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Abstract. We prove three results concerning convolution operators and lacunary maximal

functions associated to dilates of measures. First we obtain an H1 to L1,∞ bound for lacunary

maximal operators under a dimensional assumption on the underlying measure and an assump-

tion on an Lp regularity bound for some p > 1. Secondly, we obtain a necessary and sufficient

condition for L2 boundedness of lacunary maximal operator associated to averages over convex

curves in the plane. Finally we prove an Lp regularity result for such averages. We formulate

various open problems.

1. Introduction. We consider a compactly supported finite Borel measure µ and de-
fine its dyadic dilates by 〈µk, f〉 = 〈µ, f(2k·)〉. The main objects of this paper are the
convolutions f 7→ f ∗ µk and the lacunary maximal function given by

Mf(x) = sup
k∈Z
|f ∗ µk(x)|.

Throughout this paper the dilates 2k can be replaced by more general lacunary dilates
λk satisfying infk λk+1/λk > 1.

If µ satisfies the condition µ̂(ξ) = O(|ξ|−ε) (some ε > 0), then Lp-boundedness of M

holds in the range 1 < p < ∞, see e.g. [9]. For suitable classes of examples we discuss
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two problems, namely what may happen in the limiting case p = 1, and, secondly, what
could be said about boundedness of M if the above decay condition on µ̂ is relaxed.

Notation. For two nonnegative quantities A and B let A . B denote the statement
that A ≤ CB for some constant C. The Lebesgue measure of a set E is denoted
by meas(E). Throughout we work with a fixed inhomogeneous dyadic frequency de-
composition {Pk}∞k=0. Let β0 ∈ C∞c (R) be supported in (−1, 1) and equal to 1 in
[−1/2, 1/2]. Define the operators Pk by P̂0f(ξ) = β0(|ξ|)f̂(ξ) if k = 0 and by P̂kf(ξ) =
(β0(2−k|ξ|)− β0(2−k+1|ξ|))f̂(ξ) if k > 0.

H1 → L1,∞ boundedness of lacunary maximal operators. Concerning the case
p = 1, M can never be bounded on L1(Rd), outwith the trivial case. One can ask whether
the smoothing condition µ̂(ξ) = O(|ξ|−ε) implies that M is of weak-type (1, 1), i.e. maps
L1(Rd) to the Lorentz space L1,∞(Rd). To the best of our knowledge no counterexample
and no example is known for the case that µ is a singular measure with the decay
assumption on µ̂.

For various classes of singular measures it has been observed that a somewhat weaker
endpoint inequality holds, namely that M maps the (usual isotropic) Hardy space H1(Rd)
to L1,∞(Rd). The first results in this direction are due to Christ [5] who used some
powerful variants of Calderón–Zygmund theory. We formulate a theorem which unifies
and extends some previous results, with some simplification in the proofs. In what follows
we let A denote the convolution operator A : f 7→ f ∗ µ.

Theorem 1.1. For ρ > 0 let NΣ(ρ) be the minimal number of balls of radius ρ needed
to cover the support of µ. Let 0 < s ≤ d and suppose that

sup
0<ρ<1

ρd−sNΣ(ρ) <∞ (1)

sup
k>0

2k(d−s)(1−1/p)‖PkA‖Lp(Rd)→Lp(Rd) <∞, for some p > 1. (2)

Then the lacunary maximal operator M maps H1(Rd) into L1,∞(Rd).

The covering condition (1) is a dimensional assumption on the support of the measure;
in particular when s is an integer it is satisfied if supp(µ) is contained in an imbedded
manifold of codimension s. The assumption (2) expresses an optimal smoothing result
in the category of Besov spaces, for p near 1. We note that assumptions (1) together
with assumption (2) imply stronger regularity results in Sobolev and Triebel–Lizorkin
spaces, see [23]. When p = 2 the assumption (2) is equivalent with the inequality µ̂(ξ) =
O(|ξ|−(d−s)/2). In this case we recover results by Oberlin [18] and Heo [13], both extending
Christ’s original result and method of proof in [5].

Examples.

(i) Our main new example concerns the case of arclength measure on a compact curve
in R3 with nonvanishing curvature and torsion. Here d = 3, s = 2 and the main regularity
assumption is a recent result of Pramanik and one of the authors [24], established for
p < (pW + 2)/pW where pW <∞ is an exponent for which a deep inequality of T. Wolff
[34] on decompositions of cone multipliers holds.
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(ii) As in [29], [14] one can consider hypersurfaces on which the Gaussian curvature
does not vanish to infinite order. Then of course (1) holds with s = 1 and, by a result of
Sogge and Stein [30], inequality (2) holds for some values of p > 1 (in a range depending
on the order of vanishing of the curvature).

(iii) An interesting example occurs in [15] where Σ is a portion of the light cone in Rd
when d ≥ 5. In this case one can see condition (2) as a consequence of a sharp space time
inequality for spherical means, see inequality (10.9) in [16].

Open problems. There are many, concerning both the hypotheses and the conclusion
of Theorem 1.1.

