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Abstract. It is shown that the isospectral bi-equivariant spectral triple on quantum SU(2)
and the isospectral equivariant spectral triples on the Podleś spheres are related by restriction.
In this approach, the equatorial Podleś sphere is distinguished because only in this case the
restricted spectral triple admits an equivariant grading operator together with a real structure
(up to infinitesimals of arbitrary high order). The real structure is expressed by the Tomita
operator on quantum SU(2) and it is shown that the failure of the real structure to satisfy the
commutant property is related to the failure of the universal R-matrix operator to be unitary.

1. Introduction. The search for spectral triples on noncommutative spaces arising in
quantum group theory is an active research topic. A typical strategy for finding (equivari-
ant) spectral triples on q-deformed spaces is a case by case study starting with a quantum
analogue of the classical spinor bundle and defining the Dirac operator on q-analogues
of harmonic spinors (see, e.g., [4–9]). Until now, only few general methods for the con-
struction of spectral triples were found. The most notable examples are the construction
of Dirac operators on quantum flag manifolds by Krähmer [14] and the construction of
equivariant spectral triples on compact quantum groups by Neshveyev and Tuset [16].
Therefore the question arises whether the latter construction on compact quantum groups
can be used to find spectral triples on the associated quantum homogeneous spaces.

We approach this question by studying the relation between the bi-equivariant Dirac
operator on quantum SU(2) [8] and spectral triples on the 1-parameter family of Podleś
spheres A(S2

qc), c ∈ [0,∞] [6]. This example exhibits already some interesting features.
Whereas the standard Podleś sphere A(S2

q0) is distinguished for being obtained by a
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quotient of quantum groups and admitting a rich non-commutative spin geometry [21],
it is the equatorial Podleś sphere A(S2

q∞) on the other extreme which distinguishes in
the present approach. The restriction of the bi-equivariant Dirac operator on quantum
SU(2) to the Podleś spheres A(S2

qc) does yield a spectral triple for all c ∈ [0,∞], but only
in the case c =∞ the obtained spectral triple admits an equivariant grading operator.

Having an equivariant even spectral triple on A(S2
q∞), one can ask for an equivariant

real structure. Again, our aim is to relate the real structure on A(S2
q∞) with the one

coming from the spectral triple on quantum SU(2). Moreover, and maybe more interest-
ingly, we want to implement the real structure by the Tomita operator on A(SUq(2)).
It is known that an equivariant real structure for the bi-equivariant spectral triple on
quantum SU(2) cannot satisfy the commutant and first order property exactly but does
so up to compacts of arbitrary high order [8]. Starting from the Tomita operator on
A(SUq(2)), we will construct an equivariant operator on the quantum spinor bundle of
A(S2

q∞) which satisfies the commutant property. This operator is not unitary but its uni-
tary part coincides with restriction of the equivariant real structure on quantum SU(2).
The construction uses the R-matrix operator of Uq(sl(2)) for intertwining tensor product
representations. It is argued that the failure of this intertwining operator to be unitary
is responsible for the failure of real structure to satisfy the commutant property.

2. Preliminaries

2.1. Algebraic preliminaries. Throughout this paper, q stands for real number such
that 0 < q < 1, and we set [x] = [x]q := qx−q−x

q−q−1 for x ∈ R. All algebras appearing in
this paper will be complex and unital. We shall use Sweedlers notation for the coproduct,
namely, ∆x =: x(1) ⊗ x(2).

The Hopf ∗-algebra Uq(su(2)) is generated by e, f , k, k−1 with defining relations

kk−1 = k−1k = 1, ek = qke, kf = qfk, fe− ef = (q − q−1)−1(k2 − k−2),

coproduct ∆k = k ⊗ k, ∆e = e ⊗ k + k−1 ⊗ e, ∆f = f ⊗ k + k−1 ⊗ f , counit ε(k) = 1,
ε(f) = ε(e) = 0, antipode S(k) = k−1, S(f) = −qf , S(e) = −q−1e, and involution k∗ = k

and f∗ = e.
The coordinate Hopf ∗-algebra A(SUq(2)) of the quantum SU(2) group has two gen-

erators a and b satisfying the relations

ba = qab, b∗a = qab∗, bb∗ = b∗b, a∗a+ q2b∗b = 1, aa∗ + bb∗ = 1.

The the counit ε, coproduct ∆ and the antipode S are determined by

∆a = a⊗ a− q b⊗ b∗, ∆b = b⊗ a∗ + a⊗ b, ε(a) = 1, ε(b) = 0,

S(a) = a∗, S(b) = −qb, S(b∗) = −q−1b∗, S(a∗) = a.

There is a dual pairing between the Hopf ∗-algebras Uq(su(2)) and A(SUq(2)) given on
generators by

〈k±1, a〉 = q±
1
2 , 〈k±1, a∗〉 = q∓

1
2 , 〈f, b〉 = 〈e,−qb∗〉 = 1,

and zero otherwise. The left action defined by h . x := x(1)〈h, x(2)〉 for h ∈ Uq(su(2)) and
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x ∈ A(SUq(2)) satisfies

h . (xy) = (h(1) . x)(h(2) . y), h . 1 = ε(h), (h . x)∗ = S(h)∗ . x∗, (1)

i.e., A(SUq(2)) is a left Uq(su(2))-module ∗-algebra. Similarly, x/h := 〈h, x(1)〉x(2) defines
a right Uq(su(2))-action on A(SUq(2)) such that

(xy) / h = (x / h(1))(y / h(2)), 1 / h = ε(h), (x / h)∗ = x∗ / S(h)∗. (2)

We follow [17] and define the Podleś quantum sphere A(S2
qc), c ∈ [0,∞], as the ∗-al-

gebra generated by A = A∗ and B with relations

BA = q2A, B∗B = A−A2 + c, BB∗ = q2A− q4A2 + c for c <∞,
BA = q2A, B∗B = −A2 + 1, BB∗ = −q4A2 + 1 for c =∞.

The Podleś quantum sphere A(S2
qc) can be viewed as a ∗-subalgebra of A(SUq(2)) by

setting

B = c1/2a∗2 + a∗b− qc1/2b2, A = c1/2b∗a∗ + bb∗ + c1/2ab for c <∞,
B = a∗2 − qb2, A = b∗a∗ + ab for c =∞.

Then the left Uq(su(2))-action on A(SUq(2)) turns A(S2
qc) into a left Uq(su(2))-module

∗-algebra such that the elements

x−1 := q−1(1 + q2)1/2B, x0 := 1− (1 + q2)A, x1 := −(1 + q2)1/2B∗ for c <∞,

x−1 := q−1(1 + q2)1/2B, x0 := −(1 + q2)A, x1 := −(1 + q2)1/2B∗ for c =∞

transform by a spin 1 representation (see Equation (4)).

