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Abstract. We start with a general time-homogeneous scalar diffusion whose state space is an

interval I ⊆ R. If it is started at x ∈ I, then we consider the problem of imposing upper and/or

lower boundary conditions at two points a, b ∈ I, where a < x < b. Using a simple integral

identity, we derive general expressions for the Laplace transform of the transition density of

the process, if killing or reflecting boundaries are specified. We also obtain a number of useful

expressions for the Laplace transforms of some functions of first-passage times for the diffusion.

These results are applied to the special case of squared Bessel processes with killing or reflecting

boundaries. In particular, we demonstrate how the above-mentioned integral identity enables us

to derive the transition density of a squared Bessel process killed at the origin, without the need

to invert a Laplace transform. Finally, as an application, we consider the problem of pricing

barrier options on an index described by the minimal market model.

1. Introduction. The theory of time-homogeneous linear scalar diffusions is elegant and
classical, with Borodin and Salminen [4], Itô and McKean [16] and Karlin and Taylor [17]
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featuring as prominent references. An important object in this theory is the infinitesimal
operator of such a process. The Laplace transform of the transition density of a diffusion,
as well as the Laplace transforms of its first-passage time densities, may be expressed in
terms of the fundamental solutions of the eigenvalue problem for this operator.

Section 2 of our paper contains a brief overview of the above theory, in which we rely
heavily on the excellent account of Borodin and Salminen [4, Chap. II], especially for
style and notation. We do, however, add one new ingredient to the presentation. This
is an integral equation of convolution type, described by Peskir [23] as a “Chapman-
Kolmogorov equation of Volterra type”, that relates the transition density of a diffusion
with its first-passage time densities. By combining this relation with the above-mentioned
representations of the Laplace transforms of the transition density and first-passage time
densities, we are able to derive a number of useful identities by purely formal algebraic
manipulation. For example, the transition densities of diffusions constructed from an
original process by killing or reflecting it at interior points of its state space are readily
obtained in this way—at least, up to Laplace transform. We also present some ancillary
identities for the Laplace transforms of expressions involving first-passage times. A few of
these originate from Davidov and Linetsky [7], but the arguments used there are different.
However, two of the identities are new, and are used later to obtain expressions for rebate
prices.

Section 3 applies the above theory to an important class of diffusions that play a
central role in this paper, namely squared Bessel processes. Although we mainly sum-
marize results from Borodin and Salminen [4, App. 1.23], Göing-Jaeschke and Yor [14]
and Revuz and Yor [25, Chap. XI], the section does contain a novel derivation of the
transition density of a squared Bessel process of dimension less than two, killed at the
origin. This function is apparently not very well known, which is surprising, since it is
manifestly useful. For example, in our opinion, it yields the most direct derivations of
European option prices for the constant elasticity of variance (CEV) model of Cox [5].
One of the few places where the transition density in question does appear is Borodin and
Salminen [4, p. 136], where it was obtained by inverting the appropriate Green’s function.
Our derivation, on the other hand, requires no inversion of a Laplace transform. Instead,
we start with the previously mentioned integral equation, and proceed directly.

Section 4 is devoted to a brief exposition of the minimal market model (MMM). This
is the workhorse of the so-called benchmark approach to contingent claim valuation, and
was originally developed as a concrete model for the growth optimal portfolio (GOP) of
Kelly [18]. A salient feature of the GOP, originally observed by Long [21], is that all self-
financing portfolios are local martingales under the real-world probability measure, when
denominated in units of this portfolio. This facilitates a “real-world martingale pricing
theory”, in which the price of a claim is determined by computing the expected value of
its numéraire-denominated payoff under the real-world measure, with the GOP chosen
as numéraire. An obvious advantage of this is that it obviates the need for heavy change-
of-measure machinery, such as Girsanov’s theorem. This is not insignificant, because
although the existence of an equivalent risk-neutral probability measure is often invoked
casually, the justification for such a step is sometimes quite subtle—as demonstrated
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in Delbaen and Shirakawa [9] and Heath and Platen [15]—and hinges on the delicate
question of whether the putative density process is a proper martingale, or merely a
local martingale. A further advantage of the benchmark approach is enhanced modelling
flexibility. This arises because the existence of a GOP is necessary, but not sufficient, for
the existence of an equivalent risk-neutral probability measure. In particular, there are
models for which real-world pricing is consistent, even though they do not admit any
equivalent risk-neutral probability measures; in fact, the MMM is an example of such.
For a detailed account of the MMM, and the benchmark approach in general, the reader
is directed to Platen and Heath [24].

A crucial feature of the MMM is that it admits a representation as a scaled and deter-
ministically time-changed squared Bessel process of dimension four. Since the transition
densities and various other analytic properties of squared Bessel processes are known from
Section 3, we are able to obtain convenient pricing formulae for contingent claims written
on a large equity index with MMM dynamics. In particular, Sections 5 and 6 examine,
respectively, the pricing of rebates and barrier options whose payoffs are determined by
whether or not the index breaches an exponential barrier before expiry. The barrier we
specify is in fact proportional to the scaling factor in the above-mentioned representation,
implying that the payoffs of the claims in question are dependent upon whether or not
a squared Bessel process of dimension four hits a constant level within a certain period.
The results from Section 2 are thus applicable, allowing us to derive expressions for the
Laplace transforms of the prices of these instruments. Actual prices are then obtained by
numerical inversion of the transformed prices.

