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Introduction

I.1. In many branches of mathematics, it is important to find the “right framework” in
which a problem may be phrased and solved. I believe this plays even a more important
role in Probability Theory, where a random phenomenon may be considered as part of a
more complex one, or on the contrary, one may choose, given a random phenomenon, to
study only some of its aspects.

I.2. In this lecture, I would like to give a number of examples where

• either, in the middle of a complex stochastic framework, one may isolate some
features involving a few random variables which may serve as a guideline to more
sophisticated results,

• or, on the contrary, while looking at some reasonably simple, finite-dimensional
stochastic phenomena, one finds some reward in embedding this phenomena in an
infinite-dimensional stochastic framework.

I.3. I would like to call the first attitude: “Stripping a random phenomenon to its skele-
ton”, and I have often used this reduction to create exercises in first courses of probabil-
ity theory, starting from much more complex material involving e.g. studies of Brownian
functionals. Several such examples are given in Part A of this lecture.

I.4. The second attitude which I would like to call: “Embedding (or Dressing) a finite-
dimensional random phenomenon into an infinite-dimensional one” is, in fact, borrowed
from K. Itô, and may be called “Itô’s principle”. Indeed, in the Foreword to his Selected
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Papers volume, Itô writes, in substance: “After a while, it became my habit to consider
even finite-dimensional probabilistic objects within an infinite-dimensional framework”.
Itô wanted thus to explain how he came to think of the Poisson point process (PPP)
of (say, Brownian) excursions. As is now well recognized and understood, Itô’s PPP of
excursions allows to obtain myriads of results about “individual excursions”; D. Williams
called this “the miracle of excursion theory”.

I.5. Let us point out that the two “attitudes” are in fact deeply ingrained in Probability
Theory; indeed, conditioning with respect to a σ-field corresponds to focussing attention
to some part of a random phenomenon, while freezing another part of the same; on the
other hand, one often needs to conveniently enlarge a probability set-up (Ω,F , P ) into
(Ω̃, F̃ , P̃ ), and this for various reasons: the very definition of such enlargements is done
very carefully e.g. in Getoor–Sharpe [9] to prepare for their conformal version of the
Dambis–Dubins–Schwarz representation of continuous martingales; let us also mention
Skorokhod’s change of probability space in order to transform convergence in law into
convergence almost everywhere, a deep modification (see: Skorokhod [21], Shiryaev [20])
which I always refrain to present to students in Probability right after explaining at length
about the different notions of convergence in Probability Theory.

I.6. Throughout this lecture, I allowed myself to use some straightforward abbreviations,
which should cause no trouble for the reader, e.g. N and N ′ denote two reduced inde-
pendent Gaussian variables, and so forth. . . I believe this reduces (unnecessary) lengthy
precisions.

I.7. Throughout this lecture, the arc sine law, and some of its occurrences with Brownian
motion, shall be a recurrent theme:

A (stylized!) Brownian trajectory



SMALL AND BIG PROBABILITY WORLDS 263

Both 1
t gt ≡

1
t sup{s ≤ t : Bs = 0}, and 1

tA
+
t ≡ 1

t

∫ t
0
ds 1(Bs>0) are arc sine law

distributed, that is:

P
(1
t
gt ∈ dx

)
≡ P

(1
t
A

(+)
t ∈ dx

)
≡ dx

u
√
x(1− x)

(x ∈ (0, 1)).

In order not to distract the reader by giving too many illustrations of Stripping and
Dressing, I shall not discuss the “starred items”, whose study is less central than those
of the “unstarred ones”.

Plan of the lecture

• Warming up. A simple family of probability distributions: the beta gamma algebra.
• A. Stripping

→ A random phenomenon to its skeleton.

→ Some (deep) Brownian facts to the beta-gamma algebra.

(A.1) The theorems of Lévy and Pitman about RBM and BES(3).

(A.2) The arc sine law of Paul Lévy.

(A.3) BM up to an independent exponential time.

(A.4) Tsirel’son’s equation.

• B. Dressing up

(B.1) Bringing in a BM to prove a result involving one or two random variables. Neveu’s
proof of the hypercontractivity of the OU semigroup.

(B.2) Calling upon a second BM to help a BM: The Ciesielski–Taylor identities.

(B.3) Calling upon the Wiener sheet to help a BM.

(B.4) From the arc sine law to the (infinite-dimensional) Poisson Dirichlet laws.

(B.5) Behind the asymptotic studies of planar BM add. functionals, there lies a phan-
tom world.

(B.6) Calling upon Itô’s PPP of excursions to understand BM.

(B.7) Calling upon Markovian predictors to help understand non-Markovian processes:
Knight’s prediction theory.