2.2. Equivariant representations. Let H be a Hilbert space with inner product 〈·, ·〉,
V a dense linear subspace, and A a ∗-algebra. By a ∗-representation of A on V , we mean
a homomorphism π : A → End(V) such that 〈π(a)v, w〉 = 〈v, π(a∗)w〉 for all v, w ∈ V
and a ∈ A.

Now assume that A is a left U-module ∗-algebra, i.e., there is a left action . of a
Hopf ∗-algebra U on A satisfying (1). A ∗-representation π of A on V is called (left)
U-equivariant if there exists a ∗-representation λ of U on V such that

λ(h)π(x)ξ = π(h(1) . x)λ(h(2))ξ

for all h ∈ U , x ∈ A and ξ ∈ V . We call an operator defined on V equivariant if it
commutes on V with λ(h) for all h ∈ U . An antilinear operator T is called equivariant if
its domain of definition contains V and if it satisfies on V the relation Tλ(h) = λ(S(h)∗)T
for all h ∈ U . We say that an antiunitary operator is equivariant if it leaves V invariant
and if it is the antiunitary part of the polar decomposition of an equivariant antilinear
(closed) operator.

Given U and A as above, the left crossed product ∗-algebra A o U is defined as the
∗-algebra generated by the two ∗-subalgebras A and U with cross commutation relations

hx = (h(1) . x)h(2), h ∈ U , x ∈ A.

Thus U-equivariant representations of A correspond to ∗-representations of A o U . As
Hilbert space representations of A(SUq(2))oUq(su(2)) and A(S2

qc)oUq(su(2)) have been
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studied extensively in [18] and [19], we shall mainly consider equivariant representations
from this point of view.

Above definitions have their right handed counter parts. For instance, a ∗-representa-
tion π of a right U-module ∗-algebra A (i.e. (2) is satisfied) is called (right) U-equivariant
if there exists a ∗-representation ρ of U on V such that

π(x)ρ(h)ξ = ρ(h(1))π(x / h(2)))ξ, h ∈ U , x ∈ A, ξ ∈ V. (3)

Assume that we are given a left and right U-equivariant representation π of A on V such
that λ(h)ρ(g) = ρ(g)λ(h) for all h, g ∈ U . Then we say that an operator X on V is
bi-equivariant if it commutes with all operators λ(h) and ρ(h), h ∈ U .

The irreducible ∗-representations of Uq(su(2)) are labeled by non-negative half-inte-
gers. For l ∈ 1

2N0, the corresponding representation σl acts on a 2l+1-dimensional Hilbert
space Vl with orthonormal basis { |lm〉 : m = −l,−l + 1, . . . , l } by the formulas

σl(k) |lm〉 = qm |lm〉, σl(f) |lm〉 =
√

[l −m][l +m+ 1] |l,m+ 1〉,

σl(e) |lm〉 =
√

[l −m+ 1][l +m] |l,m− 1〉.
(4)

A ∗-representation of A(SUq(2)) o Uq(su(2)) or A(S2
qc) o Uq(su(2)) is called integrable if

its restriction to Uq(su(2)) is a direct sum of spin l representations σl.
Suppose that π is a ∗-representation of A(SUq(2))oUq(su(2)) (or A(S2

qc)oUq(su(2)))
on V . Then the tensor product representation π ⊗ σl on V ⊗ Vl is defined by setting
π ⊗ σl(h) := π(h(1)) ⊗ σl(h(2)) for h ∈ Uq(su(2)) and π ⊗ σl(x) := π(x) ⊗ σl(1) for
x ∈ A(SUq(2)) (or x ∈ A(S2

qc)). Straightforward computations show that π ⊗ σl yields
indeed a ∗-representation of the quoted crossed product ∗-algebras.

2.2.1. Integrable representations of A(SUq(2)) oUq(su(2)). Let ψ denote the Haar state
of A(SUq(2)). From the GNS representation of A(SUq(2)) associated to ψ, we derive a
unique integrable ∗-representation πψ of A(SUq(2)) o Uq(su(2)), called the Heisenberg
representation [18]. It is obtained as follows. Since ψ is faithful, we can equip A(SUq(2))
with the inner product 〈x, y〉 := ψ(y∗x). The representation is given by the formulas
πψ(h)x = h . x and πψ(y)x = yx, where x, y ∈ A(SUq(2)) and h ∈ Uq(su(2)). Recall
that A(SUq(2)) has a vector-space basis { tlmn : 2l ∈ N, m, n = −l,−l + 1, . . . , l } con-
sisting of matrix elements of its finite dimensional irreducible corepresentations [13]. The
normalized matrix elements

|lmn〉 := qn [2l + 1]
1
2 tlnm, l ∈ 1

2N0, m, n = −l,−l + 1, . . . , l, (5)

form an orthonormal basis for A(SUq(2)). On

Vln := span{ |lmn〉 : m = −l,−l + 1, . . . , l }, (6)

the restriction of πψ to Uq(su(2)) becomes a spin l representation, so πψ is integrable.
It follows from [19, Proposition 1.2] that each integrable ∗-representation of the crossed

product ∗-algebra A(SUq(2))oUq(su(2)) is unitarily equivalent to a direct sum of Heisen-
berg representations. Moreover, an integrable ∗-representation of A(SUq(2)) o Uq(su(2))
is irreducible if and only if the vector space of invariant vectors (i.e., vectors belonging
to a spin 0 representations) is 1-dimensional. In particular, each irreducible integrable
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∗-representation of A(SUq(2)) o Uq(su(2)) is unitarily equivalent to the Heisenberg rep-
resentation.

Defining
ρψ(h)x = x / S−1(h), x ∈ A(SUq(2)), (7)

the left Uq(su(2))-equivariant representation πψ can also be viewed as right Uq(su(2))-
equivariant. One easily shows (see, e.g., [18]) that Vlm = span{|lmn〉 : n = −l, . . ., l} is
an irreducible spin l representation space with highest weight |lml〉, i.e., ρψ(k)|lmn〉 =
q−n|lmn〉. Since left and right Uq(su(2))-actions on A(SUq(2)) commute, we have obvi-
ously πψ(h)ρψ(g) = ρψ(g)πψ(h) for all g, h ∈ Uq(su(2)).

2.2.2. Integrable representations of A(S2
qc) o Uq(su(2)). The integrable representations

of A(S2
qc) o Uq(su(2)) were completely classified in [19]. It turned out that each inte-

grable representation is a direct sum of irreducible ones. The inequivalent irreducible
integrable representation πj of A(S2

qc) o Uq(su(2)) are labeled by half-integers j ∈ 1
2Z.

