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Abstract. We employ Massey products to find sharper lower bounds for the Schwarz genus of

a fibration than those previously known. In particular we give examples of non-formal spaces X

for which the topological complexity TC(X) (defined to be the genus of the free path fibration

on X) is greater than the zero-divisors cup-length plus one.

1. Introduction. Motion planning is a fundamental area of research in Robotics. A
motion planning algorithm for a given mechanical system S is a function which assigns to
each ordered pair (A,B) of physical states of S a continuous motion of S starting at A and
ending at B. We may regard the admissible physical states of S as being parameterised
by the points of a topological space X (the configuration space of the system) such that
motions of the system correspond to continuous paths γ : [0, 1] = I → X. A motion
planning algorithm for the system is then a section s : X × X → XI (not necessarily
continuous) of the free path fibration

(1) πX : XI → X ×X, πX(γ) = (γ(0), γ(1)).

The minimum number of domains of continuity of such a section s provides a measure
of the complexity of the motion planning problem in X. This observation led M. Farber
in [Far1], [Far2] to consider a new numerical homotopy invariant, called the topological
complexity of the configuration space X and denoted TC(X), which may be defined to
be the Schwarz genus ([Sch], see Section 2) of the fibration (1). The invariant TC(X) is a
close relative of the Lusternik-Schnirelmann category cat(X), and although independent
the two satisfy the inequalities cat(X) ≤ TC(X) ≤ cat(X × X) ≤ 2 · cat(X) − 1. We
refer the reader to [Far3] for an excellent survey of results in this area.
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Computing TC(X) for a given X can be an extremely difficult task (for example, by
the main result of [FTY] the topological complexity of real projective space TC(RPn)
for n 6= 1, 3, 7 equals one plus the smallest dimension of Euclidean space into which RPn

immerses). As in the case of LS-category one applies cohomology theory to find com-
putable lower bounds. One such lower bound for TC(X), which only requires knowledge
of the cohomology algebra of X, is given in [Far1]. If X is a space of finite type and F is a
field, there is an isomorphism of graded algebras H∗(X×X; F) ∼= H∗(X; F)⊗H∗(X,F),
where the product on the right is given by

(α⊗ β)(γ ⊗ δ) = (−1)|β||γ|αγ ⊗ βδ.

The cup product map ∪ : H∗(X; F) ⊗H∗(X; F) → H∗(X; F) is a ring homomorphism,
whose kernel is the ideal of zero-divisors. The zero-divisors cup-length over F is the
number of factors in the longest non-trivial product of zero-divisors. Then TC(X) is
greater than the zero-divisors cup-length over F, for any field of coefficients F.

In a recent paper of Farber and the author [FG2], stable cohomology operations are
utilised to obtain sharper lower bounds for TC than the zero-divisors cup-length. In this
article we investigate the effects of Massey products on topological complexity. The key
notion is that of weight of a cohomology class with respect to a fibration, first defined
in [FG1], which generalises the category weight of Y. Rudyak [Rud] and J. Strom [Str]
(which in turn are refinements of the original notion of category weight due to E. Fadell
and S. F. Husseini [FH]). In Section 2 we recall some properties of this weight, and show
how classes of high category weight can lead to classes of high weight with respect to the
free path fibration. In Section 3 we briefly review Massey products, and show how they
may be used to estimate the Schwarz genus of a fibration, generalising a result of Rudyak
([Rud], Theorem 4.4). In the final Section 4 we give examples of non-formal spaces where
non-zero Massey products can be employed to find better lower bounds for TC than the
zero-divisors cup-length.

2. Weights of cohomology classes with respect to a fibration. In this Section
we recall the definition of weight of a cohomology class with respect to a fibration from
[FG1]. We also give an alternative characterisation of weight in terms of fibred joins
(Proposition 1), and show that classes with high category weight may lead to classes
with high weight with respect to the path fibration πX (Theorem 3). In this article, all
spaces are assumed to be path-connected and of finite type. Unless specified otherwise,
coefficients for cohomology are taken in an arbitrary commutative ring R with unit.

