

conclude that there is 0 < τn < 1 such that

‖f‖Vn ≤ ‖f‖
τn
Wn
‖f‖1−τnYn

for all f ∈ H(Vn,Cp). This implies

‖s‖n ≤ Cn‖ϕn(s)‖τnWn
‖s‖1−τnmn

and it remains to show that there is Dn > 0 such that ‖ϕn(s)‖Wn
≤ Dn‖s‖n−1.
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This, however, follows from ‖ϕn(s)‖Vj∩Vn = ‖Φn,jϕj(s)‖Vj∩Vn where Φn,j is a real
analytic function on Yj∩Yn with values in GL(p,C). By our choice of the Vj it is bounded
on Vj ∩ Vn. Therefore we have

‖ϕn(s)‖Wn
= sup
j=1,...,n−1

‖Φn,jϕj(s)‖Vj∩Vn

≤ Dn sup
j=1,...,n−1

‖ϕj(s)‖Vj∩Vn

≤ Dn‖s‖n−1,

which completes the proof.

We are now ready to prove our first main result.

Theorem 6. If F ⊂ AE(X) is a complemented subspace, which is a Fréchet space in the
induced topology, then F is finite dimensional.

Proof. We show that F has properties (Ω) and (DN). Then we conclude by use of [10],
as in [2], that F must be a Banach space hence, being nuclear, is finite dimensional.

The vector bundle E extends to a complex analytic vector bundle on a neighborhood of
X in Y which we may write as the intersection of a holomorphically convex neighborhood
of CN with Y . Hence we may assume that E is the restriction to X of a complex analytic
vector bundle Ê on Y . Let G be the sheaf of sections of Ê. Then AE(X) = G(X).

Since F is a quotient of AE(X) = G(X) Theorem 4 implies that F has property (Ω).
On the other hand we conclude as in the proof of [2, Lemma 3.5] that there is an open

neighborhood Y ′ of X in Y such that the imbedding F ↪→ G(X) factorizes through G(Y ′).
We may assume that Y ′ = Y ∩ Ω′ where Ω′ is a holomorphically convex neighborhood
of RN . Since G is locally free, Lemma 5 implies that F has property (DN).

Let (E0, π0, X) and (E1, π1, X) be qj-dimensional real analytic vector bundles, j =
0, 1. Let EE0(X) and D ′E1

(X) denote the C∞- resp. distributional sections on X and
let L denote a differential operator acting from EE0(X) to D ′E1

(X). We call it elliptic if
kerL ⊂ AE0(X).

Lemma 7. If L is elliptic then kerL is a Fréchet space in the topology induced by AE0(X).

Proof. kerL is a Fréchet space if equipped with the topology induced by EE0(X), and
it is a webbed space if equipped with the stronger topology induced by AE0(X), since
AE0(X) is webbed and kerL is a closed subspace. By de Wilde’s open mapping theorem
(see [7, Theorem 24.30]) both topologies coincide hence kerL is a Fréchet space in the
topology induced by AE0(X).

In Poly [8, Corollaire 1] it was shown for elliptic L, in generalization of a theorem of
Grothendieck (see [9]), that kerL is finite dimensional if it is complemented in EE0(X).
The proof was based essentially on the principle of analytic continuation. Our proof based
on the use of linear topological invariants gives a sharper result.

Theorem 8. If L is elliptic and kerL is complemented in AE0(X) then it is finite di-
mensional.

Proof. The result is an immediate consequence of Lemma 7 and Theorem 6.
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Consequently, an infinite dimensional kerL is not complemented in all locally convex
spaces containing AE0(X) as continuously imbedded subspace. More precisely:

Theorem 9. If H is locally convex and AE0(X) ⊂ H with continuous imbedding, L
elliptic and kerL complemented in H, then kerL is finite dimensional.

Proof. Let P be a continuous projection in H onto kerL, then the restriction P0 of P
to AE0(X), acting from the ultrabornological space AE0(X) to kerL with its Fréchet
topology has closed graph, hence is continuous (see [7, Theorem 24.31]). Therefore P0 is
a projection in AE0(X). From Theorem 8 follows the result.

Let R denote any regularity class so that, in self explaining terminology, AE0(X) ⊂
RE0(X), and let L act from RE0(X) to any locally convex space F . If L is elliptic and
kerL is infinite dimensional, then L has no continuous linear right inverse from its range
space to RE0(X), in particular, it is not a “morphisme direct” in the sense of [8].

Finally we extend the principal result of [2] to our much more general situation.

Theorem 10. If X is non-compact, then AE(X) has no basis.

Proof. By Lemma 2 the nuclear (DF)-space AE(X) is ultrabornological and by Theo-
rem 6 is has no non-trivial complemented Fréchet subspaces. Assume that it has a basis.
Then, by [2, Theorem 2.2], it is a (DF)-space. Now, let s0 ∈ AE(X), s0 6= 0. Then
there is a discrete sequence z1, z2, . . . with s0(zn) 6= 0 for all n. Let ηn ∈ π−1{zn}∗ with
ηn(s0(zn)) 6= 0. Then the map A(X)→ CN defined by f 7→ (ηn((fs0)(zn)))n∈N is surjec-
tive. Therefore the map s 7→ (ηn(s(zn)))n∈N is a continuous linear surjective map from
the (DF)-space G(X) to the Fréchet space CN. This is impossible.
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