Each representation πj can be realized on an invariant subspace Mj ⊂ A(SUq(2)) by re-
stricting the Heisenberg representation πψ of A(SUq(2)) o Uq(su(2)) to the ∗-subalgebra
A(S2

qc) o Uq(su(2)). Moreover, A(SUq(2)) is the orthogonal direct sum of these invariant
subspaces, i.e., A(SUq(2)) = ⊕j∈ 1

2 ZMj . As a left A(S2
qc)-module, Mj is finitely generated

and projective. It is known that Mj can be considered as a line bundle over the quantum
sphere S2

qc with winding number 2j [1, 11,15].
For the convenience of the reader, we recall from [19] the explicit description of the

irreducible representations πj , j ∈ 1
2Z. The Hilbert space is the orthogonal direct sum⊕

l=|j|,|j|+1,... V
l, where V l is a spin l-representation space with an orthonormal basis of

weight vectors {vlk,j : k = −l,−l + 1, . . . , l}. The generators e, f , k of Uq(su(2)) act on
V l by (4). The actions of the generators x1, x0, x−1 of A(S2

qc) are determined by

πj(x1)vlk,j = q−l+k[l+k+1]1/2[l+k+2]1/2[2l+1]−1/2[2l+2]−1/2αj(l)vl+1
k+1,j

− qk+2[l−k]1/2[l+k+1]1/2[2]1/2[2l]−1βj(l)vlk+1,j (8)

− ql+k+1[l−k−1]1/2[l−k]1/2[2l−1]−1/2[2l]−1/2αj(l−1)vl−1
k+1,j ,

πj(x0)vlk,j = qk[l−k+1]1/2[l+k+1]1/2[2]1/2[2l+1]−1/2[2l+2]−1/2αj(l)vl+1
k,j

+
(
1− ql+k+1[l−k][2][2l]−1

)
βj(l)vlk,j (9)

+ qk[l−k]1/2[l+k]1/2[2]1/2[2l−1]−1/2[2l]−1/2αj(l−1)vl−1
k,j

and πj(x−1) = −q−1πj(x−1)∗. For c < ∞, the real numbers βj(l) and αj(l) are defined
by

βj(l) = [2l+2]−1
(
[2|j|](q−2λ± − λ∓) + (1− q−2)[|j|] [|j|+1]− (1− q−2)[l][l+1]

)
,

αj(l) = [2]−1/2[2l+3]−1/2[2l+2]1/2
(
1 + [2]2c− (1− q2)βj(l)− q2(βj(l))2

)1/2
,

where λ± = 1/2± (c+ 1/4)1/2. For c =∞, βj(l) and αj(l) are given by

βj(l) = sign(j)q−1[2l+2]−1[2] [2|j|], αj(l) = [2]−1/2[2l+3]−1/2[2l+2]1/2
(
[2]2−q2(βj(l))2

)1/2
.

In the case l = k = j = 0, Equation (9) becomes π0(x0)v0
0,0 = α0(0)v1

0,0.
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In the present paper, we are particularly interested in the representation π0 acting on
the trivial line bundle M0

∼= A(S2
qc). This representation can also be obtained from the

GNS representation associated to Haar state ψ̃ on A(S2
qc). By the uniqueness of the Haar

state, one can take ψ̃ to be the restriction of ψ on A(SUq(2)) to A(S2
qc). Analogously to

the Heisenberg representation from the previous subsection, we have 〈x, y〉 := ψ̃(y∗x),
π0(y)x = yx, and π0(h)x = h . x, where x, y ∈ A(S2

qc) and h ∈ Uq(su(2)).

2.3. Spectral triples. By a (compact) spectral triple (A,H, D), we mean a ∗-algebra
A, a bounded ∗-representation π of A on a Hilbert space H, and a self-adjoint operator
D on H such that [2]

(i) (D − ζ)−1 is a compact operator for all ζ ∈ C \ R,
(ii) the commutators [D,π(a)] are bounded for all a ∈ A.

If there exists an n ∈ N0 such that the asymptotic behavior of the eigenvalues 0 ≤ µ1 ≤
µ2 ≤ . . . of |D|−n is given by µk = O(k−1) as k →∞, then the spectral triple is said to
be n+-summable.

Let U be a Hopf ∗-algebra, A a left and/or right U-module and π a U-equivariant
representation on H. The spectral triple (A,H, D) is called left or right U-equivariant if
D is a left or right equivariant operator. We call it bi-equivariant if D is left and right
U-equivariant.

An (equivariant) spectral triple (A,H, D) is called even if there exists an (equivariant)
grading operator γ on H such that γ∗ = γ, γ2 = 1, γD = −Dγ, and γπ(a) = π(a)γ for
all a ∈ A.

In the seminal paper [3], a real structure J on a spectral triple was defined by an
antiunitary operator J on H satisfying

[π(x), Jπ(y)J−1] = 0, [[D,π(x)], Jπ(y)J−1] = 0, x, y ∈ A, (10)

J2 = ±1, JD = ±DJ and, for even spectral triples, Jγ = ±γJ . The real structure is
called equivariant, if J is equivariant in the sense of Section 2.2.

It was noted in [8] that, by requiring equivariance of J , it is not possible to satisfy
(10). However, the problem was overcome in [8] by requiring that (10) holds up to an
operator ideal contained in the ideal of infinitesimals of arbitrary high order. Here, a
compact operator A is called an infinitesimal of arbitrary high order if its singular values
sn(A) satisfy limn→∞ npsn(A) = 0 for all p > 0.

3. Equivariant spectral triples

3.1. The equivariant Dirac operator on A(SUq(2)). In this section, we summarize
the results from [8] concerning the equivariant isospectral Dirac operator on A(SUq(2)).
Starting point of the construction is the Heisenberg representation πψ of the left crossed
product ∗-algebra A(SUq(2)) o Uq(su(2)) on V := A(SUq(2)). The spin representation
π is given by the tensor product representation π := πψ ⊗ σ 1

2
acting on W := V ⊗ V 1

2
.

The Hilbert space completion of W will be denoted by H. Setting ρ := ρψ ⊗ id, the left
Uq(su(2))-equivariant representation π becomes also right Uq(su(2))-equivariant and we
have π(h)ρ(g) = ρ(g)π(h) for all h, g ∈ Uq(su(2)).
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Recall that the set of vectors defined in (5) forms an orthonormal basis for A(SUq(2)).
Set

Hl := span{ |lmn〉 : m,n = −l,−l + 1, . . . , l }. (11)

Then, by (6), Hl = ⊕ln=−lVln is the 2l + 1-fold orthogonal sum of irreducible spin l rep-
resentation spaces. As before, let Vl, l ∈ 1

2N0, denote the irreducible spin l representation
space. From the Clebsch-Gordan decomposition, it is known that

Vl ⊗ V 1
2

= Vl− 1
2
⊕ Vl+ 1

2
, l = 1

2 , 1, . . . , V0 ⊗ V 1
2

= V 1
2
. (12)