Let p : E → B be a fibration. The Schwarz genus of p, denoted genus(p), is defined
to be the minimum k such that B may be covered by open subsets U1, . . . , Uk, on each
of which p admits a continuous local section (a map si : Ui → E such that p ◦ si is the
identity map on Ui).

The concept of genus was defined and thoroughly studied by A. S. Schwarz [Sch]; it
is also called sectional category in the modern literature. It generalises the Lusternik-
Schnirelmann category, in the following sense. Let (X,x0) be a pointed space and let
pX : P0X → X be the Serre path fibration on X, where P0X = {γ : I → X | γ(0) = x0}
and pX(γ) = γ(1). Then genus(pX) = cat(X) (here we do not normalise, so that for us
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cat(Y ) = 1 if Y is contractible). Other notable applications of the genus include the works
of S. Smale [Sma] and V. A. Vassiliev [Vas1], [Vas2] on the complexity of algorithms for
finding roots of polynomial equations, and applications to the embedding problem for
topological manifolds (see Chapter VII of [Sch] and the references therein).

Another important application of the genus (and the one with which we are most
concerned here) is to the motion planning problem in Robotics. For any space X let XI

denote the space of paths in X (with no restrictions on end-points) with the compact-open
topology. The topological complexity of X is defined by TC(X) = genus(πX), where

πX : XI → X ×X, πX(γ) = (γ(0), γ(1))

is the free path fibration. As mentioned in the Introduction, the number TC(X) provides
a measure of the complexity of the motion planning problem for a system with configura-
tion space homotopy equivalent to X. More details can be found in Farber [Far1], [Far2],
[Far3].

A useful cohomological lower bound for the genus of an arbitrary fibration p : E → B

was given by Schwarz.

Theorem 1 (Schwarz, [Sch], Th. 4). Suppose there are classes u1, . . . , u` ∈ H∗(B) such
that p∗(ui) = 0 for i = 1, . . . , ` and the product u1 · · ·u` is non-zero. Then genus(p) > `.

In this theorem one may also use local coefficients, or other cohomology theories,
but we will not do so here. Note that for the Serre path fibration pX Theorem 1 gives
the classical lower bound for cat(X) in terms of the cup-length of H̃∗(X) (since P0X is
contractible). For the free path fibration πX : XI → X × X and coefficients in a field,
Theorem 1 gives the lower bound for TC(X) in terms of zero-divisors cup-length [Far1]
described in the Introduction. This is because πX is homotopically equivalent to the
diagonal map 4 : X → X ×X.

In [FH] it was observed by Fadell and Husseini that some indecomposables in H̃∗(X)
carry more weight than others in the cup-length estimate for cat(X) (an homogenous
element u in a graded algebra is called indecomposable if it cannot be written as a sum
of products u =

∑
viwi where the dimensions of each vi, wi are strictly less than that of

u). Their definition of category weight of a cohomology class was later refined by Rudyak
[Rud] and by Strom [Str]. The notion of weight was generalised to an arbitrary fibration
p : E → B in papers [FG1], [FG2].

Definition 1. The weight of a non-zero cohomology class u ∈ H∗(B) with respect to p,
denoted wgtp(u), is defined by

wgtp(u) = sup{k | f∗(u) = 0 for all maps f : A→ X with genus(f∗p) ≤ k}.

Here f∗p denotes the pull-back fibration of p along f .