While the Laplace transform is perhaps not the most popular tool for analyzing exotic
financial derivatives, there are a number of instances of its use. Probably the first and
most widely cited of these is Geman and Yor [12], where an expression was obtained for
the Laplace transform of the price of an Asian option on a security following a geometric
Brownian motion. The numerical aspects of inverting this particular expression have been
the focus of a number of studies, including Craddock et al. [6], Fu et al. [10], Geman and
Eydeland [11] and Shaw [26, Chap. 10]. Within the same framework as above, Davidov
and Linetsky [8] also considered double-barrier step options. Once again, option pricing
formulae were derived, up to Laplace transform, and then inverted numerically. Double
barrier options on a security following a geometric Brownian motion were the subject
of Pelsser [22]. The approach there employed contour integration to perform analytic
inversion, yielding series expansions for the prices of the instruments considered. Finally,
Davidov and Linetsky [7] priced rebates, lookback options and barrier options on a se-
curity with CEV dynamics, by numerical Laplace transform inversion. We acknowledge
the influence of the latter article, in particular, on our work.

The majority of the studies cited above rely on the Euler method, presented in Abate
and Whitt [1], for numerical inversion of Laplace transforms; as do we. The attraction of
this scheme is that it is relatively quick, without appearing to compromise on accuracy.
Nevertheless, one cannot be sure, since there are no guaranteed error bounds—a drawback
of all inversion algorithms. Furthermore, Craddock et al. [6] have reported that inversion
schemes, in general, appear quite sensitive to model parameters. This apparent lack of
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robustness, together with the computational effort required and the absence of error
bounds, make us hesitant to endorse numerical Laplace transform inversion unreservedly
as a practical technique for valuing exotic options. Ultimately, one must bear in mind that
the computation of an unbounded linear operator, such as the inverse Laplace transform,
is inherently unstable. Nevertheless, the approach undoubtedly has a role to play, even if
only to compare its results with those of other methods. Furthermore, modern computer
hardware has made the execution times of inversion algorithms a feasible proposition.

2. Laplace transform identities for diffusions. Let X = (Xt)t≥0 be a regular one-
dimensional time-homogeneous diffusion process, whose state space is an interval I ⊆ R,
which is typically R, [0,∞) or (0,∞). The local behaviour of X is expressed by its
infinitesimal generator, which we take to be a second-order linear differential operator
G : Dom(G)→ Cb(I), given by

Gf(x) :=
1
2
σ2(x)f ′′(x) + µ(x)f ′(x),

for all f ∈ Dom(G) and x ∈
◦
I, where

◦
I denotes the interior of I and Cb(I) is the space

of all bounded continuous functions on I. In the expression above, σ(·) is the diffusion
coefficient of the process, while µ(·) is its drift coefficient. We assume that these functions
are continuous on I, and that σ(x) > 0, for all x ∈ I. The reader is directed to Borodin and
Salminen [4, p. 16] for a detailed description of the operator’s domain Dom(G) ⊆ Cb(I).

The basic characteristics of X are its speed density m(·) and scale function s(·). These
may be expressed in terms of the drift and diffusion coefficients as follows:

s(x) :=
∫ x

s′(ξ) dξ and m(x) :=
2

σ2(x)s′(x)
,

where the scale density is given by

s′(x) := exp
(
−
∫ x 2µ(ξ)

σ2(ξ)
dξ

)
for all x ∈ I.

We shall denote the transition density of X with respect to its speed measure by
q(· , · , ·), so that

Px[Xt ∈ A] =
∫
A

q(t, x, y)m(y) dy,

for all t ≥ 0 and x ∈ I, and for every Borel set A ∈ B(I). In this expression Px denotes
the probability measure under which X starts at x at time zero.

If we fix α > 0, then we may introduce the Green’s function Gα(· , ·) as the Laplace
transform, with respect to time, of the transition density of X:

Gα(x, y) := Lα{q(t, x, y)} =
∫ ∞

0

e−αtq(t, x, y) dt,

for all x, y ∈ I. The Green’s function may be factorized as follows:

Gα(x, y) =

{
w−1
α ψα(x)φα(y) if x ≤ y;

w−1
α ψα(y)φα(x) if x ≥ y.

(1)
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Here ψα(·) and φα(·) are, respectively, the unique (up to a multiplicative constant) in-
creasing and decreasing solutions to the equation

Gu(x) = αu(x), (2)

for all x ∈
◦
I, subject to appropriate boundary conditions at the endpoints of I. Further-

more, the Wronskian

wα :=
ψ′α(x)φα(x)− ψα(x)φ′α(x)

s′(x)

is independent of x ∈
◦
I.

For any z ∈ I, let
τz := inf{t > 0 : Xt = z}

be the first-passage time of X to z. We shall denote its density with respect to Lebesgue
measure by pz(· , ·), so that

Px[τz ≤ t] =
∫ t

0

pz(x, s) ds.

Suppose now that q̃z(· , · , ·) is the transition density, with respect to speed measure, of
X killed at z, so that

Px[Xt ∈ A, τz > t] =
∫
A

q̃z(t, x, y)m(y) dy,

for all A ∈ B(I). Then the following fundamental relation underlies many of the deriva-
tions in this paper:

Lemma 1. Let x, y, z ∈ I and suppose that t > 0. Then

q(t, x, y) = q̃z(t, x, y) +
∫ t

0

pz(x, s)q(t− s, z, y) ds. (3)

Proof. It follows from the Markov property of X that

Px[Xt ≤ y] = Px[Xt ≤ y, τz > t] + Px[Xt ≤ y, τz ≤ t]

= Px[Xt ≤ y, τz > t] +
∫ t

0

Px[τz ∈ ds]Px[Xt ≤ y | τz = s]

= Px[Xt ≤ y, τz > t] +
∫ t

0

Px[τz ∈ ds]Pz[Xt−s ≤ y | τz = s].

Now differentiate with respect to y and divide through by m(y).

Note that if t > 0 and x ≤ z ≤ y or x ≥ z ≥ y, then q̃z(t, x, y) = 0. In that case the
convolution property of Laplace transforms gives

Lα{q(t, x, y)} = Lα{pz(x, t)}Lα{q(t, z, y)},

from which it follows that

Ex[e−ατz ] = Lα{pz(x, t)} =
Gα(x, y)
Gα(z, y)

=

{
ψα(x)
ψα(z) if x ≤ z;
φα(x)
φα(z) if x ≥ z.