Hence we can write

Hl ⊗ V 1
2

= W ↑
l− 1

2
⊕W ↓

l+ 1
2
, l = 1

2 , 1, . . . , H0 ⊗ V 1
2

= W ↓1
2
, (13)

where W ↑
l− 1

2
and W ↓

l+ 1
2
are the linear spaces of vectors from Hl ⊗ V 1

2
belonging to spin

l − 1
2 and spin l + 1

2 representations, respectively. Since V = ⊕l∈ 1
2 N0

Hl, it follows that
the representation space W = V ⊗ V 1

2
decomposes into

W =
⊕
l∈ 1

2 N0

W ↑l ⊕
⊕
l∈ 1

2 N

W ↓l . (14)

By (11)–(13), we have dimW ↑l = (2l + 1)(2l + 2) and dimW ↓l = 2l(2l + 1).
Now consider the self-adjoint operator D on H determined by

Dw↑l = (l + 1
2 )w↑l , w

↑
l ∈W

↑
l , Dw↓l = −(l + 1

2 )w↓l , w
↓
l ∈W

↓
l . (15)

It was proved in [8] that (A(SUq(2)),H, D) is a bi-equivariant spectral triple. The eigen-
values of D are l + 1

2 with multiplicities (2l + 1)(2l + 2) and −(l + 1
2 ) with multiplicities

2l(2l + 1), where l ∈ 1
2N0 and l ∈ 1

2N, respectively. Using the results from [12], one
easily checks that the eigenvalues and multiplicities of 2D − 1

2 coincide with those of a
classical Dirac operator on S3 ≈ SU(2) equipped with a SU(2) × SU(2)-invariant met-
ric (set λ = −1 in [12, Proposition 3.2]). So we have an isospectral deformation of a
SU(2)-bi-invariant classical spectral triple.

3.2. The equivariant Dirac operator on A(S2
qc). Our aim is to show that restrict-

ing the Dirac operator on A(SUq(2)) to the quantum spinor bundle A(S2
qc) ⊗ V 1

2
⊂

A(SUq(2))⊗ V 1
2
yields a spectral triple on A(S2

qc).
To begin, recall from Section 2.2.2 that π0 is the ∗-representation of A(S2

qc)oUq(su(2))
obtained by restricting the Heisenberg representation of A(SUq(2)) o Uq(su(2)) to its
subalgebra A(S2

qc) o Uq(su(2)) and to the subspace M0 = A(S2
qc) of V = A(SUq(2)).

Along the lines of the previous subsection, we take the tensor product representation
π̃ := π0 ⊗ σ 1

2
on W̃ := M0 ⊗ V 1

2
as spin representation. Furthermore, the Hilbert space

completion of W̃ , say H̃, will be considered as Hilbert space of spinors.
Let Ṽl := span{ vlm,0 : m = −l, . . . , l }. In Section 2.2.2, we saw that M0 = ⊕l∈N0 Ṽl

is an orthogonal sum of irreducible spin l representation spaces. The Clebsch-Gordan
decomposition yields

Ṽl ⊗ V 1
2

= W̃ ↑
l− 1

2
⊕ W̃ ↓

l+ 1
2
, l = 1, 2, . . . , Ṽ0 ⊗ V 1

2
= W̃ ↓1

2
, (16)
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where the restriction of π0 ⊗ σ 1
2
to W̃ ↑l or W̃ ↓l is an irreducible spin l representation of

Uq(su(2)). Clearly,
W̃ =

⊕
l∈N0

W̃ ↑
l+ 1

2
⊕ W̃ ↓

l+ 1
2
. (17)

AsM0 =⊕l∈N0 Ṽl ⊂ V =⊕l∈ 1
2 N0

Hl and Ṽl is a spin l representation space, we have Ṽl ⊂ Hl.
Comparing (13) and (16) shows that W̃ ↑l ⊂W

↑
l and W̃ ↓l ⊂W

↓
l , where l = 1

2 ,
3
2 , . . . . The

operator D from Subsection 3.1 acts on each W ↑l and W ↓l as a multiple of the identity.
In particular, D leaves the subspaces W̃ ↑l and W̃ ↓l invariant. Let D̃ denote (the closure
of) the restriction of D to W̃ . By (15),

D̃w̃↑l = (l+ 1
2 )w̃↑l , w̃

↑
l ∈ W̃

↑
l , D̃w̃↓l = −(l+ 1

2 )w̃↓l , w̃
↓
l ∈ W̃

↓
l , l = 1

2 ,
3
2 , . . . . (18)

Since the spin representation π0⊗σ 1
2
is obtained by restricting πψ⊗σ 1

2
to the subalgebra

A(S2
qc) o Uq(su(2)) of A(SUq(2)) o Uq(su(2)) and to the subspace W̃ ⊂ W , we can

now apply verbatim the results from [8]. Therefore, [D̃, π0 ⊗ σ 1
2
(x)] is bounded for all

x ∈ A(S2
qc) and D̃ is left Uq(su(2))-equivariant because the same is true for [D,πψ⊗σ 1

2
(x)]

and D.
Comparing the eigenvalues and the corresponding multiplicities with those of the

Dirac operator on the Riemannian 2-sphere with the standard metric (see, e.g., [10]), one
sees that (A(S2

qc), H̃, D̃) is an isospectral deformation of the classical spectral triple. From
the asymptotic behavior of the eigenvalues, one readily concludes that it is 2+-summable.

Summarizing, we arrive at the following proposition.

Proposition 3.1. Restricting the spectral triple (A(SUq(2)),H, D) to A(S2
qc) ⊗ V 1

2
⊂

A(SUq(2))⊗V 1
2
(considered as subspaces of H) gives rise to a left Uq(su(2))-equivariant,

2+-summable spectral triple (A(S2
qc), H̃, D̃), where H̃ denotes the closure of A(S2

qc)⊗ V 1
2

in H. It is an isospectral deformation of the classical spectral triple on the Riemannian
2-sphere with the standard metric.

Remark. The fact that (A(S2
qc), H̃, D̃) defines a left Uq(su(2))-equivariant spectral triple

on the Podleś spheres has been proved in [7] for c = ∞ and in [6] for all c ∈ [0,∞] by
direct computations.

3.3. Equivariant grading operator on (A(S2
q∞), H̃, D̃). As (A(S2

qc), H̃, D̃) is an iso-
spectral deformation and 2+-summable, its classical dimension is 2. For this reason and
in analogy with the classical picture, we are interested in obtaining an even spectral
triple. The next proposition shows that an equivariant grading operator exists only for
the spectral triple (A(S2

q∞), H̃, D̃). The “only if” part of the proposition is an interesting
result since it seems to contradict [6], where equivariant even spectral triples for all Podleś
spheres were constructed. In fact, one of the main purposes of this paper is to point out
that the construction of spectral triples by restriction may be possible but extra care
has to be taken when trying to satisfy additional structures, for instance, when passing
from odd to even ones. The reason behind the seeming contradiction between [6] and
Proposition 3.2 will be explained after the proof of the proposition. Roughly speaking, it
arises because the spectral triples from [6] and Proposition 3.1 are unitarily equivalent



BI-EQUIVARIANT SPECTRAL TRIPLE ON QUANTUM SU(2) 233

but, for c < ∞, the unitary operators implementing the equivalence are not compatible
with the (unique) equivariant grading operator.