Warming up

• Warning. An identity in law: f(X,Y )
(law)
= g(U, V ) is understood with X and Y inde-

pendent on one hand, and U and V independent on the other hand.
• Gamma variables. For a > 0, we denote by γa a gamma variable with parameter a, i.e.

P (γa ∈ dx) =
xa−1e−x dx

Γ(a)
(x > 0)

• Beta variables. For a, b > 0, we denote by βa,b a beta variable with parameters a and b,
i.e.

P (βa,b ∈ dx) =
xa−1(1− x)b−1 dx

B(a, b)
(0 < x < 1)
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• The beta-gamma algebra two main results:

i) γa + γb
(d)
= γa+b

ii) γa
γa+γb

(d)
= βa,b and is independent of (γa + γb).

In other terms:

(γa, γb)
(d)
= (βa,b; 1− βa,b)γa+b

with independence on both sides, i.e. γa and γb are independent; βa,b is independent
of γa+b.

• Examples and notation. We denote by N and N ′ a couple of independent standard
Gaussian random variables.
∗ a = b = 1/2. Note that N2 (d)

= 2γ1/2.

Thus
N2

N2 +N ′2
(d)
= β1/2,1/2 (an arc sine distributed random variable).

Box–Müller: N + iN ′ ≡
√
N2 +N ′2 exp(iθ) = (log(1/U)) exp(iθ), with U

(d)
= β1,1;

1
2π θ

(d)
= β′(1, 1).

∗ a = b = 1. e and e’ denote two standard, independent, exponential variables,

e, e′
(d)
= γ1

e

e + e′
(d)
= U ≡ β1,1 .

A. Stripping
(A.1) The theorems of Lévy and Pitman about RBM and BES(3). (Bt, t ≥ 0) is a one-

dimensional BM; St = sups≤tBs; Lt ≡ limε→0
1
2ε

∫ t

0

ds 1(|Bs|≤ε).

Then:

– (Lévy)

(St −Bt, St; t ≥ 0)
(d)
= (|Bt|, Lt; t ≥ 0).

Moreover, the symmetry principle of D. André states that

for fixed t, |Bt|
(d)
= St

(d)
= Lt

(d)
=
√
t|N |.

– (Pitman; 1975)

(2St −Bt, St; t ≥ 0)
(d)
= (|Bt|+ Lt, Lt; t ≥ 0)

(d)
= (Rt, inf

s≥t
Rs; t ≥ 0),

where (Rt, t ≥ 0) denotes the 3-dimensional Bessel process, starting from 0.

Corollary 1. If σa = inf{t : Bt > a}, and τ` = inf{t : Lt > `}, then

σa
(law)
= a2/N2; τ`

(law)
= `2/N2.
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(the vertical lengths represent St −Bt)

Now, from the beta-gamma algebra: Conditionally on |Bt| + Lt = r, and even the

whole σ-field of (|Bs|+ Ls, s ≤ t), |Bt| (or Lt) is uniform on [0, r], i.e. |Bt|
(d)
= rU.

(A.2) The arc sine law of Paul Lévy.(1
t
gt

(d)
=
)1
t
A

(+)
t

(d)
= β1/2,1/2 ; why?

In his 1939 paper Sur certains processus stochastiques homogènes, P. Lévy [12] showed
that

1
t
(A(+)

t , A
(−)
t , L2

t )
(d)
=

1
τ`

(A(+)
τ`
, A(−)

τ`
, `2) (1)

where τ` ≡ inf{t : Lt > `}.
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This is not at all obvious as at time t, Bt is in R+ with probability (1/2).

There are other times S called admissible times by J. Pitman and me, at which the
triplet as in (1), but with t replaced by S, has the same distribution. Now, back to (1):

(A(+)
τ`
, A(−)

τ`
)

(d)
=

`2

4
(T, T ′) ,

so that, from (1), again

1
t
A

(+)
t

(d)
=

T

T + T ′
(d)
=

N2

N2 +N ′2

(since T
(d)
= 1/N2, as explained before, in Corollary 1, where instead of T we used σ1).

(A.3) BM up to an independent exponential time (denoted here by T ! ). It is well known
that ( 1

√
gt
Bugt , u ≤ 1

)
is a Standard Brownian Bridge,

whereas
(

1√
t−gt

Bgt+u(t−gt), u ≤ 1
)

is a Standard Brownian Meander.

Now

(gT , T − gT )
(d)
= (β1/2,1/2, 1− β1/2,1/2)2e

(d)
= (N2, N ′

2).

Applications. a) We consider the principal value

Ht =
∫ t

0

ds

Bs
≡ lim
ε→0

∫ t

0

ds

Bs
1(|Bs|≥ε)

and we put

H−t = Hgt ; H+
t = Ht −Hgt .