(4)
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This well-known formula is derived using a different argument in Itô and McKean [16,
p. 128]. Using standard identities for Laplace transforms, we obtain the following useful
expressions from (4):

Proposition 2. Fix α > 0 and let t ≥ 0 and x, z ∈ I. Then

Lα{Px[τz ≤ t]} =

{
1
α
ψα(x)
ψα(z) if x ≤ z;

1
α
φα(x)
φα(z) if x ≥ z,

(5)

and

Lα

{
Ex
[
I{τz≤t}e

−βτz
]}

=

{
1
α
ψα+β(x)
ψα+β(z) if x ≤ z;

1
α
φα+β(x)
φα+β(z) if x ≥ z,

(6)

for all β > 0. Furthermore,

Ex[(γ + λτz)−ρ] =

{
1

Γ(ρ)Lγ

{
sρ−1 ψλs(x)

ψλs(z)

}
if x ≤ z;

1
Γ(ρ)Lγ

{
sρ−1 φλs(x)

φλs(z)

}
if x ≥ z,

(7)

and

Lα

{
Ex
[
I{τz≤t}(γ + λτz)−ρ

]}
=

{
1

αΓ(ρ)Lγ

{
sρ−1 ψα+λs(x)

ψα+λs(z)

}
if x ≤ z;

1
αΓ(ρ)Lγ

{
sρ−1 φα+λs(x)

φα+λs(z)

}
if x ≥ z,

(8)

for all γ, λ, ρ > 0.

In order to interpret the above expressions, note that the Laplace transforms on the
left-hand sides of (5), (6) and (8) are of the form Lα{f(t)} = f̂(α), while the Laplace
transforms on the right-hand sides of (7) and (8) are of the form Lγ{f(s)} = f̂(γ).

Proof. Equation (5) follows from

Lα{Px[τz ≤ t]} = Lα

{∫ t

0

pz(x, s) ds
}

=
1
α

Lα{pz(x, t)}.

To verify (6), note that

Lα{Ex[I{τz≤t}e
−βτz ]} = Lα

{∫ t

0

e−βspz(x, s) ds
}

=
1
α

Lα{e−βtpz(x, t)}

=
1
α

Lα+β{pz(x, t)},

for all β > 0. Now let γ, λ, ρ > 0, and note that∫ ∞
0

sρ−1e−(γ+λt)s ds =
Γ(ρ)

(γ + λt)ρ
, (9)

where Γ(·) denotes the standard gamma function [see 2, Chap. 6]. Then (7) follows from

Ex
[
(γ + λτz)−ρ

]
=
∫ ∞

0

pz(x, t)
(γ + λt)ρ

dt =
∫ ∞

0

pz(x, t)
1

Γ(ρ)

∫ ∞
0

sρ−1e−(γ+λt)s ds dt

=
1

Γ(ρ)

∫ ∞
0

e−γssρ−1

∫ ∞
0

e−λstpz(x, t) dt ds =
1

Γ(ρ)
Lγ{sρ−1Lλs{pz(x, t)}}.
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A similar argument, using (9) again, gives

Lα

{
Ex
[
I{τz≤t}(γ + λτz)−ρ

]}
= Lα

{∫ t

0

pz(x, s)
(γ + λs)ρ

ds

}
=

1
α

Lα

{
pz(x, t)

(γ + λt)ρ

}
=

1
α

∫ ∞
0

e−αt
pz(x, t)

(γ + λt)ρ
dt =

1
α

∫ ∞
0

e−αtpz(x, t)
1

Γ(ρ)

∫ ∞
0

sρ−1e−(γ+λt)s ds dt

=
1

αΓ(ρ)

∫ ∞
0

e−γssρ−1

∫ ∞
0

e−(α+λs)tpz(x, t) dt ds

=
1

αΓ(ρ)
Lγ{sρ−1Lα+λs{pz(x, t)}

}
,

which leads to (8).

We note that (6) was obtained by Davidov and Linetsky [7, Prop. 2] by an application
of Fubini’s theorem. Also, (7) and (8) may be regarded as instances of the representation
of generalized Stieltjes transforms as iterated Laplace transforms.

Next, suppose that t > 0 and either x, y ≤ z or x, y ≥ z. Combining (3) with (4) then
yields

G̃zα(x, y) := Lα{q̃z(t, x, y)} = Lα{q(t, x, y)} −Lα{pz(x, t)}Lα{q(t, z, y)}

=

{
Gα(x, y)− ψα(x)

ψα(z)Gα(z, y) if x, y ≤ z;
Gα(x, y)− φα(x)

φα(z)Gα(z, y) if x, y ≥ z

=


w−1
α ψα(x)

(
φα(y)− φα(z)

ψα(z)ψα(y)
)

if x ≤ y ≤ z;
w−1
α ψα(y)

(
φα(x)− φα(z)

ψα(z)ψα(x)
)

if y ≤ x ≤ z;
w−1
α

(
ψα(x)− ψα(z)

φα(z)φα(x)
)
φα(y) if y ≥ x ≥ z;

w−1
α

(
ψα(y)− ψα(z)

φα(z)φα(y)
)
φα(x) if x ≥ y ≥ z.

(10)

We have thus established the following result:

Lemma 3. The fundamental increasing and decreasing solutions to (2) corresponding to
a lower killing boundary for X at a ∈ I are

ψ̃aα(x) := ψα(x)− ψα(a)
φα(a)

φα(x) and φ̃aα(x) := φα(x), (11)

respectively, for all x ∈ I ∩ [a,∞). The fundamental increasing and decreasing solutions
to (2) corresponding to an upper killing boundary for X at b ∈ I are

ψ̃bα(x) := ψα(x) and φ̃bα(x) := φα(x)− φα(b)
ψα(b)

ψα(x), (12)

respectively, for all x ∈ I ∩ (−∞, b]. Finally, if the process is killed upon reaching ei-
ther boundary, where a < b, then the relevant solutions to (2) are ψ̃a,bα (·) := ψ̃aα(·) and
φ̃a,bα (·) := φ̃bα(·). In each case the Laplace transform of the transition density of the killed
diffusion is given by (1), with the appropriate functions replacing ψα(·) and φα(·).