Proposition 3.2. The spectral triple (A(S2
qc), H̃, D̃) from Proposition 3.1 admits an

equivariant grading operator of an even spectral triple if and only if c =∞.

Proof. The assumptions on γ imply that it commutes with all elements from the crossed
product algebra A(S2

qc) o Uq(su(2)). In [19, Proposition 4.4], it has been shown that the
tensor product representation π0⊗σ 1

2
on M0⊗V 1

2
decomposes into the direct sum of the

irreducible representations π− 1
2
and π 1

2
on M− 1

2
and M 1

2
, respectively. From γ∗ = γ and

γ2 = 1, it follows that γ has eigenvalues ±1. Since the irreducible representations π− 1
2

and π 1
2
are nonequivalent and integrable, we conclude that γ acts on M− 1

2
and M 1

2
by

± id, with opposite sign on each space. In the notation of Section 2.2.2, we can assume
without loss of generality that W̃ = M− 1

2
⊕M 1

2
and

γ vlm,− 1
2

= −vlm,− 1
2
, γ vlm, 12

= vlm, 12
. (19)

Next, the relation γD̃ = −D̃γ forces γ to map W̃ ↓l into W̃ ↑l and W̃ ↑l into W̃ ↓l . In
addition, the equivariance of γ implies that we can choose a basis {|lm↓〉 : m = −l, . . . , l}
for W̃ ↑l and a basis {|lm↑〉 : m = −l, . . . , l} for W̃ ↑l such that the action of Uq(su(2)) on
these vectors is given by (4) and

γ |lm↓〉 = |lm↑〉, γ |lm↑〉 = |lm↓〉. (20)

Assume now that γ is an operator on W̃ satisfying Equations (19) and (20). Using
span{v

1
2
1
2 ,−

1
2
, v

1
2
1
2 ,

1
2
} = span{| 12 ,

1
2 , ↓〉, |

1
2 ,

1
2 , ↑〉} and applying (19) and (20), we can write

| 12 ,
1
2 , ↓〉 = s v

1
2
1
2 ,

1
2

+ t v
1
2
1
2 ,−

1
2
, | 12 ,

1
2 , ↑〉 = s v

1
2
1
2 ,

1
2
− t v

1
2
1
2 ,−

1
2
,

where s, t ∈ C such that |s|2 + |t|2 = 1. Moreover, 〈 12 ,
1
2 , ↓|

1
2 ,

1
2 , ↑〉 = 0 implies |s|2 =

|t|2 = 1
2 . In the notation of (4), let V 1

2
= span{| 12 ,−

1
2 〉, |

1
2 ,

1
2 〉}. From (16), it follows that

| 12 ,
1
2 , ↓〉 = exp(iω) v0

0,0 ⊗ |12 ,
1
2 〉, where ω ∈ [0, 2π). Applying the formulas from Section

2.2.2, we compute

0 = 〈v0
0,0, π0(x0)v0

0,0〉 = 〈 12 ,
1
2 , ↓|π̃(x0)| 12 ,

1
2 , ↓〉 = 1

2

(
β 1

2
( 1
2 ) + β− 1

2
( 1
2 )
)
. (21)

For c < ∞, we obtain a contradiction since β 1
2
( 1
2 ) + β− 1

2
( 1
2 ) = [3]−1(q−2 − 1) 6= 0.

Therefore a grading operator satisfying Equations (19) and (20) can only exist in the
case of the equatorial Podleś sphere A(S2

q∞).
Let c =∞. Our aim is to find orthonormal vectors |lm↓〉, |lm↑〉 ∈ span{vl

m,− 1
2
, vl
m, 12
}

such that γ is given by (20). To begin, consider

|ll↓〉 := v
l− 1

2
l− 1

2 ,0
⊗ | 12 ,

1
2 〉,

|ll↑〉 := [2l+2]−
1
2
(
−q 1

2 [2l+1]
1
2 v

l+ 1
2

l+ 1
2 ,0
⊗ | 12 ,−

1
2 〉+ q−l−

1
2 v

l+ 1
2

l− 1
2 ,0
⊗ | 12 ,

1
2 〉
)
.

(22)

Since |ll↓〉 and |ll↑〉 are highest weight vectors of weight ql, it follows that both belong
to span{vl

l,− 1
2
, vl
l, 12
}. Moreover, by (16), |ll↓〉 ∈ W̃ ↓l and |ll↑〉 ∈ W̃ ↑l . We claim that, for
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some ωl, φl ∈ [0, 2π),

1√
2
(|ll↓〉+ |ll↑〉) = exp(iωl)vll, 12 ,

1√
2
(|ll↓〉 − |ll↑〉) = exp(iφl)vll,− 1

2
. (23)

Before justifying the claim, we observe that, for w = xvl
l, 12

+ yvl
l,− 1

2
with x, y ∈ C and

|x|2 + |y|2 = 1, we have w = exp(iωl)vll,± 1
2
if and only if 〈w, π(x0)w〉 = β± 1

2
(l). This

is apparent from the equality 〈w, π(x0)w〉 = |x|2β 1
2
(l) + |y|2β− 1

2
(l) since β 1

2
(l) > 0 and

β− 1
2
(l) < 0. Applying the formulas from Subsection 2.2.2 (note that β0(l) = 0 for all

l ∈ N0) gives

1
2 (〈ll↓| ± 〈ll↑|) π̃(x0)( |ll↓〉 ± |ll↑〉)

= 1
2 [2l+2]−

1
2 q−l−

1
2
(
±〈vl+

1
2

l− 1
2 ,0
, π0(x0)vl−

1
2

l− 1
2 ,0
〉 ± 〈vl−

1
2

l− 1
2 ,0
, π0(x0)vl+

1
2

l− 1
2 ,0
〉
)

= ±q−1[2l+2]−1[2] = β± 1
2
(l)

from which the claim follows.
With e denoting one of the generators of Uq(su(2)), set

|lm↓〉 := ||π̃(e)l−m |ll↓〉||−1 π̃(e)l−m |ll↓〉, |lm↑〉 := ||π̃(e)l−m |ll↑〉||−1 π̃(e)l−m |ll↑〉.
(24)

Then (23) implies that

1√
2
(|lm↓〉+ |lm↑〉) = exp(iωl)vlm, 12 ,

1√
2
(|lm↓〉 − |lm↑〉) = exp(iφl)vlm,− 1

2
, (25)

and the operator γ given by Equation (20) satisfies (19). Clearly, this operator meets all
the requirements on an equivariant grading operator.