Then

HT = H+
T +H−T

(where it is well known that H+
T and H−T are independent) and we find:

E
[
exp
(
i
λ

π
H−T

)]
=

tanh(λ)
λ

; E
[
exp
(
i
λ

π
H+
T

)]
=

λ

sinh(λ)

E
[
exp(iλHT )

]
=

1
cosh(λ)

.

Thus, we may write
1
π

(
H−T , H

+
T

) (d)
=
(
γgσ1 ; γσ1 − γgσ1

)
where (γu, u ≥ 0) is a Brownian motion independent of B, with respect to which σ1,
and g are defined.
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b) A particular case of the Feynman–Kac formula. As we know (from Lévy (1939)) that

A+
1

(d)
= β1/2,1/2, we obtain, by scaling:

A
(+)
T

(d)
= β1/2,1/2•(2e)

(d)
= 2γ1/2

(d)
= N2.

Thus, we find:

E[exp(−λA(+)
T )] =

1
(1 + 2λ)1/2

≡ 1
2

∫ ∞
0

dt e−t/2E
[
e−λA

(+)
t
]
.

Explanation: above, T denotes an exp(1/2) variable; i.e. P (T ∈ dt) = 1
2e
−t/2 dt which

is independent of BM (T ≡ 2e).

Then |BT |
(d)
= ST

(d)
= LT

(d)
= e (→ Scaling + Duplication) and |BT | and LT are

independent because (Bu, u ≤ gT ) and (BgT+v; v ≤ T − gT ) are independent.
Why? (Bu, u ≤ gt) and (Bgt+v; v ≤ t−gt) are conditionally independent given gt and,

thanks to the beta-gamma algebra, gT and (T − gT ) are independent.
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(A.4) Tsirel’son’s equation. In 1974, A. Zvonkin showed that the equation

Xt = Bt +
∫ t

0

ds b(Xs), (2)

with b bounded, Borel, admits a unique strong solution. (Note that here, b is not neces-
sarily Lipschitz!!).

Question (Shiryaev): Is it also true if the drift may depend upon the whole past of X?
That is: b(Xs)←→ T (s,X•), for some T (s,X•) past-dependent.

B. Tsirel’son produced a counterexample by exhibiting:

T (s,X•) =
0∑

k=−∞

{
Xtk −Xtk−1

tk − tk−1

}
1
]tk,

(s)
tk+1]

(tk ↓ 0, as k ↓ −∞).
The equation, or rather, its skeleton, is:

ηk ≡
Xtk+1 −Xtk

tk+1 − tk
= ξk + {ηk−1} ,

with ξk =
(
Btk+1−Btk
tk+1−tk

)
.

Then, one shows, simply enough:

∀p ∈ Z \ {0} E[exp(2iπp{ηk})|B] = 0

i.e. {ηk} is uniform, and independent of B.

B. Dressing up.
(B.1)∗ Bringing in a BM to prove a result involving one or two random variables. Neveu’s
proof of the hypercontractivity of the OU semigroup. See Neveu’s paper [15].

(B.2) Calling upon a second BM to help a BM: The Ciesielski–Taylor identities. In 1962,
Z. Ciesielski and S. J. Taylor [6] proved the remarkable identities in law:∫ ∞

0

ds 1
(|B(n+2)

s |≤1)

(law)
= T1(|Bn|)

by showing the identity of their Laplace transforms.
After rewriting both integrals in terms of the local times of these euclidian norm

processes, so called Bessel processes, and using the adequate RK theorems, this identity
in law boils down to (or may be understood as a particular case of):∫ b

a

−df(x)B2
g(x) + f(b)B2

g(b)

(d)
= g(a)B2

f(a) +
∫ b

a

dg(x)B2
f(x) (3)

where f, g : [a, b]→ R; f ↓; g ↑ continuous, a formula which resembles the integration by
parts formula; in fact, it “contains” infinitely many such formulae. . . For simplicity, take
f and g such that f(b) = g(a) = 0 and f, g are C1. Then, as a consequence of (3), we get∫ b

a

−f ′(x) dxB2
g(x)

(d)
=
∫ b

a

g′(x) dxB2
f(x) (†)
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In order to prove this identity in law, we may consider∫ b

a

dx (−f ′(x))B2
g(x)

(d)
=
∫ b

a

dx (−f ′(x))
(∫ x

a

√
g′(y) dBy

)2

as being the conditional variance of the stochastic integral (where (Cx) is a second BM
independent of B):∫ b

a

dCx
√
−f ′(x)

(∫ x

a

√
g′(y) dBy

)
=
∫ b

a

dBy
√
g′(y)

∫ b

y

dCx
√
−f ′(x)

which gives: ∫ b

a

dy (g′(y))
(∫ b

y

dCx
√
−f ′(x)

)2
(d)
=
∫ b

a

dy (g′(y))C2
(f(y)) ,

hence the desired result (†), since B and C are identically distributed.