As an immediate consequence of the above lemma, we can now extend (4) as follows
(see Davidov and Linetsky [7, Prop. 1] for an alternative proof):
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Proposition 4. Suppose a, b ∈ I satisfy a < b. Then

Ex[I{τa<τb}e
−ατa ] =


ψα(x)
ψα(a) if x ≤ a;
φα(x)ψα(b)−ψα(x)φα(b)
φα(a)ψα(b)−ψα(a)φα(b) if a ≤ x ≤ b;
0 if x ≥ b,

(13)

Ex[I{τa>τb}e
−ατb ] =


0 if x ≤ a;
φα(a)ψα(x)−ψα(a)φα(x)
φα(a)ψα(b)−ψα(a)φα(b) if a ≤ x ≤ b;
φα(x)
φα(b) if x ≥ b,

(14)

and

Ex[e−α(τa∧τb)] =


ψα(x)
ψα(a) if x ≤ a;
φα(x)(ψα(b)−ψα(a))−ψα(x)(φα(b)−φα(a))

φα(a)ψα(b)−ψα(a)φα(b) if a ≤ x ≤ b;
φα(x)
φα(b) if x ≥ b,

(15)

for all x ∈ I.

Proof. To derive (13), let x ∈ I. The case when x ≥ b is obvious, so assume that x < b.
Notice that τ̃ ba := I{τa<τb}τa + I{τa>τb}∞ is the first-passage time to a for the diffusion
which is killed at b. Thus

Ex[I{τa<τb}e
−ατa ] = Ex[e−ατ̃

b
a ] =


ψ̃bα(x)

ψ̃bα(a)
if x ≤ a;

φ̃bα(x)

φ̃bα(a)
if x ≤ a,

according to (4). The result follows by substituting (12) into the expressions above. The
derivation of (14) is similar, while (15) follows by adding (13) and (14).

We end this section by analyzing reflecting boundaries. Let q̂z(· , · , ·) denote the tran-
sition density (with respect to speed measure) of X, with reflection at z ∈ I. Since the
reflected diffusion is still a Markov process, the same argument as in Lemma 1 gives

q̂z(t, x, y) = q̃z(t, x, y) +
∫ t

0

pz(x, s)q̂z(t− s, z, y) ds, (16)

for all x, y ∈ I with x, y ≤ z or x, y ≥ z, and all t > 0. The reflecting boundary condition
may be expressed as ∂

∂x q̂
z(t, x, y)

∣∣
x=z

= 0 [see e.g. 17, p. 332], and so we obtain the
following result from (16), by computing Laplace transforms and differentiating, before
applying (4) and (10):

Lα{q̂z(t, z, y)} = −
∂
∂xLα{q̃z(t, x, y)}

∣∣
x=z

∂
∂xLα{pz(x, t)}

∣∣
x=z

=

{
w−1
α ψα(y)

(
φα(z)− φ′α(z)

ψ′α(z)ψα(z)
)

if y ≤ z;
w−1
α

(
ψα(z)− ψ′α(z)

φ′α(z)φα(z)
)
φα(y) if y ≥ z.
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Combining the above with (16) yields

Ĝzα(x, y) := Lα{q̂z(t, x, y)} = Lα{q̃z(t, x, y)}+ Lα{pz(x, t)}Lα{q̂z(t, z, y)}

=

{
G̃zα(x, y)− w−1

α ψα(y)
(
φα(z)− φ′α(z)

ψ′α(z)ψα(z)
)ψα(x)
ψα(z) if x, y ≤ z;

G̃zα(x, y)− w−1
α

(
ψα(z)− ψ′α(z)

φ′α(z)φα(z)
)
φα(y)φα(x)

φα(z) if x, y ≥ z

=


w−1
α ψα(x)

(
φα(y)− φ′α(z)

ψ′α(z)ψα(y)
)

if x ≤ y ≤ z;
w−1
α ψα(y)

(
φα(x)− φ′α(z)

ψ′α(z)ψα(x)
)

if y ≤ x ≤ z;
w−1
α

(
ψα(x)− ψ′α(z)

φ′α(z)φα(x)
)
φα(y) if y ≥ x ≥ z;

w−1
α

(
ψα(y)− ψ′α(z)

φ′α(z)φα(y)
)
φα(x) if x ≥ y ≥ z.

We may express this formally as follows:

Lemma 5. The fundamental increasing and decreasing solutions to (2) corresponding to
a lower reflecting boundary for X at a ∈ I are

ψ̂aα(x) := ψα(x)− ψ′α(a)
φ′α(a)

φα(x) and φ̂aα(x) := φα(x),

respectively, for all x ∈ I ∩ [a,∞). The fundamental increasing and decreasing solutions
to (2) corresponding to an upper reflecting boundary for X at b ∈ I are

ψ̂bα(x) := ψα(x) and φ̂bα(x) := φα(x)− φ′α(b)
ψ′α(b)

ψα(x),

respectively, for all x ∈ I ∩ (−∞, b]. Finally, if the process is reflected at either boundary,
where a < b, then the relevant solutions to (2) are ψ̂a,bα (·) := ψ̂aα(·) and φ̂a,bα (·) := φ̂bα(·).
In each case the Laplace transform of the transition density of the reflected diffusion is
given by (1), with the appropriate functions replacing ψα(·) and φα(·).