Remark 1. The (strict) category weight of a class u ∈ H∗(X) is defined in [Rud] to be

wgt(u) = sup{k | f∗(u) = 0 for all maps f : A→ X with cat(f) ≤ k}

(recall that cat(f) is the smallest n such that A admits an open cover U1, . . . , Un with
f |Ui

null-homotopic for all i). It is not difficult to see that wgt(u) = wgtpX
(u), the weight

of u with respect to the Serre path fibration.
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An alternative characterisation of weight may be given, in terms of fibred joins. Recall
that the k-fold iterated fibred join of a fibration p : E → B with fibre F is a fibration
p(k) : E(k)→ B with fibre ∗kF , the k-fold join of F with itself. The domain space E(k)
has underlying set the formal linear sums

ẽ = e1t1 + e2t2 + . . .+ ektk, ei ∈ E, ti ∈ [0, 1],
∑

ti = 1, p(e1) = · · · = p(ek),

with the understanding that two such sums ẽ and ẽ′ are equal if and only if ei = e′i
whenever ti > 0. Its topology is defined to be the smallest topology such that the co-
ordinate maps

ti : E(k)→ [0, 1], ei : t−1
i (0, 1]→ E

are all continuous. The projection p(k) : E(k)→ B is defined by

p(k)(e1t1 + · · ·+ ektk) = p(e1) = · · · = p(ek).

Note that p(1) : E(1)→ B is exactly p : E → B. Schwarz proved ([Sch], Theorem 3) that
genus(p) ≤ k if and only if p(k) has a section.

Proposition 1. For any non-zero u ∈ H∗(B) we have

wgtp(u) = sup{k | p(k)∗(u) = 0}.

In particular, wgtp(u) ≥ 1 if and only if p∗(u) = 0.

Proof. As is shown in Proposition 34 of [FG1], if p(k)∗(u) = 0 then wgtp(u) ≥ k. Hence
wgtp(u) ≥ sup{k | p(k)∗(u) = 0}.

Now suppose that wgtp(u) = k, and consider the pull-back fibration p(k)∗p. It has
base space E(k) and total space

{(e1t1 + . . .+ ektk, e) ∈ E(k)× E | p(e1) = · · · = p(ek) = p(e)}.

The open sets Ui = t−1
i (0, 1], i = 1, . . . , k cover E(k), and on each there is a section si of

p(k)∗p given by
si(e1t1 + . . .+ ektk) = (e1t1 + . . .+ ektk, ei).

Hence genus(p(k)∗p) ≤ k, and so p(k)∗(u) = 0.

Theorem 2 ([FG1], Th. 33). Suppose there are classes u1, . . . , u` ∈ H∗(B) whose product
u1 · · ·u` is non-zero. Then

genus(p) > wgtp(u1 · · ·u`) ≥
∑̀
i=1

wgtp(ui).

Theorem 2 may give a better lower bound for genus(p) than Theorem 1, provided one
can find indecomposables u ∈ H∗(B) with wgtp(u) > 1. Fadell and Husseini achieved
this in the case of category weight, using stable cohomology operations ([FH] Theorem
3.12, see also Corollary 4.7 of [Rud]). An analogous result for TC was obtained by the
authors in [FG2], where stable cohomology operations are used to find indecomposable
zero-divisors z ∈ H∗(X ×X) with wgtπX

(z) > 1, thus allowing the computation of TC
of various lens spaces. Rudyak has shown ([Rud], Corollary 4.6) that if u ∈ H∗(X) is a
Massey product then wgt(u) > 1 (the definition of Massey’s triple product will be recalled
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in Section 3). To conclude this section we show how classes of high category weight can
lead to zero-divisors with high weight with respect to πX .

Theorem 3. Let X be an r-connected space, r ≥ 1. Suppose that u ∈ H`(X; F) has
wgt(u) ≥ k ≥ 1, where k(r + 1) ≤ ` < (k + 1)(r + 1) and F is a field. Then there exists
an element φ(u) ∈ H`(X ×X; F), of the form

(2) φ(u) = 1× u+ θ(u), θ(u) ∈
⊕
i+j=`
i>0

Hi(X; F)⊗Hj(X; F),

which has wgtπX
(φ(u)) ≥ k. If the cup products Hi(X; F)⊗H`−i(X; F)→ H`(X; F) for

0 < i < ` all vanish, then
φ(u) = u = 1× u− u× 1.