(B.3) Calling upon the Wiener sheet to help a BM.

– Malliavin’s calculus of variations is entirely based upon the use of the two parameter
process:

e−t/2W(u,et) , u ≥ 0, t ∈ R,

as an Ornstein–Uhlenbeck process in t, taking values in path space C(R+,R):

t→ e−t/2W(·,et) .

– More modestly, D. Baker and I [1] gave a proof of the following result due to Carr,
Ewald, Xiao (Dec. 2008): the process

At =
1
t

∫ t

0

ds exp
(
Bs −

s

2

)
is increasing in the convex order i.e. t→ E[ψ(At)] ↑ for ψ convex.

– A theorem of Kellerer asserts that, for this, it is necessary and sufficient that there

exists a martingale (Mt) such that for each t fixed, At
(d)
= Mt.

Now

At =
∫ 1

0

du exp
(
But −

ut

2

)
(1.d)
=
∫ 1

0

du exp
(
Wu,t −

ut

2

)
and the RHS is simply seen to be a martingale.

(B.4) From the arc sine law to the (infinite-dimensional) Poisson Dirichlet laws, when
looking at

A+
t =

∫ t

0

ds 1(Bs>0) ,

one may write: A+
t =

∑
n εnVn(t); where V1(t) > V2(t) > . . . > Vn(t) > . . . are the

lengths of excursions arranged in decreasing order and εn = 1, if an excursion is > 0,
εn = 0 if not.

Then, the sequence {εn} consists of iid Bernoulli, independent of the sequence {Vn(t)},
and we obtain / we may show the extension of Lévy’s result that

1
t
(V1(t), . . . , Vn(t), . . . )

(d)
=

1
τ`

((V1)(τ`), (V2)(τ`), . . . )
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This joint-infinite-dimensional law is called Poisson–Dirichlet law. It plays some im-
portant role in Species distributions, and has many applications, including in number
theory. In fact, there is a two-parameter family PD(α, θ) with 0 < α < 1, and α = 1/2
is related to BM. See Pitman–Yor [18].

(B.5)∗ Behind the asymptotic studies of planar BM additive functionals, there lies a
phantom world. See, e.g., Chapter XIII of Revuz–Yor [19].

(B.6) Calling upon Itô’s PPP of excursions to understand BM. Itô’s PPP of excursions
can be used very simply and powerfully for many purposes: Itô’s genius has been to
replace the complicated / erratic / paths of BM by infinitely many staircases, i.e. Poisson
processes. But, given a problem, one only manipulates then / encounters / one such
Poisson process. So, computations are made easy. Linear ODE’s are used instead of
Sturm–Liouville equations. Thus, Itô’s excursion measure n(dε), that is the characteristic
measure of Itô’s PPP becomes very fundamental, just as Wiener measure.

In particular, one may write:

EW

(
exp
(
−λ
∫ τ`

0

ds f(Bs)︸ ︷︷ ︸
F`

))
= exp

(
−`
∫
n(dε)

(
1− exp

(
−λ
∫ V (ε)

0

ds f(εs)
)))

≡ exp
(
−`
∫
nf (dx) (1− exp(−λx))

)
,

i.e. nf (dx), the image of n(dε) by ε 7→
∫ V (ε)

0
ds f(εs), is Lévy’s measure for the subordi-

nator (F`, ` ≥ 0), where F` =
∫ τ`
0
ds f(Bs).

My interest in the Hilbert transform of Brownian local times

Ht ≡
∫ ∞

0

da

a
(Lat − L−at )

stemmed from the remark that
(

1
πHτ` , ` ≥ 0

)
is a standard Cauchy process. This may be

compared with γτ`
(d)
= γσ` Spitzer’s rep. So, Ht has the “grand idea” that it looks like a

BM, i.e. it has the same trace as (γu, u ≥ 0) on the set of zeros of B: {τ`, ` ≥ 0}.

Thus, what about
1
π
Hτ` , given τ`? Is it Gaussian? Not at all, and using Itô’s measure

of excursions, P. Biane and I obtained [4]:

E

[
exp
(
i
λ

π
Hτ` −

µ2

2
τ`

)]
= exp(−`λ coth(λ/µ))

which bears / entertains some deep relationship with Lévy’s formula for the stochastic
area of planar BM, see, e.g., Mansuy–Yor [14].

The Brownian story (re: Hilbert transform of local times) was developed further first
by Fitzsimmons–Getoor [8], for symmetric Lévy processes, then by Bertoin [2] for general
Lévy processes.

(B.7)∗ Calling upon Markovian predictors to help understand non-Markovian processes:
Knight’s prediction theory. See Knight’s book [11].
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