It should be noted that the results of Lemma 3 and Lemma 5 can be obtained by in-
spection. This is because the boundary behaviour of the diffusion determines the bound-
ary conditions that must be imposed on the fundamental solutions of (2). Since the
monotone increasing and decreasing solutions that satisfy these boundary conditions will
be unique (up to a multiplicative constant), we have enough information to identify them
[see 4, pp. 18–19].

3. Squared Bessel processes. Suppose now that X = (Xt)t≥0 is a squared Bessel
process of dimension δ ∈ R [see 14, 25]. For any x ∈ I, this process is a strong solution
of the following stochastic differential equation (SDE) under Px:

Xt = x+ δt+ 2
∫ t

0

√
Xs dWs,

for all t ≥ 0, where W = (Wt)t≥0 is a standard Brownian motion. Its infinitesimal
generator is given by

Gf(x) := 2xf ′′(x) + δf ′(x),
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for all suitable functions f(·) and all x ∈ I, while its scale function and speed measure
are given by

s(x) :=

{
2

2−δx
2−δ
2 if δ 6= 2;

lnx if δ = 2
and m(x) :=

1
2
x
δ−2
2 , (17)

respectively, for all x ∈ I.
Feller’s test indicates that this process has a natural boundary at infinity, and a

boundary at the origin which is absorbing if δ ≤ 0; natural if δ ≥ 2; and regular if
0 < δ < 2. In the latter case, the behaviour of X at zero must be specified: If the origin
is a killing boundary, then I = (0,∞); while I = [0,∞) if it is a reflecting boundary. The
following fundamental solutions to (2) are provided by Borodin and Salminen [4, p. 135]:

ψα(x) =

{
x

2−δ
4 I δ−2

2

(√
2αx

)
if δ ≥ 2 or 0 < δ < 2 and 0 is reflecting;

x
2−δ
4 I 2−δ

2

(√
2αx

)
if δ ≤ 0 or 0 < δ < 2 and 0 is killing,

(18)

and

φα(x) = x
2−δ
4 K δ−2

2

(√
2αx

)
, (19)

for all α > 0 and x ≥ 0. Here Iν(·) and Kν(·) denote the modified Bessel functions,
with index ν, of the first and second kinds, respectively [see 2, Chap. 9]. The associated
Wronskian is wα = 1/2.

The recognized authority on squared Bessel processes is Revuz and Yor [25, Chap. XI],
where reflection at zero is the default boundary condition, for all dimensions 0 < δ < 2.
In this case one obtains the following transition density (with respect to speed measure),
for all δ > 0:

q(t, x, y) =

{
1
t (xy)

2−δ
4 e−

x+y
2t I δ−2

2

(√xy
t

)
if x > 0;

2
(2t)δ/2Γ(δ/2)

e−
y
2t if x = 0,

(20)

for all t > 0 and x, y ≥ 0. In the case when 0 < δ < 2, Borodin and Salminen [4, p. 136]
found the transition density of the squared Bessel process killed at the origin, by Laplace
transform inversion of the appropriate Green’s function. However, Göing-Jaeschke and
Yor [14] derived the following explicit density for the first-passage time to zero of X,
when δ < 2:

p0(x, t) =
1

tΓ
(

2−δ
2

)( x
2t

) 2−δ
2

e−
x
2t , (21)

for all t > 0 and x ≥ 0. Combining this with (20), we can derive the above-mentioned
transition density, with killing at the origin, directly from (3), without the need to invert
a Laplace transform. We start with a technical lemma, expressing the modified Bessel
function of the second kind as an indefinite integral:

Lemma 6. Let ν ∈ R be arbitrary. Then

Kν(z) =
1
2

∫ ∞
0

tν−1e−
1
2 (t+1/t)z dt, (22)

for all z ∈ C with <z > 0.
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Proof. Starting with an identity for Kν(·) found in Lebedev [19, p. 119], we obtain

Kν(z) =
∫ ∞

0

e−z coshu cosh νu du

=
1
2

∫ ∞
0

e−z coshueνu du︸ ︷︷ ︸
I1

+
1
2

∫ ∞
0

e−z coshue−νu du︸ ︷︷ ︸
I2

These integrals are evaluated as follows:

I1 =
∫ ∞

1

tν−1e−
1
2 (t+1/t)z dt and I2 =

∫ 1

0

tν−1e−
1
2 (t+1/t)z dt,

with the help of the respective substitutions eu 7→ t and e−u 7→ t.

Proposition 7. The transition density (with respect to speed measure) of the squared
Bessel process of dimension 0 < δ < 2, killed at the origin, is given by

q̃0(t, x, y) =
1
t
(xy)

2−δ
4 e−

x+y
2t I 2−δ

2

(√
xy

t

)
, (23)

for all t > 0 and x, y ≥ 0.

Proof. It follows from (3), (20) and (21) that

q(t, x, y)− q̃0(t, x, y) =
∫ t

0

p0(x, s)q(t− s, 0, y) ds

=
4

Γ(δ/2)Γ
(

2−δ
2

)x 2−δ
2

∫ t

0

e−
x
2s−

y
2(t−s)

(2s)
4−δ
2 (2(t− s))δ/2

ds

=
4
π

sin
(
δ

2
π

)
x

2−δ
2

∫ t

0

e−
x
2s−

y
2(t−s)

(2s)
4−δ
2 (2(t− s))δ/2

ds.