Proof. The k-fold fibred joins of the Serre fibration pX and the free path fibration πX
are related by the following diagram,

(3) ∗kΩX

��

∗kΩX

��
P0X(k) //

pX(k)

��

XI(k)

πX(k)

��
X

ι // X ×X,

where the bottom square is a pull-back and the map ι : X → X ×X is given by ι(x) =
(x0, x). Let (Er, dr) and (Ēr, d̄r) denote the Leray-Serre spectral sequences of pX(k) and
πX(k) respectively. The class u ∈ H`(X) = E`,02 has wgt(u) ≥ k, and therefore by
Proposition 1 lies in the kernel of pX(k)∗ : H`(X) → H`(P0X(k)), which is known to
correspond to the edge homomorphism

H`(X) = E`,02 � E`,0∞ ↪→ H`(P0X(k))

(see for example [Whi] p. 649).
Since X is r-connected, the based loop space ΩX is (r−1)-connected; hence by Lemma

2.3 of [Mil] the common fibre ∗kΩX is (rk + k − 2)-connected. For dimensional reasons
u must therefore be in the image of the differential

d` : H`−1(∗kΩX) = E0,`−1
` → E`,0` = H`(X).

Let v be in H`−1(∗kΩX) = E0,`−1
` = Ē0,`−1

` with d`(v) = u. We set

φ(u) = d̄`(v) ∈ Ē`,0` = Ē`,02 = H`(X ×X).

By naturality of spectral sequences and using diagram (3) we see that

ι∗(φ(u)) = ι∗(d̄`(v)) = d`(v) = u,

and hence φ(u) is of the form (2). Since φ(u) is in the image of the differential d̄` it is in
the kernel of the edge homomorphism

H`(X ×X) = Ē`,02 � Ē`,0∞ ↪→ H`(XI(k)),
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which corresponds to πX(k)∗ : H`(X×X)→ H`(XI(k)). Hence wgtπX
(φ(u)) ≥ k, prov-

ing the first statement.
Now note that wgtπX

(φ(u)) ≥ k ≥ 1 implies that φ(u) is a zero-divisor. Hence
4∗(φ(u)) = u+4∗(θ(u)) = 0 where 4∗ : H∗(X)⊗H∗(X)→ H∗(X) is the cup product
map, and the second statement follows.

3. Massey products. In this Section we recall some definitions and results concerning
Massey products and show how they may be used to estimate the Schwarz genus of
a fibration, generalising a result of Rudyak ([Rud], Theorem 4.4). We consider only the
triple product [UM], [Mas], which is a secondary cohomology operation of three variables,
but much of what we say may be generalised to higher order or matric Massey products
(see [Kra] and [May] for definitions).

Let X be a topological space. The singular cochain complex of X with coefficients in
R, denoted C∗(X), is a DGA over R with cochain multiplication • : C∗(X)⊗ C∗(X)→
C∗(X) defined in the usual way and differential d of degree +1 satisfying d(a • b) =
da • b+ (−1)|a|a • db. Given cohomology classes α, β, γ ∈ H∗(X) of dimensions p, q and
r such that αβ = 0 = βγ, their Massey product is a subset

〈α, β, γ〉 ⊆ Hp+q+r−1(X)

defined as follows. Let a, b, c ∈ C∗(X) be cocycles representing α, β and γ respectively.
Since αβ = 0 there is a cocycle µ ∈ Cp+q−1(X) with dµ = a • b. Similarly, since βγ = 0
there is a cocycle λ ∈ Cq+r−1(X) with dλ = b • c. The cochain a • λ+ (−1)p+1µ • c is a
cocycle which therefore represents a class in Hp+q+r−1(X). The Massey product 〈α, β, γ〉
is the set of all cohomology classes arising in this way,

〈α, β, γ〉 = {[a • λ+ (−1)p+1µ • c] ∈ Hp+q+r−1(X) | dµ = a • b and dλ = b • c}.