(a) Given the dimensionality assumption (1), under what conditions does (2) hold?
More concretely, if dµ = χdσ and dσ is arclength measure on (a compact piece of) a
curve of finite type in Rd, does (2) hold with s = d− 1 and some p > 1? This is open in
dimensions d ≥ 4. Similarly, is M : H1 → L1,∞ for these examples?

(b) More generally, if Σ is a manifold of finite type (in the sense of Ch. VIII, §3.2
of [31]) does it follow that the lacunary maximal operator maps H1 to L1,∞? See [33] for
a measure supported on a cylinder for which the associated lacunary maximal operator
which does map H1 to L1,∞ but for which the hypothesis (2) does not hold.

(c) In Theorem 1.1, can one replace the usual isotropic dilations by nonisotropic ones,
with the corresponding change of Hardy spaces, but keeping the isotropic assumption (2)?
See [5] for results on averaging operators along curves in two dimensions and related
results in [29], [14] for hypersurfaces. The question whether the maximal function along
the (t, t2, t3) maps the corresponding anisotropic Hardy space H1 to L1,∞ is currently
open.

(d) In [29] it was shown that the lacunary maximal operators associated to hyper-
surfaces of finite type (with respect to an arbitrary dilation group) are of weak type
L log logL. This is the current result closest to a perhaps conjectured weak type L1

bound. It is open whether one can prove a similar result merely under the regularity
assumption (2).

Remark. We take this opportunity to mention a fallacious argument in the exceptional
set estimate in §5 of the article [29] and thank Neal Bez for pointing it out. A correction
is posted on one of the authors’ website (see the reference to [29] below).

Lacunary maximal operators associated to convex curves in the plane. Let Ω
be a convex open domain in the plane with compact closure so that the origin is contained
in Ω. We let σ be the arclength measure on the boundary ∂Ω and consider the question
of Lp boundedness of the lacunary maximal operator associated to ∂Ω,

Mf(x) = sup
k∈Z

∣∣∣ ∫
∂Ω

f(x− 2ky) dσ(y)
∣∣∣. (3)

As mentioned above, if |σ̂(ξ)| = O(|ξ|−ε) for some ε > 0, then M is Lp bounded for
1 < p <∞. Now we are aiming for much weaker hypotheses.

The decay of σ̂ is strongly related to a geometric quantity. Given a unit vector θ let
`+(θ) be the unique supporting line with θ an outer normal to ∂Ω, i.e. the affine line
perpendicular to θ which intersects ∂Ω so that Ω is a subset of the halfspace {x : x =
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y−tθ : t > 0, y ∈ `+(θ)}. Similarly define `−(θ) as the unique affine line perpendicular to θ
which intersects ∂Ω and Ω is a subset of the halfspace {x : x = y + tθ, t > 0, y ∈ `−(θ)}.
For small δ > 0 define the arcs (or ‘caps’)

C±(θ, δ) = {y ∈ ∂Ω : dist(y, `±) ≤ δ}.

By a compactness consideration it is easy to see that there is δ0 > 0 so that for all θ ∈ S1

and all δ < δ0 the arcs C+(θ, δ) and C−(θ, δ) are disjoint. Let Λ(θ, δ) be the maximum of
the length of these caps:

Λ(θ, δ) = max
±

σ(C±(θ, δ)) .

The analytic significance of this quantity is that it gives a very good estimate for the size
of Fourier transform σ̂, namely for every θ ∈ S1 and R ≥ 1

|σ̂(Rθ)| ≤ CΩΛ(θ,R−1). (4)

This is shown in [1] under the hypothesis for convex domains in the plane with smooth
boundary, with no quantitative assumption on the second derivative. The general case
follows by a simple approximation procedure (see also [21], [22] for similar observations).

We note that for classes of multipliers satisfying standard symbol assumptions one
can insure boundedness under rather weak decay assumptions on the symbol, but it is
not clear what the optimal conditions are; moreover the usual method of square-functions
is often not the appropriate tool (cf. [7], [12]). In this light the following characterization
for p = 2 in terms of the quantities Λ(θ, δ) is perhaps surprising (as well as the fact that
it can be proved using simple square-function arguments).

Theorem 1.2. The operator M is bounded on L2(R2) if and only if

sup
θ∈S1

∫ δ0

0

Λ(θ, δ)2 dδ

δ
<∞. (5)

Problem. For q 6= 2, find necessary and sufficient conditions on ∂Ω in order for M to
be bounded on Lq(R2).

It may be interesting to look at specific ‘flat’ examples. By testing M on functions
supported in thin strips we shall obtain a necessary condition

sup
‖f‖q=1

‖Mf‖q ≥ c sup
θ∈S1

(∫ δ0

0

Λ(θ, δ)q
dδ

δ

)1/q

(6)

for all q. We note that if ∂Ω has only one “flat” point near which ∂Ω can be parametrized
as the graph of C+exp(−1/|t|a) with C 6= 0, then this Lq condition holds iff a < q. Thus
in this case L2 boundedness of M holds if and only if a < 2.