Let us now explain why (A(S2
qc), H̃, D̃) does not admit an equivariant grading operator

for c < ∞ although equivariant even spectral triples with the same spectral properties
were constructed in [6] for all c. The Dirac operators from [6] are unitarily equivalent to
D̃, and it follows from [6, Equation (5.1)] that the unitary equivalence is determined by
unitary operators

Ul : span{|ll↓〉, |ll↑〉} −→ span{vll,− 1
2
, vll, 12

}, l = 1
2 ,

3
2 , . . . .

Now Equation (23) tells us that the existence of an equivariant grading operator requires
that the unitary transformations between span{|ll↓〉, |ll↑〉} and span{vl

l,− 1
2
, vl
l, 12
} are given

by matrices of the type

1√
2

(
exp(iωl) exp(iωl)
exp(iφl) − exp(iφl)

)
, ωl, φl ∈ [0, 2π),

but the contradiction obtained below Equation (21) proves that, for c < ∞, the matrix
corresponding to the unitary operator U 1

2
does not have the above form.

3.4. The real structure on (A(SUq(2)),H, D). In this section, we give a brief sum-
mary of the results of [8] on the real structure. Set

Cjm := q−(j+m)/2 [j −m]1/2 [2j]−1/2, Sjm := q(j−m)/2 [j +m]−1/2 [2j]−1/2. (26)
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With |lmn〉 defined in (5) and {| 12 ,−
1
2 〉, |

1
2 ,

1
2 〉} being a orthonormal basis of V 1

2
, let

|jmν↓〉 := Cjm |j − 1
2 ,m+ 1

2 , ν〉 ⊗ |
1
2 ,−

1
2 〉+ Sjm |j − 1

2 ,m−
1
2 , ν〉 ⊗ |

1
2 ,+

1
2 〉, (27)

|jmµ↑〉 := −Sj+1,m |j + 1
2 ,m+ 1

2 , µ〉 ⊗ |
1
2 ,−

1
2 〉+ Cj+1,m |j + 1

2 ,m−
1
2 , µ〉 ⊗ |

1
2 ,+

1
2 〉.
(28)

According to the Clebsch-Gordan decomposition of the tensor product representation
σl ⊗ σ 1

2
on Vl ⊗ V 1

2
, we have

W ↓j = span{ |jmν↓〉 : m = −j, . . . , j, ν = −j + 1
2 , . . . , j −

1
2 }, j = 1

2 , 1, . . . , (29)

W ↑j = span{ |jmµ↑〉 : m = −j, . . . , j, µ = −j − 1
2 , . . . , j + 1

2 }, j = 0, 1
2 , . . . , (30)

and the sets on the right hand side are orthonormal bases. The set of all vectors |jmν↓〉
and |jmµ↑〉 forms an orthonormal basis for the Hilbert space of spinors H. Define an
antiunitary operator J on H by

J |jmn↑〉 = i2(2j+m+n) |j,−m,−n, ↑〉, J |jmn↓〉 = i2(2j−m−n) |j,−m,−n, ↓〉. (31)

The proof of the following facts can be found in [8]:
Let (A(SUq(2)),H, D) be the spectral triple from Subsection 3.1. The antiunitary

operator J defined above satisfies J2 = −1, JD = DJ and

Jπ(h)J−1 = π(kS(h)∗k−1), h ∈ Uq(su(2)). (32)

The commutators [π(x), Jπ(y)J−1] and [[D,π(x)], Jπ(y)J−1] are infinitesimals of arbi-
trary high order for all x, y ∈ A(SUq(2)), so J satisfies in this sense the condition of a
real structure on the spectral triple (A(SUq(2)),H, D). Moreover, J is equivariant since
we can consider it, for instance, as the antiunitary part of (the closure of) the equivariant
antilinear operator J π(k).

The assembly (A(SUq(2)),H, D, J) is viewed as an equivariant real spectral triple on
A(SUq(2)).

3.5. Implementation of the real structure by the Tomita operator on A(SUq(2)).
For a GNS-representation of a von Neumann algebra, the modular conjugation from the
Tomita-Takesaki theory [20] can be used to introduce a reality operator [3]. The objective
of this section is to relate the real structure J on the Hilbert space of spinors to the
modular conjugation associated with the GNS-representation πψ of A(SUq(2)).

To begin, define an antilinear operator Tψ on V = A(SUq(2)) by

Tψ(x) = x∗, x ∈ A(SUq(2)).

Obviously, T 2
ψ = 1. Recall that the inner product onA(SUq(2)) is given by 〈x, y〉 = ψ(y∗x)

and that the Haar state ψ has the property (see, e.g., [13])

ψ(xy) = ψ((k−2 . y / k−2)x), x, y ∈ A(SUq(2)).

Using this relation together with Equations (1), (2) and (7), we compute

〈y, Tψx〉 = ψ(xy) = ψ((k2 . y∗ / k2)∗x) = 〈x, πψ(k2)ρψ(k−2)Tψ(y)〉, x, y ∈ A(SUq(2)).

Hence T ∗ψ acts on A(SUq(2)) by πψ(k2)ρψ(k−2)Tψ and Tψ is closable. In the Tomita-
Takesaki theory, the closure of Tψ is referred to as Tomita operator. By a slight abuse of
notation, we denote in the sequel a closable operator and its closure by the same symbol.
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Let Tψ = Jψ|Tψ| be the polar decomposition of the Tomita operator. The antiunitary
operator Jψ is known as modular conjugation. Since T ∗ψTψdA(SUq(2)) = πψ(k2)ρψ(k−2),
we have

Jψ x = Tψ πψ(k−1) ρψ(k)x = πψ(k) ρψ(k−1)Tψ x, x ∈ A(SUq(2)).

Equation (1) implies that Tψ πψ(h) = πψ(S(h)∗)Tψ for h ∈ Uq(su(2)). Therefore

Jψπψ(h)J−1
ψ = πψ(kS(h)∗k−1), (33)

exactly as in Equation (32). Note that J2
ψ = 1.

Our next aim is to define an antilinear “Tomita” operator T on the tensor product
W = A(SUq(2))⊗V 1

2
satisfying T π(h) = π(S(h)∗)T for h ∈ Uq(su(2)). To begin, we look

for an antilinear operator T 1
2
on V 1

2
such that T 1

2
σ 1

2
(h) = σ 1

2
(S(h)∗)T 1

2
. A convenient

choice is given by

T 1
2
| 12 ,

1
2 〉 = iq1/2| 12 ,−

1
2 〉, T 1

2
| 12 ,−

1
2 〉 = −iq−1/2| 12 ,

1
2 〉. (34)

Then J 1
2

:= σ 1
2
(k)T 1

2
= T 1

2
σ 1

2
(k−1) is an antiunitary operator and J2

1
2

= −1.
Since the antipode is a coalgebra anti-homomorphism, i.e., ∆S(h) = S(h(2))⊗S(h(1)),

we combine Tψ ⊗ T 1
2
with the flip operator on tensor products and set

T0 := τ ◦ (Tψ ⊗ T 1
2
) : A(SUq(2))⊗ V 1

2
→ V 1

2
⊗A(SUq(2)),

where τ is defined by τ(x⊗y) = y⊗x. By construction, the antilinear operator T0 satisfies

T0 π(h) = (σ 1
2
⊗ πψ)(S(h)∗)T0, h ∈ Uq(su(2)).