Elements of the above Massey product differ by elements of the subgroup

αHq+r−1(X) +Hp+q−1(X)γ ⊆ Hp+q+r−1(X),

which is termed the indeterminacy of 〈α, β, γ〉. Hence one may regard 〈α, β, γ〉 as an
element of the quotient group of Hp+q+r−1(X) modulo this indeterminacy. Note that if
all cup products in H∗(X) are zero the indeterminacy vanishes. We will say that 〈α, β, γ〉
is non-zero if 0 /∈ 〈α, β, γ〉.

The next result is based on Theorem 4.4 of [Rud].

Theorem 4. Let p : E → B be a fibration, and let α, β, γ ∈ H∗(B) be cohomology classes.
If the Massey product 〈α, β, γ〉 is defined and non-zero, then

genus(p) > wgtp(β) + min{wgtp(α),wgtp(γ)}.

Proof. Let k = wgtp(β) and ` = min{wgtp(α),wgtp(γ)}. Assume that 〈α, β, γ〉 is defined,
and that genus(p) ≤ k + `. This means there exist open subsets Ci for i = 1, . . . , k and
Dj for j = 1, . . . , ` of B such that

C =
k⋃
i=1

Ci, D =
⋃̀
j=1

Dj , B = C ∪D,
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and p admits a local section on each Ci, Dj . From the definition of weight it follows that
β|C = 0 and α|D = 0 = γ|D. A cocycle b which represents β is therefore the image of a
cocycle b̃ ∈ C∗(B,C) which vanishes on cycles in C, by the exact cohomology sequence
of the pair (B,C). Similarly the cocycles a and c representing α and γ are the images of
cocycles ã, c̃ ∈ C∗(B,D). A quick glance at the diagram

(4) C∗(B,C)⊗ C∗(B,D) • //

��

C∗(B,C ∪D)

��
C∗(B)⊗ C∗(B) • // C∗(B)

given by naturality of cochain multiplication now shows that a • b = 0 = b • c, since
C∗(B,C ∪D) = 0. It follows that the Massey product 〈α, β, γ〉 contains zero.

In the next Section we will apply Theorem 4 to obtain lower bounds for TC(X)
sharper than the zero-divisors cup-length, for certain spaces X. The next two propositions
gather some facts about Massey products which are needed in the sequel.

Proposition 2. (a) (Linearity) If 〈α, β, γ〉 and 〈α′, β, γ〉 are defined and |α| = |α′|, then
〈α+ α′, β, γ〉 is defined and

〈α+ α′, β, γ〉 ⊆ 〈α, β, γ〉+ 〈α′, β, γ〉.

Similar statements hold in the second and third variables.
(b) (Scalar multiplication) If 〈α, β, γ〉 is defined and r ∈ R, then 〈rα, β, γ〉 is defined

and
r〈α, β, γ〉 ⊆ 〈rα, β, γ〉.

Similar statements hold in the second and third variables. If u ∈ R is a unit, then

u〈α, β, γ〉 = 〈uα, β, γ〉 = 〈α, uβ, γ〉 = 〈α, β, uγ〉.

(c) (Naturality) If f : Y → X is a map, then

f∗〈α, β, γ〉 ⊆ 〈f∗(α), f∗(β), f∗(γ)〉.

(d) (Internal products) If 〈α, β, γ〉 is defined and α′, β′, γ′ ∈ H∗(X) are arbitrary
cohomology classes, then 〈αα′, ββ′, γγ′〉 is defined. Furthermore, if the latter operation
has zero indeterminacy then

〈α, β, γ〉α′β′γ′ = ±〈αα′, ββ′γγ′〉.