Lp-regularity of averages. As in the previous section we consider convex curves Σ,
say boundaries of a convex domain but the position of the origin will not play a role now.
The estimate (4) can be interpreted as an L2 regularity result for the integral operator
A : f 7→ f ∗ σ. We reformulate this with the standard dyadic frequency decomposition
{Pk}∞k=0 as above. Then setting

ωk =
1

supθ∈S1 Λ(θ, 2−k)
(7)
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(4) says that the inequality ∥∥∥(∑
k>0

ω2
k|PkAf |2

)1/2∥∥∥
p

. ‖f‖p (8)

holds for p = 2.
We are now interested in analogous Lp regularity results, i.e. we wish to determine

the range of p for which (8) holds, with the optimal weight ωk in (7). In case the curvature
vanishes somewhere one expects this inequality to hold for some p 6= 2; for example if Σ
is of finite type, and if m is the order of maximal contact of tangent lines with Σ then (8)
holds with the optimal ωk = 2−k/m for the range m

m−1 < p < m, see [32], [6] (and also
[26], [35] for variable coefficient analogues). Given these known examples we are mainly
interested in very flat cases. We shall prove (8) for a family of curves with additional
hypotheses which cover interesting examples for which the curvature vanishes of infinite
order at a point. In those flat cases one gets (8) in the full range 1 < p <∞.

After a localization we assume that (part of) the convex curve is given as a graph
(t, γ(t)) for 0 ≤ t ≤ 1 and consider the integral operator

Af(x) =
∫ 1

0

f(x1 − t, x2 − γ(t)) dt.

Theorem 1.3. Let γ be of class C3 on (0, 1] and of class C2 on [0, 1]. Assume that γ(0) =
γ′(0) = γ′′(0) = 0, γ′′ is nonnegative and strictly increasing on [0, 1], and furthermore,
the limit

b = lim
t→0+

γ′′(t)
tγ′′′(t)

exists with b ∈ [0,∞). Let

wk =
1

γ−1(2−k)
.

Then the inequality ∥∥∥(∑
k>0

w2
k|PkAf |2

)1/2∥∥∥
p

. ‖f‖p (9)

holds for 1 + b
1+b < p < 2 + b−1 (and thus for 1 < p <∞ if b = 0).

Examples. We note that, in the setup of this theorem, wk ≈ ωk as defined in (7).
In the case γ0(t) = tm with m > 2 we recover the known result mentioned above since
b−1 = m−2 and wk ≈ 2−k/m. In the flat case γ1(t) = e−t

−a
we have b = 0 and wk ≈ k−1/a.

We may consider even flatter cases: Let expn∗ be the n-fold iteration exp ◦ · · · ◦ exp and
logn∗ the n-fold iteration of ln. For large C > 0 consider γ2(t) = exp(− expn∗ (Ct

−λ)). Then
b = 0 and wk ≈ (logn∗ (e

n + k))−1/λ.

Open problems.

(i) For the curves Γ(t) = (t, γ(t)) featured in Theorem 1.3 let M be the maximal
function along Γ (as in (27) below). Does M map the Hardy-space H1

prod (associated with
the two-parameter dilations (t1·, t2·)) to the Lorentz space L1,2? Similar questions can
be formulated for certain singular integrals along Γ. For the finite type case (γ(t) = tm)
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such estimates can be found in [27]. For the flat cases one would need to further explore
Hardy space structures associated to the curve Γ.

(ii) Let D1/mf = F−1[(1 + |ξ|2)1/2mf̂ ], the fractional Bessel derivative of order 1/m.
For the finite type m case there are endpoint estimates involving Lorentz spaces Lp,2,
namely it was shown in [27] that D1/mA maps Lm,2 to Lm and Lm

′,2 to Lm
′
, see [6]

for the sharpness of such results. It would be interesting to investigate sharp regularity
results for general γ. One aims to bound the square-function (

∑
k>0 w

2
k|PkAf |2)1/2 in

natural Orlicz or Orlicz–Lorentz spaces associated with γ. As suggested by the method
in [27], endpoint results should be related to a resolution of problem (i).

(iii) Can one prove (8) for more general convex domains; in particular, can one relax
the monotonicity assumption on γ′′ in Theorem 1.3?

This paper. The proof of Theorem 1.1 will be given in §2. The proof of Theorem 1.2 is in
§3. The proof of Theorem 1.3 is in §4. In §5 we formulate yet another problem concerning
lacunary maximal functions for dilates of a simple Marcinkiewicz multiplier.

2. Proof of Theorem 1.1. Atomic decompositions. In what follows ψ will denote a
nontrivial C∞ function with compact support in {x : |x| ≤ 1/2} so that ψ̂(ξ) 6= 0 for
1
4 ≤ |ξ| ≤ 4 and ψ̂ vanishes to order 10d at the origin. We let ψl = 2−ldψ(2−l·).