For the final equality above, we use the reflection formula Γ(z)Γ(1 − z) = π
sinπz , which

holds for all z ∈ C \ Z [see e.g. 19, p. 3]. Continuing, with the aid of the transformation
(t/s− 1)

√
x/y 7→ ζ, we obtain

q(t, x, y)− q̃0(t, x, y) =
1
π

sin
(
δ

2
π

)
1
t
(xy)

2−δ
4 e−

x+y
2t

∫ ∞
0

e−
1
2 (ζ+1/ζ)

√
xy

t

ζδ/2
dζ

=
2
π

sin
(
δ

2
π

)
1
t
(xy)

2−δ
4 e−

x+y
2t K 2−δ

2

(√
xy

t

)
,

from (22). Using the relation Kν(z) = π
2
I−ν(z)−Iν(z)

sin νπ , which holds if | arg z| < π and ν /∈ Z
[see e.g. 19, p. 108], and bearing in mind that sin 2−δ

2 π = sin δ
2π, we finally get

q(t, x, y)− q̃0(t, x, y) =
1
t
(xy)

2−δ
4 e−

x+y
2t

[
I δ−2

2

(√
xy

t

)
− I 2−δ

2

(√
xy

t

)]
.

The desired result follows by subtracting (20) from both sides of this equation.

4. The minimal market model. Let Pt,S denote the probability measure under which
a global diversified equity index S∗ = (S∗t+u)u≥0 starts at time t ≥ 0 with value S > 0;
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we shall on occasion refer to it as the real-world measure. The dynamics of the index
under this measure are expressed by the following SDE:

S∗t+u = S +
∫ u

0

(
r + ϑ2(t+ v, S∗t+v)

)
S∗t+v dv +

∫ u

0

ϑ(t+ v, S∗t+v)S
∗
t+v dWv, (24)

for all u ≥ 0. Here r ≥ 0 is a constant risk-free interest rate, while W = (Wu)u≥0 is
a standard Brownian motion starting at zero under Pt,S . Furthermore, ϑ(· , ·) is a local
volatility function, given by

ϑ(t, S) :=

√
αe(r+η)t

S
, (25)

for all t ≥ 0 and S > 0, where α, η > 0 are fixed parameters.
Together, (24) and (25) constitute a model for a global diversified portfolio, called the

minimal market model (MMM). Among its attractive features, it captures the observed
inverse relationship between price and volatility, dubbed the “leverage effect” by Black [3].
It is also relatively parsimonious, with only two free parameters. We must stress that the
MMM is intended as a description of the observable real-world behaviour of the index—in
contradistinction to most literature on stochastic finance, we are not concerned with risk-
neutral dynamics. A detailed study of the model is presented in Platen and Heath [24,
Chap. 13]. We should point out that what we have described here is in fact a slightly
simplified version of the general model, referred to as the “stylized” version by Platen
and Heath [24, Sec. 13.2]. In general, (24) may contain a third parameter, describing risk
aversion.

For any t ≥ 0 and S > 0, let X = (Xu)u≥0 henceforth be a squared Bessel process of
dimension four, starting at e−rtS under Pt,S . Using Itô’s formula, we obtain the following
representation for S∗ under this probability measure:

S∗t+u
(d)= er(t+u)Xϕt(u), (26)

for all u ≥ 0. Here ϕt(·) is a deterministic time transform, given by

ϕt(u) :=
α

4η
eηt(eηu − 1), (27)

for all u ≥ 0. The importance of (26) lies in the fact that the transition density (20) of
X is known explicitly. Consequently, algebraic expressions can often be derived for the
expected values of functionals of S∗. This is particularly relevant for obtaining pricing
formulae for contingent claims written on the index.

In addition to the index, we assume that the market also contains a risk-free savings
account. Under the probability measure Pt,S , with t ≥ 0 and S > 0, this is a deterministic
process B = (Bt+u)u≥0, given by Bt+u := er(t+u), for all u ≥ 0. Although the MMM
does not admit an equivalent risk-neutral probability measure [see 24, pp. 499–500], it is
nevertheless the case that S∗ is a numéraire for Pt,S , in the sense that all self-financing
portfolios comprising B and S∗ are Pt,S-local martingales, when denominated in units of
S∗ [see e.g. 13]. This has two important consequences: Firstly, it means that the MMM
is free of economically meaningful arbitrage opportunities [see 20, 24, p. 376]. Secondly,
it paves the way for a martingale approach to contingent claim pricing under Pt,S , called
“real-world pricing” [see 24, pp. 325–326].
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To understand contingent claim pricing with the MMM, let FW = (FW
u )u≥0 denote

the filtration generated by the Brownian motion W , suppose that τ is an FW -stopping
time, and let h(·) be an appropriate Borel-measurable payoff function. The real-world
price at time t ≥ 0 of the claim h(S∗t+τ ) ∈ L1(FW

τ ), maturing at time t+ τ , is then given
by

V h(t, S) := S Et,S
[
I{τ<∞}

h(S∗t+τ )
S∗t+τ

]
, (28)

when S∗t = S > 0. It is important to remember that here Et,S is the expected value
operator with respect to the real-world probability measure Pt,S .

Obviously, the indicator function in (28) may be omitted if τ <∞ a.s. It may also be
dropped if h(·) is bounded, since (26) and the transience of a squared Bessel process of
dimension δ ≥ 3 [see 25, p. 442] together imply that limt→∞ S∗t = ∞ a.s. As mentioned
before, (26) and (20) often allow us to derive the pricing function V h(· , ·) explicitly.

5. Rebates. We now consider the valuation of a rebate written on the index. This is a
claim that pays $1 as soon as the index hits a certain level, provided this occurs before a
contracted expiry date T > 0. In our case the trigger level for the rebate is a deterministic
barrier Z = (Zt)t≥0, with Zt := zert, for some z > 0. The fact that it grows at the risk-
free rate is economically quite attractive, since it makes the price of the rebate sensitive
to the performance of the index relative to that of the savings account. This feature is
particularly desirable for long-dated instruments, due to the observed long-term growth of
diversified equity portfolios. The probability of such a portfolio reaching a predetermined
fixed level in the future becomes increasingly remote, with the passage of time.