(The similar relation αβγ〈α′, β′, γ′〉 = ±〈αα′, ββ′γγ′〉 holds when 〈α′, β′, γ′〉 is defined
and α, β, γ are arbitrary.)

(e) (External products) If 〈α1, β1, γ1〉 is defined in H∗(X1) and α2, β2, γ2 ∈ H∗(X2)
are arbitrary cohomology classes, then 〈α1×α2, β1×β2, γ1×γ2〉 is defined in H∗(X1×X2).
Furthermore, if the latter has zero indeterminacy then

〈α1, β1, γ1〉 × α2β2γ2 = ±〈α1 × α2, β1 × β2, γ1 × γ2〉.

(The similar relation α1β1γ1 × 〈α2, β2, γ2〉 = ±〈α1 × α2, β1 × β2, γ1 × γ2〉 holds when
〈α2, β2, γ2〉 ⊆ H∗(X2) is defined and α1, β1, γ1 ∈ H∗(X1) are arbitrary.)
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Proof. Properties (a), (b) and (c) follow immediately from the definition. Property (d)
is Corollary 7 of Kraines [Kra] (there higher Massey products are treated, of which the
triple product is a special case). Property (e) follows from properties (c) and (d) together
with the identities

(α1 × α2) ∪ (β1 × β2) = (−1)|α2||β1|(α1 ∪ β1)× (α2 ∪ β2),

α1 × α2 = p∗1(α1) ∪ p∗2(α2),

for all α1, β1 ∈ H∗(X1), α2, β2 ∈ H∗(X2), where pi : X1 × X2 → Xi is projection onto
Xi for i = 1, 2.

Proposition 3. Let R = F a field, and let X1, X2 be spaces of finite type. Suppose that
the Massey product

θ = 〈α1 × α2, β1 × β2, γ1 × γ2〉 ⊆ H∗(X1 ×X2; F) ∼= H∗(X1; F)⊗H∗(X2; F)

is defined. If either α1β1 = β2γ2 = 0 or α2β2 = β1γ1 = 0 then θ contains the zero class.

Proof. The Eilenberg-Zilber Theorem gives a chain equivalence

EZ: C∗(X1 ×X2)→ C∗(X1)⊗ C∗(X2)

which can be seen to be a mapping of DGAs (the product and differential on the right
hand side are given respectively by

(a⊗ b)(c⊗ d) = (−1)|b||c|a • c⊗ b • d, d⊗(a⊗ b) = da⊗ b+ (−1)|a|a⊗ db,

where • denotes usual cochain multiplication in C∗(Xi)). Hence we may compute Massey
products in H∗(X1×X2) using the cochain complex (C∗(X1)⊗C∗(X2), d⊗), and we find
that 0 ∈ θ if and only if

(5) 0 ∈ 〈[a1 ⊗ a2], [b1 ⊗ b2], [c1 ⊗ c2]〉,

where the ai, bi and ci are cocycles representing αi, βi and γi.
Suppose that α1β1 = β2γ2 = 0. Let µ′ ∈ C∗(X1) and λ′ ∈ C∗(X2) be cochains such

that dµ′ = (−1)|b1||a2|a1 • b1 and dλ′ = (−1)hb2 • c2, where h = |c1|(|b2| − 1)− |b1|. One
may show that the cochains µ = µ′ ⊗ a2 • b2 and λ = b1 • c1 ⊗ λ′ satisfy

d⊗µ = (a1 ⊗ a2)(b1 ⊗ b2), d⊗λ = (b1 ⊗ b2)(c1 ⊗ c2).

Hence the above Massey product (5) contains the class represented by the cocycle

(a1 ⊗ a2)λ+ (−1)|a1|+|a2|+1µ⊗ (c1 ⊗ c2).

A quick calculation gives that this cocycle is the coboundary

d⊗((−1)|c1||a2|µ′ • c1 ⊗ a2 • λ′)

and hence represents zero.
The proof that θ contains zero when α2β2 = β1γ1 = 0 runs similarly.