We use the atomic decomposition based on a square-function characterization as given
in [4]; for variants and applications of this method see [25], [28], [16]. Given f in H1 one
can write f =

∑
Q bQ where this sum converges in H1, each bQ is supported in the double

of the dyadic cube Q with sidelength 2L(Q), and has the following fine structure. We have

bQ =
∑

j≤L(Q)

ψj ∗ ψj ∗ bQ,j

where bQ,j can be decomposed as bQ,j =
∑
R∈R(Q,j) eR, the families R(Q, j) consist

of dyadic cubes R of sidelength 2j contained in Q with disjoint interior, the bounded
function eR is supported on R, and finally∑

Q

|Q|1/2
( ∑
j≤L(Q)

∑
R∈R(Q,j)

‖eR‖22
)1/2

. ‖f‖H1 . (10)

We set

γQ,j =
( ∑
R∈R(Q,j)

‖eR‖22
)1/2

, γQ =
( ∑
j≤L(Q)

γ2
Q,j

)1/2

,

and note that
‖bQ,j‖2 . γQ,j , ‖bQ‖2 . γQ ,

and ∑
Q

|Q|1/2γQ . ‖f‖H1 .

The weak type inequality. The condition in (2) becomes more restrictive as p increases
and therefore we may assume p ≤ 2. By a scaling argument we may assume that µ0 = µ

is supported in the unit ball centered at the origin (the operator norm will depend on
that scaling).
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We need to show that

meas
({
x : sup

k

∣∣µk ∗∑
Q

bQ
∣∣ > α

})
. α−1‖f‖H1 . (11)

To achieve this we assign for each Q an integer τ(Q) depending on α, defined as follows.
We first let τ̃(Q) be the smallest integer τ for which

2(d−s)τ2sL(Q) ≥ α−1|Q|1/2γQ
(or −∞ if there is no such smallest integer) and define

τ(Q) = max{L(Q), τ̃(Q)} .

We form an exceptional set depending on α by

E =
⋃
Q

⋃
k:L(Q)<k≤τ(Q)

(supp(µk) +Q∗)

where Q∗ is the tenfold dilate of Q with respect to its center. Note that (suppµk +Q∗)
is contained in the 2k-dilate of a C2L(Q)−k neighborhood of supp(µ). By the assumption
on µ this neighborhood can be covered with . 2(k−L(Q))(d−s) balls of radius 2L(Q)−k.
Thus

meas(supp(µk) +Q∗) ≤ C12kd2(k−L(Q))(d−s)2(L(Q)−k)d = C12k(d−s)2L(Q)s

and thus
meas(E) .

∑
Q:L(Q)<τ(Q)

2τ(Q)(d−s)2L(Q)s .

By the minimality property of τ(Q) in its definition it follows that for the case L(Q) <
τ(Q) the inequality 2(τ(Q)−1)(d−s)2L(Q)s ≤ α−1|Q|1/2γQ is satisfied. Thus

meas(E) .
∑

Q:L(Q)<τ(Q)

α−1|Q|1/2γQ . α−1‖f‖H1 . (12)

We split supk |f ∗ µk(x)| into three parts depending on α.

I(x) = sup
k

∣∣∣µk ∗ ∑
Q:τ(Q)<k

bQ

∣∣∣ ,
II(x) = sup

k

∣∣∣µk ∗ ∑
Q:L(Q)<k≤τ(Q)

bQ

∣∣∣ ,
III(x) = sup

k

∣∣∣µk ∗ ∑
Q:k≤L(Q)

bQ

∣∣∣ .
Note that II is supported in E and thus

meas
({
x : sup

k

∣∣µk ∗∑
Q

bQ
∣∣ > α

})
.
‖I‖pp
αp

+ meas(E) +
‖III‖1
α

(13)

where p is as in assumption (2).
The estimation for ‖III‖1 is straightforward and just uses the L2 boundedness of the

lacunary maximal operator. Note that for k ≤ L(Q) the function µk ∗ f is supported
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in Q∗. We estimate

‖III‖1 ≤
∑
Q

∥∥ sup
k≤L(Q)

|µk ∗ bQ|
∥∥

1

≤
∑
Q

|Q∗|1/2‖MbQ‖2 .
∑
Q

|Q|1/2‖bQ‖2 . ‖f‖H1 .
(14)

We turn to the main term I and estimate

‖I‖pp =
∥∥∥sup

k

∣∣µk ∗∑
L

∑
Q:L(Q)=L
τ(Q)≤k

∑
n≥0

ψL−n ∗ ψL−n ∗ bQ,L−n
∣∣ ∥∥∥
p

≤
(∑
n≥0

(∑
k

∥∥In,k∥∥pp)1/p)p
(15)

where
In,k = µk ∗

∑
L

∑
Q:L(Q)=L
τ(Q)≤k

ψL−n ∗ ψL−n ∗ bQ,L−n.

We shall bound
∑
k ‖In,k‖pp with some exponential gain in n.