We start by introducing the stopping times

σz,t := inf{u > 0 |S∗t+u = Zt+u} and τz := inf{u > 0 |Xu = z},

for any t ≥ 0. It then follows from (26) and (27) that

σz,t = inf{u > 0 |Xϕt(u) = z} (d)= ϕ−1
t (τz) =

1
η

ln
(

1 +
4η
α
e−ηtτz

)
. (29)

First, we consider the valuation of a perpetual rebate, for which T =∞. Using (28), (29)
and (7), the pricing function R∞,z(· , ·) for this instrument is given by

R∞,z(t, S) = S Et,S
[

1
S∗t+σz,t

]
=
e−rtS

z
Et,S [e−rσz,t ]

=
e−rtS

z
Et,S [e−rϕ

−1
t (τz)] =

e−rtS

z
Et,S

[(
1 +

4η
α
e−ηtτz

)−r/η]

=


x
z

1
Γ(r/η)

∫∞
0
e−ssr/η−1 ψ4η/αe−ηts(x)

ψ4η/αe−ηts(z)
ds if x ≤ z;

x
z

1
Γ(r/η)

∫∞
0
e−ssr/η−1 φ4η/αe−ηts(x)

φ4η/αe−ηts(z)
ds if x ≥ z,

(30)

for all t ≥ 0 and S > 0, with x := e−rtS in the final line, for convenience.
We may test the validity of the above pricing formula by examining a special case.

Suppose for a moment that σz,t = 0, implying that the rebate pays immediately under
Pt,S . This only happens if S = Zt = zert, which in turn means that x = z. It then follows
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Fig. 1. The perpetual rebate pricing function R∞,50(· , ·)

from (30), together with the definition of the gamma function, that R∞,z(t, S) = 1, as
expected.

Computing a perpetual rebate price with (30) necessarily involves numerical quadra-
ture. This is not a significant obstacle to using the formula, since numerous quick and
accurate schemes exist for one-dimensional quadrature problems—we have simply used
the NIntegrate[. . . ] function in Mathematica 6. To assist with numerical evaluation, we
do, however, recommend first transforming the domain of integration into a finite interval,
via the change of variables e−s 7→ u. This results in the following pricing formula:

R∞,z(t, S) =


x
z

1
Γ(r/η)

∫ 1

0
(− lnu)r/η−1 ψ−4η/αe−ηt lnu(x)

ψ−4η/αe−ηt lnu(z) du if x ≤ z;
x
z

1
Γ(r/η)

∫ 1

0
(− lnu)r/η−1 φ−4η/αe−ηt lnu(x)

φ−4η/αe−ηt lnu(z) du if x ≥ z,
(31)

with x := e−rtS, as before.
Figure 1 presents surface and contour plots of the pricing function R∞,50(· , ·) for

a perpetual rebate with reference level z = 50, by numerical integration of (31). The
parameter values used for the graphs were α = 1, η = 0.05 and r = 0.04. These are
reasonably close to values estimated from historical data for the S&P500 index.

We turn our attention now to the rebate with finite maturity T <∞. It follows from
(28) and (29) that the pricing function RT,z(· , ·) of this claim is determined by

RT,z(t, S) = S Et,S
[ I{t+σz,t≤T}

S∗t+σz,t

]
=
e−rtS

z
Et,S [I{σz,t≤T−t}e

−rσz,t ]

=
e−rtS

z
Et,S [I{ϕ−1

t (τz)≤T−t}e
−rϕ−1

t (τz)]

=
e−rtS

z
Et,S

[
I{τz≤ϕt(T−t)}

(
1 +

4η
α
e−ηtτz

)−r/η]
. (32)

We now use (8) to compute the Laplace transform of (32), with respect to transformed
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time-to-maturity:

Lβ{RT,z(t, S)} =


x
z

1
βΓ(r/η)

∫∞
0
e−ssr/η−1 ψβ+4η/αe−ηts(x)

ψβ+4η/αe−ηts(z)
ds if x ≤ z;

x
z

1
βΓ(r/η)

∫∞
0
e−ssr/η−1 φβ+4η/αe−ηts(x)

φβ+4η/αe−ηts(z)
ds if x ≥ z,

(33)

for all β > 0, with x := e−rtS.
Pricing a finite maturity rebate thus involves two numerical procedures: First the

integral in (33) must be evaluated by quadrature, and then the Laplace transform itself
must be inverted. For the numerical integration, we proceed as before, by first performing
the substitution e−s 7→ u, so that (33) becomes

Lβ{RT,z(t, S)} =


x
z

1
βΓ(r/η)

∫ 1

0
(− lnu)r/η−1 ψβ−4η/αe−ηt lnu(x)

ψβ−4η/αe−ηt lnu(z) du if x ≤ z;
x
z

1
βΓ(r/η)

∫ 1

0
(− lnu)r/η−1 φβ−4η/αe−ηt lnu(x)

φβ−4η/αe−ηt lnu(z) du if x ≥ z.
(34)

For the inversion of (34), we recommend the Euler method presented in Abate and
Whitt [1]. This technique employs Euler summation to evaluate the Fourier inversion
integral along the Bromwich contour, and has the advantage of being uncomplicated and
quick. Although there are no guaranteed error bounds, the same method has been used
successfully before, e.g. by Davidov and Linetsky [7, 8] and Fu et al. [10], to invert Laplace
transforms associated with derivative valuation problems. We also draw the reader’s
attention to the comparative study of numerical schemes for Laplace transform inversion
in Craddock et al. [6], which focused specifically on applications to derivative pricing.

Figure 2 presents surface and contour plots of the pricing function R10,50(· , ·) for a
rebate with maturity T = 10 years and reference level z = 50, using the same parameter
values as before. We see again that RT,z(t, Zt) = 1, as expected. Furthermore, we see that

lim
t→T

RT,z(t, S) =

{
1 if S = ZT ;

0 otherwise.