To obtain a mapping from W into itself, we compose T0 with an operator intertwining
the tensor product representations σ 1

2
⊗ σl and σl ⊗ σ 1

2
. Such an operator is provided by

the universal R-matrix of Uq(su(2)) (see, e.g., [13]). For a tensor product representation
with σ 1

2
as left tensor factor, it can be expressed by

R = (σ 1
2
⊗ πψ)

(
qfe⊗ k + qef ⊗ k−1 + (q − q−1)q1/2f ⊗ e

)
. (35)

Let R̂ := τ ◦R. It follows from the properties of the R-matrix (or can be checked directly)
that

π(h) ◦ R̂ = R̂ ◦ (σ 1
2
⊗ πψ)(h), h ∈ Uq(su(2)).

Therefore the antilinear operator
T := R̂ ◦ T0

fulfills Tπ(h) = π(S(h)∗)T for h ∈ Uq(su(2)) as required.
To describe the action of T on W , we need at first explicit formulas for the action of

Tψ on A(SUq(2)). On writing the matrix element tlmn in (5) in terms of the generators
of A(SUq(2)) (see, e.g., [8] or [13]), one easily sees that

Tψ |lmn〉 = (−1)2l+m+nqm+n |l,−m,−n〉. (36)

From (26)–(28), (35) and (36), we obtain after a direct calculation

T |lmν↓〉 = i2(2l−m−ν) ql+m+ν+ 1
2 |l,−m,−ν, ↓〉,

T |lmµ↑〉 = i2(2l+m+µ) q−l+m+µ− 1
2 |l,−m,−µ, ↑〉,

(37)
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where we used also the fact that 2(m + ν)− 1 is an even integer. Equation (37) implies
that T maps W ↑l and W ↓l into themselves. As a consequence, TD = DT .

Remarkably, we even have [π(x), Tπ(y)T−1] = 0 for all x, y ∈ A(SUq(2)). To see this,
one uses (∆⊗id)R̂ = (

∑
i id⊗hi⊗gi)(

∑
j hj⊗id⊗gj), where R̂ =

∑
i hi⊗gi, which can be

deduced from general properties of R-matrices [13]. Then a straightforward computation
shows that Tπ(y)T−1(w⊗ v) =

∑
i w(hi . y∗)⊗ σ 1

2
(gi)v for all w⊗ v ∈ A(SUq(2))⊗ V 1

2
.

Since Tπ(y)T−1 acts by right multiplication on the first tensor factor, and π(x) by left
multiplication, it is clear that π(x) and Tπ(y)T−1 commute.

Observe that

T ∗ |lmν↓〉 = i2(2l+m+ν) ql−m−ν+
1
2 |l,−m,−ν, ↓〉,

T ∗ |lmµ↑〉 = i2(2l−m−µ) q−l−m−µ−
1
2 |l,−m,−µ, ↑〉.

(38)

In particular, T ∗ is densely defined, and T is closable. By the convention made above, its
closure will again be denoted by T . In analogy with the Tomita operator Tψ, define an
antilinear operator J by the unique polar decomposition T = J |T |. Comparing Equations
(37) and (38) with Equation (31) shows that this J actually coincides with that from
Section 3.4. Moreover, |T | is given on W by

|T |w = π(k)ρ(k−1)q−Dw, w ∈W, (39)

where ρ(h) := ρψ(h)⊗ id for h ∈ Uq(su(2)). Thus we arrive at the following Proposition.

Proposition 3.3. The antilinear operator J from Equation (31) can be expressed by

J w = T π(k−1)ρ(k)qDw = π(k)ρ(k−1)qDT w, w ∈W.

Proposition 3.3 yields another proof of the invariance relation (32). Since qD and ρ(k)
commute with π(h) and since T π(h) = π(S(h)∗)T for all h ∈ Uq(su(2)), J and π(h)
satisfy the same commutation relation as Jψ and πψ(h) in Equation (33).

We showed above that [π(x), Tπ(y)T−1] = 0 for all x, y ∈ A(SUq(2)). The operator
J0 := T π(k−1)ρ(k) still satisfies [π(x), J0π(y)J−1

0 ] = 0 for all x, y ∈ A(SUq(2)) since
π(k−1)ρ(k)π(y)ρ(k−1)π(k) = π(k−1.y/k−1) by the equivariance of π = πψ⊗id. However,
it was argued in [8] that J does not have this property. This is due to the operator
qD = |R̂∗|−1 ensuring the (anti)unitarity of J . To verify |R̂∗| = q−D, observe that

(Tψ⊗T 1
2
)∗w = −(πψ(k2)ρψ(k−2)Tψ⊗σ 1

2
(k2)T 1

2
)w = −π(k2)ρ(k−2)(Tψ⊗T 1

2
)w w ∈W.

Moreover, R̂(Tψ⊗T 1
2
) = (Tψ⊗T 1

2
)R̂∗ and R̂∗(Tψ⊗T 1

2
) = (Tψ⊗T 1

2
)R̂ since S⊗S (R̂) = R̂.

Hence

T ∗T w = (Tψ ⊗ T 1
2
)∗ (Tψ ⊗ T 1

2
)R̂R̂∗w = π(k2)ρ(k−2)|R̂∗|2w, w ∈W.

Comparing this equation with (39) gives |R̂∗| = q−D since π(k) and ρ(k) are invertible
on W .

3.6. Equivariant real even spectral triple for A(S2
q∞). For an 2+-summable even

spectral triple with grading operator γ, the requirements on a real structure J include
the commutation relation Jγ = −γJ . By Proposition 3.2, only (A(S2

q∞), H̃, D̃) admits
a grading operator of an even spectral triple. For this reason, we restrict the following
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discussion to the equatorial Podleś sphere A(S2
q∞) although most of the results remain

valid in the general case.
We proceed as in Section 3.5 and define an antilinear operator T̃ψ on M0 = A(S2

q∞)
by

T̃ψ(x) = x∗, x ∈ A(S2
q∞).

By Equation (1), since π0(h)x = h . x, we have T̃ψ π0(h) = π0(S(h)∗) T̃ψ for all h ∈
Uq(su(2)). From [19, Lemma 6.3], it follows that the Haar state ψ̃ on A(S2

q∞) satisfies

ψ̃(xy) = ψ̃((k−2 . y)x), x, y ∈ A(S2
q∞).