We first observe as a consequence of assumption (2) the simple convolution inequality
‖µ∗ψj ∗g‖p . 2−j(d−s)/p

′‖g‖p. Indeed this follows from (2) by observing that ‖Pkψj‖1 .
2−|j−k|2d where we use the vanishing moment assumption on ψj . By scaling, the operator
of convolution with µk ∗ψL−n has the same operator norm as the operator of convolution
with µ0 ∗ ψL−n−k which is O(2−(k+n−L)(d−s)/p′). Because of the almost orthogonality of
the ψj we may apply the inequality ‖

∑
ψj ∗ gj‖p . (

∑
j ‖gj‖pp)1/p. Thus we get

‖In,k‖p .
(∑
L

∥∥∥µk ∗ ψL−n ∗ ∑
Q:L(Q)=L
τ(Q)≤k

bQ,L−n

∥∥∥p
p

)1/p

. 2−(k+n−L)(d−s)/p′
(∑
L

∥∥∥ ∑
Q:L(Q)=L
τ(Q)≤k

bQ,L−n

∥∥∥p
p

)1/p

. 2−(k+n)(d−s)/p′
( ∑
Q:τ(Q)≤k

2L(Q)(d−s)(p−1) ‖bQ,L−n‖pp
)1/p

,

where the last inequality follows from the disjointness of the Q with fixed L = L(Q).
Thus we get after interchanging summations and summing in k ≥ τ(Q)(∑

k

‖In,k‖pp
)1/p

. 2−n(d−s)/p′
(∑
Q

2(L(Q)−τ(Q))(d−s)(p−1)‖bQ,L−n‖pp
)1/p

. 2−n(d−s)/p′
(∑
Q

2(L(Q)−τ(Q))(d−s)(p−1)|Q|1−p/2γpQ
)1/p

.

In the last estimate we have used Hölder’s inequality and γQ,j ≤ γQ. By the definition of
τ(Q) we have

2−(d−s)τ(Q) ≤ 2−sL(Q)α|Q|−1/2γ−1
Q ,
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no matter whether τ(Q) > L(Q) or τ(Q) = L(Q). This leads to

2(L(Q)−τ(Q))(d−s)(p−1)|Q|1−p/2γpQ ≤ α
p−1|Q|1/2γQ

and consequently we get∑
k

‖In,k‖pp ≤ Cp2−n(d−s)(p−1)αp−1
∑
Q

|Q|1/2γQ

which by (15) implies
‖I‖pp ≤ C̃pαp−1

∑
Q

|Q|1/2γQ. (16)

We finish the proof of (11) by combining (13), (12), (14) and (16).

3. Proof of Theorem 1.2. We shall first prove the necessary condition (6) for Lq-
boundedness of M. We check the lower bound by providing an example for θ = e2 and
the general case follows by rotating the curve. From the positivity of M and translation
invariance we may reduce to the case where M is replaced by the maximal operator

Mf(x) = sup
k∈Z
|Akf(x)|

with Akf(x) :=
∣∣∣∫
|t|≤ε

f(x1 − 2kt, x2 − 2kL+ 2kγ(t)) dt
∣∣∣; (17)

here t 7→ γ(t) is a convex function with γ(0) = 0, L > 0, ε > 0 and the line {x2 = L} is
a supporting line at (0, L).

We test M on the functions

fη(x) = (4η)−1/qχEη (x) where Eη := {x ∈ R2 : |x1| ≤ 1, |x2| ≤ η}

for small η > 0. Then ‖fη‖q = 1. For each k ∈ Z set

Fη,k = {x ∈ R2 : |x1| ≤ 1/4, 2kL ≤ x2 ≤ 2kL+ η/4}.

We define k0 to be the smallest integer k satisfying 2k ≥ ηmax
(
1/4L, 1/γ(ε)

)
and note

that when k ≥ k0, the sets Fη,k are disjoint and we have the lower bound

Mfη(x) ≥ (4η)−1/qγ−1(2−kη) for x ∈ Fη,k.

Therefore

(2η)−1
∑
k≥k0

|Fη,k|[γ−1(2−kη)]q ≤
∑
k≥k0

∫
Fη,k

Mfη(x)q dx ≤ ‖Mfη‖qq.

Since |Fη,k| = η/4 for each k and σ(C(e2, 2−kη)) ≤ Bγ−1(2−kη) for some B > 0 depending
only on γ, we have

B−q
∫ δ1

0

σ(C(e2, δ))q
dδ

δ
≤ B−q

∑
k≥k0

∫ 2−kη

2−k−1η

σ(C(e2, δ))q
dδ

δ

≤
∑
k≥k0

4η−1|Fη,k|[γ−1(2−kη)]q

for some δ1 > 0 depending only on γ. Thus from the two previous chains of inequalities
we obtain

∫ δ1
0
σ(C(e2, δ))q dδδ ≤ 8‖Mfη‖qq and this completes the proof of (6).
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We now assume q = 2 and that the condition on the caps C(θ, δ) in (5) is satisfied. By
a partition of unity, the translation invariance and positivity ofM, we may suppose that
the maximal operator is of the form (17). The averaging operators Ak are convolution
operators with Fourier multipliers

mk(ξ) = m0(2kξ) :=
∫
|t|≤ε

e−i2
k[ξ1t+Lξ2−ξ2γ(t)] dt.