4. Examples. We now present examples of non-formal spaces X where non-zero Massey
products inH∗(X) allow us to apply the results of previous Sections to obtain better lower
bounds for TC(X) than the zero-divisors cup-length. In all our examples we consider
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cohomology with coefficients in the field Q of rational numbers. If u ∈ H`(X) is a
cohomology class, it will be convenient to denote by u the class

u = 1× u− u× 1 ∈ H`(X ×X).

Example 1. Let X = S3
a ∨ S3

b ∪ e8 ∪ e8 be the space obtained from the wedge of two
copies of the 3-sphere by attaching 8-cells by means of the iterated Whitehead products
[S3
a, [S

3
a, S

3
b ]] and [S3

b , [S
3
a, S

3
b ]]. This is one of the simplest examples of a simply-connected

non-formal space. We will show that TC(X) = 5, while the zero-divisors cup-length is 2.

First we note that since X is a 2-connected, 8-dimensional CW-complex, Proposition
5.1 of [Jam] gives

cat(X) <
8 + 1
2 + 1

+ 1 = 4.

Therefore cat(X) ≤ 3 (in fact cat(X) = 3; see below) and the upper bound TC(X) ≤
2 · cat(X)− 1 given by Theorem 5 of [Far1] gives TC(X) ≤ 5.

Let a, b ∈ H3(X) be the generators corresponding to the two spheres. It is known
([UM], Lemma 7) that the Massey products 〈a, a, b〉 and 〈b, a, b〉 are non-zero linearly
independent elements of H8(X) (the indeterminacy is zero, since cup products are trivial
in H∗(X) for dimensional reasons). Since wgt(〈a, a, b〉) ≥ 2 by [Rud] Theorem 4.6, we
can apply our Theorem 3 with r = k = 2 to conclude that wgtπX

(〈a, a, b〉) ≥ 2. Similarly
wgtπX

(〈b, a, b〉) ≥ 2. Now since

〈a, a, b〉 · 〈b, a, b〉 = −〈a, a, b〉 × 〈b, a, b〉 − 〈b, a, b〉 × 〈a, a, b〉 6= 0,

Theorem 2 gives TC(X) > 4, so TC(X) = 5.

Remark 2. Example 1 is also considered in paper [FGKV], where the authors construct
an invariant MTC(X) which is a lower bound for TC(X) using an explicit semi-free
model of the fibred join (see Example 6.7 there). One suspects that the results there are
related to ours. The methods here appear to give stronger lower bounds, as well as being
simpler and more widely applicable; for instance we may also treat non-simply-connected
spaces, as in the next Example.

Example 2. Let X = S3 − B be the link complement of the Borromean rings. In his
seminal paper [Mas] Massey gave a rigorous proof that the Borromean rings link is not
isotopic to the unlink, by exhibiting non-zero triple products in H∗(X). By Alexander
duality we have H1(X) = Q3 and H2(X) = Q2. The generators u, v, w ∈ H1(X) are
represented by cocycles dual to the disks spanned by each of the embedded circles. The
cup product structure in H∗(X) is trivial, reflecting algebraically the fact that the linking
number of each pair of circles is zero. However, the Massey products 〈u, v, w〉 and 〈u,w, v〉
are non-zero linearly independent elements of H2(X) ([Mas], Theorem 3.1).