This agrees with the economically obvious behaviour of the rebate price close to maturity.
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Fig. 2. The rebate pricing function R10,50(· , ·)
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6. Barrier options. A barrier option written on the index is another example of a
contingent claim whose payoff is determined by whether or not the index hits a certain
level prior to its maturity T > 0. In this section we consider a European call on the index,
with strike price K > 0, which is knocked out if the index breaches the same deterministic
barrier Z as in Section 5, sometime before expiry.

Starting with (28), and using (29), we derive the following expression for the real-world
price of this instrument at time t ∈ [0, T ), given the starting index value S∗t = S > 0:

Cout
T,K,z(t, S) = S Et,S

[
I{t+σz,t>T}

(S∗T −K)+

S∗T

]
= S Et,S

[
I{σz,t>T−t}

(
1− K

S∗T

)+]
= S Et,S

[
I{τz>ϕt(T−t)}

(
1− e−rTK

Xϕt(T−t)

)+]
= S

∫ ∞
e−rTK

(
1− e−rTK

y

)
q̃z(ϕt(T − t), e−rtS, y)m(y) dy

=
1
2
S

∫ ∞
κ

(y − κ)q̃z(ϕt(T − t), x, y) dy, (35)

where x := e−rtS and κ := e−rTK. Recall also that the speed measure of a squared
Bessel process of dimension four is given by m(y) := y/2, according to (17). Computing
the Laplace transform of (35), with respect to transformed time-to-maturity, now yields

Lβ

{
Cout
T,K,z(t, S)

}
=
∫ ∞

0

e−βu
(

1
2
S

∫ ∞
κ

(y − κ)q̃z(u, x, y) dy
)
du

=
1
2
S

∫ ∞
κ

(y − κ)Lβ{q̃z(u, x, y)} dy =
1
2
S

∫ ∞
κ

(y − κ)G̃zβ(x, y) dy (36)

for all β > 0.
For convenience, we now analyze the following two cases separately:

up-and-out call: S ≤ Zt = zert iff x ≤ z;
down-and-out call: S ≥ Zt = zert iff x ≥ z.

In the first case, we may truncate the integral in (36), since x ≤ z implies that G̃zβ(x, y) =
0, for all y ≥ z. Together with (10), this allows us to express the Laplace transform of
the up-and-out call as follows:

Lβ

{
Cout
T,K,z(t, S)

}
= S

∫ κ∨x

κ

(y − κ)ψβ(y)
(
φβ(x)− φβ(z)

ψβ(z)
ψβ(x)

)
dy

+ S

∫ κ∨z

κ∨x
(y − κ)ψβ(x)

(
φβ(y)− φβ(z)

ψβ(z)
ψβ(y)

)
dy, (37)

if x ≤ z. In the second case, x ≥ z implies that G̃zβ(x, y) = 0, for all y ≤ z. Combining this
with (10) produces the following expression for the Laplace transform of the down-and-out
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call:

Lβ

{
Cout
T,K,z(t, S)

}
= S

∫ κ∨x

κ∨z
(y − κ)

(
ψβ(y)− ψβ(z)

φβ(z)
φβ(y)

)
φβ(x) dy

+ S

∫ ∞
κ∨x

(y − κ)
(
ψβ(x)− ψβ(z)

φβ(z)
φβ(x)

)
φβ(y) dy, (38)

if x ≥ z. Note that the factor 1/2 in (36) has disappeared from (37) and (38), because
wβ = 1/2 for squared Bessel processes.
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Fig. 3. The knock-out European call pricing function Cout
10,20,50(· , ·)

From the expressions above, we see that computing the price of a barrier option
once again requires two numerical procedures: First the integrals in (37) or (38) must
be evaluated by numerical quadrature, and then the Laplace transform of the option
price must be inverted. Figure 3 presents the results of these procedures, in the form of
surface and contour plots for the pricing function Cout

10,20,50(· , ·) of a knock-out European
call with initial maturity T = 10 years, strike K = 20 and barrier reference level z = 50.
The values for the model parameters are the same as for the previous graphs. Firstly, we
see that Cout

T,K,z(t, Zt) = 0, which agrees with the expected behaviour of the option at the
knock-out barrier. Secondly, we observe that

lim
t→T

Cout
T,K,z(t, S) =

{
0 if S = ZT ;

(S −K)+ otherwise,

in line with what we would expect close to maturity. Figure 4 makes this convergence
obvious, by presenting a sequence of cross-sections of the pricing surface in Figure 3.
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ed., Birkhäuser, Basel, 2002.

[5] J. C. Cox, The constant elasticity of variance option pricing model , J. Portfol. Manag.

(spec. issue) (1996), 15–17.

[6] M. Craddock, D. Heath, and E. Platen, Numerical inversion of Laplace transforms: A

survey of techniques with applications to derivative pricing , J. Comput. Finance 4 (2000),

57–81.

[7] D. Davydov and V. Linetsky, Pricing and hedging path-dependent options under the CEV

process, Management Sci. 47 (2001), 949–965.



LAPLACE TRANSFORM IDENTITIES FOR DIFFUSIONS 157

[8] D. Davidov and V. Linetsky, Structuring, pricing and hedging double-barrier step options,

J. Comput. Finance 5 (2002), 55–87.

[9] F. Delbaen and H. Shirakawa, A note on option pricing for the constant elasticity of

variance model , Asia-Pacific Finan. Markets 9 (2002), 85–99.

[10] M. C. Fu, D. B. Madan, and T. Wang, Pricing continuous Asian options: A comparison

of Monte Carlo and Laplace transform inversion methods, J. Comput. Finance 2 (1999),

49–74.

[11] H. Geman and A. Eydeland, Domino effect , Risk 65 (1995), 65–67.

[12] H. Geman and M. Yor, Bessel processes, Asian options, and perpetuities, Math. Finance

3 (1993), 349–375.

[13] H. Geman, N. El Karoui, and J.-C. Rochet, Changes of numéraire, changes of probability
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