For small ξ we have the trivial bound

|mk(ξ)− 2ε| ≤ C2k|ξ| (18)

where C is a universal constant. For large |ξ| we will use the bound

|mk(ξ)| ≤ CΛ
(
ξ
|ξ| , (2

k|ξ|)−1
)

(19)

which follows from (4).
Now fix a Schwartz function Φ with

∫
Φ(x) dx = 2ε and define Φk(x) := 2−2kΦ(2−kx).

In order to prove the L2 boundedness of M , we note the pointwise bound

Mf(x) ≤ sup
k∈Z
|Φk ∗ f(x)|+

(∑
k∈Z
|Akf(x)− Φk ∗ f(x)|2

)1/2

.

The first term on the right hand side is dominated by the Hardy–Littlewood maximal
function of f and thus defines a bounded operator on all Lq, q > 1. Therefore it suffices
by Plancherel’s theorem for the second term to show that the function

ξ →
∑
k∈Z
|m0(2kξ)− Φ̂(2kξ)|2

is a bounded function in ξ. From (18) and (19), we see that the boundedness of this
function of ξ will follow if we can show that

I(ξ) :=
∑

k:2k|ξ|≥C

σ
(
C( ξ
|ξ| , [2

k|ξ|]−1)
)2

is uniformly bounded in ξ for some large C. Now

σ
(
C( ξ
|ξ| , [2

k|ξ|]−1)
)2 ≤ ln 2

∫ [2k−1|ξ|]−1

[2k|ξ|]−1
σ
(
C( ξ
|ξ| , δ)

)2 dδ
δ

and so

I(ξ) . sup
θ∈S1

∫ δ0

0

σ
(
C(θ, δ)

)2 dδ
δ
,

establishing the sufficiency part of Theorem 1.2.

4. Proof of Theorem 1.3. We let k◦ = min{k : 2−k ≤ 1
4γ
′′(1)} and only need to

consider the terms PkAf with k > k◦. Define

h(t) = t2γ′′(t)

so that γ(t) ≤ h(t). For k > k◦ we define a finite increasing sequence {tk,n}Nkn=1 so that
γ′′ doubles on those points (as long as tk,n < 1) and denote the corresponding images
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under γ′′ by ρk,n. We set

tk,0 = h−1(2−k) (20)

ρk,0 = γ′′(tk,0), (21)

and, for n ≥ 1, set

ρk,n =

{
2nγ′′(tk,0) if γ′′(tk,0) ≤ 2−n−1γ′′(1)

γ′′(1) if γ′′(tk,0) > 2−n−1γ′′(1),
(22)

and
tk,n = γ′′

−1(ρk,n) . (23)

Define

Ak,0f(x) =
∫ tk,0

0

Pkf(x1 − t, x2 − γ(t)) dt

Ak,nf(x) =
∫ tk,n

tk,n−1

Pkf(x1 − t, x2 − γ(t)) dt, n ≥ 1.

If we let
Nk = 1 + max

{
ν : γ′′(tk,ν) ≤ 1

2
γ′′(1)

}
then tk,n < 1 if n ≤ Nk − 1 and tk,n = 1 for n ≥ Nk; consequently Ak,n = 0 for n > Nk.
By Minkowski’s inequality we have∥∥∥(∑

k>k◦

|wkPkAf |2
)1/2∥∥∥

p
≤
∞∑
n=0

∥∥∥( ∑
k:k>k◦,n≤Nk

|wkAk,nf |2
)1/2∥∥∥

p
.

Theorem 1.3 follows from the following two propositions by interpolation; this can be
seen as a variant of arguments in [6], [26], [35].

Proposition 4.1. For n ≥ 0∥∥∥(∑
k≥k◦

|wkAk,nf |2
)1/2∥∥∥

2
≤ C2−n/2‖f‖2.

Proposition 4.2. For any ε > 0 and for 1 < p <∞,∥∥∥(∑
k≥k◦

|wkAk,nf |2
)1/2∥∥∥

p
≤ Cε2n(ε+b)‖f‖p

for all n ≥ 0.

For the proof of the propositions we need to relate the numbers tk,0 to the weights
wk, and we get

wktk,0 ≤ 1 for k > k◦. (24)

For k > k◦ the range of h includes 2−k, and thus (24) follows from part (i) of the following
lemma. Part (ii) shows that (24) is effective.

Lemma 4.3. Let γ be as in Theorem 1.3.

(i) If 0 ≤ s ≤ γ(1) then s ≤ h(1) and h−1(s) ≤ γ−1(s).
(ii) If 0 ≤ s ≤ h(1/3) then s ≤ γ(1) and γ−1(s) ≤ 3h−1(s).
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Proof. Note that the range of h and γ′′ on [0, 1] is the same. (i) follows from γ(t) ≤
h(t) = t2γ′′(t) for 0 ≤ t ≤ 1. But since γ(0) = γ′(0) = 0 and since γ′′ is increasing we get
the better inequality γ(t) ≤ h(t)/2 which is immediate from Taylor’s theorem. (ii) follows
from h(t) ≤ γ(3t) for 0 ≤ t ≤ 1/3 which holds by the monotonicity of γ′ and γ′′; indeed
t2γ′′(t) ≤ t

∫ 2t

t
γ′′(u) du ≤ tγ′(2t) ≤

∫ 3t

2t
γ′(u) du ≤ γ(3t).