We claim that the Massey product

θ = 〈u,−v〈u,w, v〉, w〉
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of degree 4 is non-zero in H∗(X ×X) = H∗(X)⊗H∗(X). In fact

θ = 〈1⊗ u− u⊗ 1, 〈u,w, v〉 ⊗ v + v ⊗ 〈u,w, v〉, 1⊗ w − w ⊗ 1〉
⊆ 〈1⊗ u, 〈u,w, v〉 ⊗ v, 1⊗ w〉 − 〈u⊗ 1, 〈u,w, v〉 ⊗ v, 1⊗ w〉

+〈u⊗ 1, v ⊗ 〈u,w, v〉, w ⊗ 1〉 − 〈1⊗ u, v ⊗ 〈u,w, v〉, w ⊗ 1〉
+〈1⊗ u, v ⊗ 〈u,w, v〉, 1⊗ w〉 − 〈u⊗ 1, v ⊗ 〈u,w, v〉, 1⊗ w〉
+〈u⊗ 1, 〈u,w, v〉 ⊗ v, w ⊗ 1〉 − 〈1⊗ u, 〈u,w, v〉 ⊗ v, w ⊗ 1〉

= ±〈u, v, w〉 ⊗ 〈u,w, v〉 ± 〈u,w, v〉 ⊗ 〈u, v, w〉 6= 0.

The inclusion follows from Proposition 2 (a) and (b). To obtain the second equality,
first observe that any Massey product 〈α, β, γ〉 in H∗(X) ⊗ H∗(X) with |α| = |γ| = 1
and |β| = 3 has indeterminacy zero. Those Massey products with positive sign now sum
to give the right-hand side, by Proposition 2 (e). Those with negative sign are zero by
Proposition 3.

Therefore Theorem 4 gives TC(X) > 3, while the zero-divisors cup-length equals 2.
Combined with the upper bound TC(X) ≤ 2 · cat(X) − 1 this gives TC(X) = 4 or
5. This is the first known example of an aspherical space for which TC is greater than
zero-divisors cup-length plus one.

Questions. Is wgtπX
(〈u,w, v〉) = 2? (If so then Theorem 4 gives TC(X) > 4, and hence

TC(X) = 5.) Is there a result analogous to Theorem 3 for non-simply-connected spaces?

Problem. Give an expression for the topological complexity of a given knot or link
complement in terms of known invariants.

Example 3. Let ξ be a 2m-dimensional vector bundle over Sm × Sm whose Euler class
e(ξ) ∈ H2m(Sm×Sm) is non-zero (here m ≥ 2). Let X denote the total space of the unit
sphere bundle of ξ over Sm × Sm. We will show that TC(X) ≥ 6 while the zero-divisors
cup-length is 3.

If m is even, the Sullivan minimal model for X has the form (Λ{a, b, x, y, z}, d) where

da = db = 0, dx = a2, dy = b2, dz = ab,

and |a| = |b| = m and |x| = |y| = |z| = 2m− 1. A basis for H∗(X) is therefore given by
the elements α = [a], β = [b] ∈ Hm(X), u = [az − xb], v = [bz − ya] ∈ H3m−1(X) and
µ = [abz − ya2] ∈ H4m−1(X). The only non-trivial cup-products are αv = µ = uβ.

If m is odd the minimal model has the form (Λ{a, b, z}, d) where

da = db = 0, dz = ab,

and |a| = |b| = m and |z| = 2m − 1. A basis for H∗(X) is given by the elements
α = [a], β = [b] ∈ Hm(X), u = [az], v = [zb] ∈ H3m−1(X) and µ = [azb] ∈ H4m−1(X),
and again the only non-trivial products are αv = µ = uβ.

In both cases u ∈ 〈α, α, β〉 and v ∈ 〈β, β, α〉, and hence Theorem 4.6 of [Rud] gives
wgt(u) ≥ 2 and wgt(v) ≥ 2. Our Theorem 3 now applies with k = 2, r = m − 1 to give
wgtπX

(u) ≥ 2 and wgtπX
(v) ≥ 2. Now since

α · u · v = −u× µ± µ× u 6= 0,

and wgtπX
(α) ≥ 1 as α is a zero-divisor, Theorem 2 gives TC(X) > 1 + 2 + 2 = 5.
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In general TC(X) = 6 or 7, since cat(X) = 4 (see Example 4.9 of [Rud]; recall that
our definition of category differs from that of [Rud] by one).
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