We will now turn to the proof of the propositions. Proposition 4.1 relies on van der
Corput’s lemma (Ch. VIII, §1.2 in [31]), while the proof of Proposition 4.2 relies on the
eight authors’ theorem [3] on the boundedness of the maximal operator along (t, γ(t))
under the γ′ doubling hypothesis.

Proof of Proposition 4.1. We may assume n ≤ Nk. Then for n ≥ 1 we need to estimate
the multiplier

mk,n(ξ) =
∫ tk,n

tk,n−1

exp(i(ξ1t+ ξ2γ(t))) dt

when 2k−1 ≤ |ξ| ≤ 2k+1.
For t ≥ tk,n−1 we have

γ′′(t) ≥ γ′′(tk,n−1) = 2n−1γ′′(tk,0) = 2n−1γ′′(h−1(2−k))

and since h(t) = t2γ′′(t),

γ′′(h−1(2−k)) =
[h−1(2−k)]2γ′′(h−1(2−k))

[h−1(2−k)]2
=

2−k

[h−1(2−k)]2
.

Thus if |ξ2| ≥ ε|ξ1| (i.e. |ξ2| ≈ 2k) we get by van der Corput’s Lemma

|mk,n(ξ)| ≤ C|ξ2|−1/2|γ′′(tk,n−1)|−1/2 ≤ Cε|ξ|−1/22k/22−(n−1)/2h−1(2−k)

which is at most C ′ε2
−n/2γ−1(2−k), by (24).

If |ξ2| ≤ ε|ξ1| and ε is sufficiently small then the derivative of the phase is
|ξ1 + ξ2γ

′(t)| ≥ |ξ1| ≈ 2k and we obtain |mk,n(ξ)| ≤ C2−k. Now

2−k = h(tk,0) = 2−k/22(1−n)/2
√
h(tk,n−1) . γ−1(2−k)2−n/2

since h is bounded and γ(t) . t2. We have now proved the estimate

|mk,n(ξ)β(2−k|ξ|)| . 2−n/2γ−1(2−k) (25)

for n > 0. For n = 0 we need to estimate

mk,0(ξ) =
∫ tk,0

0

exp(i(ξ1t+ ξ2γ(t))) dt

and we just use the trivial bound

|mk,0(ξ)| ≤ tk,0 = h−1(2−k) ≤ γ−1(2−k).

These estimates imply the asserted L2 bound by Plancherel’s theorem.

Proof of Proposition 4.2. It suffices to show∥∥∥(∑
k

|wkAk,nfk|2
)1/2∥∥∥

p
≤ Cε,p2n(b+ε)

∥∥∥(∑
k

|fk|2
)1/2∥∥∥

p
(26)
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for 1 < p < ∞ since we can apply it with fk = Lkf where Lk is a suitable Littlewood-
Paley type localization operator with Pk = PkLk. By a duality argument it suffices to
prove (26) for 1 < p ≤ 2.

Consider the maximal function

Mf(x) = sup
0<r≤1

1
r

∫ r

0

|f(x1 − t, x2 − γ(t))| dt. (27)

By our assumption γ′′′(t) ≥ 0 and γ′(0) = γ′′(0) = 0, the convex function u = γ′ satisfies
the doubling condition u(2t) ≥ 2u(t) for 0 ≤ t ≤ 1/2. Thus by [3] the maximal operator
M is bounded on Lp(R2) for 1 < p <∞. We also have the vector-valued version∥∥{Mfk

}
k∈Z

∥∥
Lp(`q)

.
∥∥{fk}k∈Z

∥∥
Lp(`q)

, 1 < p <∞, p ≤ q ≤ ∞ . (28)

Indeed for p = q this follows from the Lp inequality for M and interchanging summation
and integration. For q =∞ it follows from using supk Mfk = M(supk |fk|) and applying
the Lp inequality for M. For p ≤ q ≤ ∞ we use a standard linearization and complex
interpolation argument. In particular if 1 < p ≤ 2, (28) holds for q = 2.

Now note the trivial majorization

|Ak,nfk(x)| ≤ tk,nM[Pkfk](x).

We shall show that given ε > 0 in the statement of the proposition we have

sup
k,n:n≤Nk

2−n(b+ε)wktk,n ≤ C(ε) . (29)

Using (29) we may estimate∥∥∥(∑
k

|wkAk,nfk|2
)1/2∥∥∥

p
≤ C(ε)2n(b+ε)

∥∥∥(∑
k

|MPkfk|2
)1/2∥∥∥

p

≤ C ′(ε)2n(b+ε)
∥∥∥(∑

k

|fk|2
)1/2∥∥∥

p
,

by (28), and vector-valued singular integral estimates for the operator {fk} 7→ {Pkfk}
on Lp(`2).

It remains to show (29). By (24) the required bound holds for n = 0. Moreover

wktk,n ≤
γ′′
−1(ρk,n)

h−1(2−k)
=

γ′′
−1(ρk,n)

γ′′−1(ρk,0)
.

Consequently it suffices to show that

sup
k,n:1≤n≤Nk

2−n(b+ε) γ
′′−1(ρk,n)
γ′′−1(ρk,0)

≤ C(ε) ,

or, equivalently,

−b ln 2 +
1
n

ln
(γ′′−1(ρk,n)
γ′′−1(ρk,0)

)
≤ ε ln(2) +

ln(C(ε))
n

, (30)

for any (k, n) with k > k◦ and 1 ≤ n ≤ Nk. Note that n−1 ln(ρk,n/ρk,0) = 1 for n < Nk
and 1 ≤ n−1 ln(ρk,n/ρk,0) ≤ n+1

n for n = Nk. The left hand side of (30) is then equal to

1
n

∫ ρk,n

ρk,0

τb(s)
ds

s
+ Ek,n
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where
τb(s) =

s

γ′′′(γ′′−1(s))γ′′−1(s)
− b,

Ek,n = 0 for n < Nk and |Ek,n| ≤ n−1 for n = Nk. Thus it suffices to show that there is
N (ε) > 0 so that

sup
k:Nk>n

1
n

∫ ρk,n

ρk,0

|τb(s)|
ds

s
≤ ε ln(2) for n > N (ε) . (31)

Now γ′′
−1(s)→ 0 as s→ 0 and, since b = limt→0

γ′′(t)
tγ′′′(t) , we have thus lims→0 τb(s) = 0.

Choose δ(ε) ∈ (0, 1
2γ
′′(1)) so that |τb(s)| < ε/4 whenever s < δ(ε). Because of the

assumed behavior of γ′′(t)
tγ′′′(t) near 0 we see that M = sup0<t≤1

γ′′(t)
tγ′′′(t) < ∞. Let N (ε) =

4Mε−1 ln(γ
′′(1)
δ(ε) ).

Let Ik,n = [ρk,0, ρk,n] ∩ (0, δ(ε)] and Jk,n = [ρk,0, ρk,n] ∩ [δ(ε), γ′′(1)]; one of these
intervals may be empty. Now τb(s) ≤ ε/4 on Ik,n and ρk,n/ρk,0 < 2n+1. Therefore for all
n ≤ Nk

1
n

∫
Ik,n

|τb(s)|
ds

s
≤ ε

4n

∫ ρk,n

ρk,0

ds

s
≤ n+ 1

n

ε ln 2
4
≤ ε ln(2)

2
.

On Jk,n we use the estimate |τb(s)| ≤ 2M and obtain for N (ε) ≤ n ≤ Nk

1
n

∫
Jk,n

|τb(s)|
ds

s
≤ 1
n

∫ γ′′(1)

δ(ε)

2M
ds

s
=

2M ln(γ
′′(1)
δ(ε) )

N (ε)
≤ ε

2
.

We combine these two estimates and obtain (31). Thus the proposition is proved.

5. Another open problem. We recall another open problem concerning a lacunary
maximal operator generated by dilates of a Marcinkiewicz multiplier in two dimensions.
Let η0 be a Schwartz function on the real line with η0(0) 6= 0. Let

mk(ξ1, ξ2) = η0(22kξ1ξ2)

(the dilates of the so-called hyperbolic cross multiplier) and define

Mf(x) = sup
k
|F−1[mkf̂ ](x)|.

Problem. Is M bounded on Lp(R2), for some p ∈ (1,∞)?

The problem is closely related to one formulated in [10] and [8], on the pointwise
convergence for the “hyperbolic” Riesz means Rλ,tf . These are defined by R̂λ,tf(ξ) =
(1−t−2ξ2

1ξ
2
2)λ+f̂ and they were studied in [10] and [2]. A positive answer to our question is

known to imply positive Lp(R2) boundedness results for the maximal function Mλf(x) =
supt>0 |Rλ,tf(x)|, for suitable λ. A negative answer would prove that Mλ is unbounded
on all Lp(R2), for all λ.

Note that the multipliers mk satisfy the hypotheses of the Marcinkiewicz multiplier
theorem in R2. As proved in [7] Lp boundedness for lacunary maximal functions gener-
ated by Mikhlin–Hörmander (or Marcinkiewicz) multipliers fails generically, with respect
to the topology in some natural symbol spaces. This however does not settle our question
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above. More results and open problems on minimal decay assumptions for the bounded-
ness of such maximal operators can be found in [12].

One can also ask for bounds on the Lp operator norm of the maximal operator
MNf(x) = sup|k|≤N |F−1[mkf̂ ](x)|. Petr Honźık [17] noted that one can improve the
trivial upper bound CpN

1/p by combining the good λ inequalities in [20] with the rea-
soning in [12]; this yields the bound Cp log(N) (at least for a discrete analogue).
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[12] L. Grafakos, P. Honźık, A. Seeger, On maximal functions for Mikhlin-Hörmander multi-
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