Analogously to Section 3.5, T̃ ∗ψdM0 = π0(k2) T̃ψ and T̃ψ is closable (with closure denoted
again by T̃ψ). Moreover, |T̃ψ|dM0 = π0(k), and the antiunitary operator J̃ψ from the polar
decomposition T̃ψ = J̃ψ |T̃ψ| is given on M0 by

J̃ψ x = T̃ψ π0(k−1)x = π0(k) T̃ψ x, x ∈M0.

Since the entries of the R-matrix in (35) are elements from Uq(su(2)), the restriction
of R̂ (again denoted by R̂) to W̃ = M0⊗ V 1

2
leaves W̃ invariant. Thus, with T 1

2
from the

previous subsection,
T̃ := R̂ (T̃ψ ⊗ T 1

2
). (40)

defines an antilinear operator on W̃ . By construction, T̃ π̃(h) = π̃(S(h)∗) T̃ for all h in
Uq(su(2)). Its adjoint T̃ ∗ acts on W̃ by

T̃ ∗w = −π̃(k2)(T̃ψ ⊗ T 1
2
)R̂∗w, w ∈ W̃ .

Recall that |R̂∗| = q−D, R̂(T̃ψ ⊗ T 1
2
) = (T̃ψ ⊗ T 1

2
)R̂∗ and R̂∗(T̃ψ ⊗ T 1

2
) = (T̃ψ ⊗ T 1

2
)R̂.

Hence
T̃ ∗ T̃ w = π̃(k2)R̂R̂∗w = π̃(k2)q−2Dw, w ∈ W̃ .

Clearly, T̃ ∗ is densely defined and, therefore, T̃ is closable. Denoting its closure again by
T̃ , we can write |T̃ |dW̃ = π̃(k)q−D̃ since DdH̃ = D̃.

Now we define an antiunitary operator J̃ by the polar decomposition T̃ = J̃ |T̃ |. From
the preceding, it follows that

J̃ w = T̃ π̃(k−1)qD̃w = R̂ (T̃ψ ⊗ T 1
2
) π̃(k−1)qD̃w, w ∈ W̃ . (41)

Our next aim is to give explicit formulas for the action of J̃ . Let |lm↓〉 and |lm↑〉
denote the vectors defined by Equations (22) and (24). The set of all these vectors forms
an orthonormal basis for H̃. Inserting (22) into (24), one easily verifies that

|lm↓〉 := Clm v
l− 1

2
m+ 1

2 ,0
⊗ | 12 ,−

1
2 〉+ Slm v

l− 1
2

m− 1
2 ,0
⊗ | 12 ,+

1
2 〉, (42)

|lm↑〉 := −Sl+1,m v
l+ 1

2
m+ 1

2 ,0
⊗ | 12 ,−

1
2 〉+ Cl+1,m v

j+ 1
2

m− 1
2 ,0
⊗ | 12 ,+

1
2 〉 (43)

with Clm and Slm given by (26).
To determine T̃ψ, we use the identification M0 =A(S2

q∞). Then v0
0,0 = 1 and, thus,

vl+1
l+1,0 = (Πl

k=0α0(k))−1π0(x1)lv0
0,0 = (Πl

k=0α0(k))−1xl1.
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Similarly, vl+1
−l−1,0 = (Πl

k=0α0(k))−1xl−1. This gives T̃ψvll,0 = (−q)lvl−l,0 since x1 =−qx∗−1.
Computing both sides of T̃ψ π̃(e)k vll,0 = (−q)−k π̃(f)k T̃ψ vll,0 = (−q)l−k π̃(f)k vl−l,0, we
finally get

T̃ψ v
l
m,0 = (−q)m vl−m,0, l ∈ N0, m = −l, . . . , l.

Using these formulas, the action of T̃ = R̂ (T̃ψ ⊗ T 1
2
) on |lm↓〉 and |lm↑〉 can be

computed directly. Analogously to Equation (37), we find

T̃ |lm↓〉 = i2m ql+m+ 1
2 |l,−m, ↓〉, T̃ |lm↑〉 = −i2m q−l+m−

1
2 |l,−m, ↑〉.

Consequently, by (41),

J̃ |lm↓〉 = i2m |l,−m, ↓〉, J̃ |lm↑〉 = −i2m |l,−m, ↑〉.

Therefore, by (25) (up to unitary equivalence),

J̃ vlm,± 1
2

= i2m vl−m,∓ 1
2
,

where l = 1
2 ,

3
2 , . . . and m = −l, . . . , l.

The last equation shows that J̃ coincides with the real structure defined in [7]. The re-
sults in [7] (or [6]) tell us that [π̃(a), J̃ π̃(b)J̃−1] and [[D, π̃(a)], J̃ π̃(b)J̃−1] are infinitesimals
of arbitrary high order for all a, b ∈ A(S2

q∞).
Finally let us discuss how T̃ and J̃ are related to T and J from Section 3.5. Since

T̃ψ = TψdA(S2
q∞), it follows from the definitions that T dW̃ = T̃ . In particular, as shown

above, [π(x), T̃ π(y)T̃−1] = 0 for all x, y ∈ A(S2
q∞). On the other hand, we do not have

JdW̃ = J̃ . This is due to the fact that the adjoint T ∗ψ(x) = k2 . x∗ / k2 does not map
A(S2

q∞) into itself. In general, y / k2 /∈ A(S2
q∞) for y ∈ A(S2

q∞).
Summarizing our conclusions, we can now state the main theorem of this paper.

Theorem 3.4. Let (A(SUq(2)),H, D) denote the spectral triple described in Section 3.1.
The embedding A(S2

qc) ⊗ V 1
2
⊂ A(SUq(2)) ⊗ V 1

2
gives rise to an equivariant real even

spectral triple (A(S2
qc), H̃, D̃, J̃ , γ) if and only if c =∞. The equivariant representation π̃

on A(S2
q∞)⊗ V 1

2
is given by restricting the ∗-representation of A(SUq(2)) oUq(su(2)) on

A(SUq(2))⊗V 1
2
to a ∗-representation of A(S2

q∞)oUq(su(2)) on A(S2
q∞)⊗V 1

2
. The Dirac

operator D̃ is the closure of the restriction of D to the invariant subspace A(S2
q∞)⊗ V 1

2
.

The decomposition of A(S2
q∞)⊗ V 1

2
into eigenspaces corresponding to the eigenvalues ±1

of γ coincides with the decomposition into subspaces corresponding to irreducible ∗-re-
presentations of A(S2

q∞) o Uq(su(2)). The real structure J̃ is the antiunitary part of
the equivariant (closed) Tomita operator defined in Equation (40). The commutators
[π̃(a), J̃ π̃(b)J̃−1] and [[D̃, π̃(a)], J̃ π̃(b)J̃−1] are infinitesimals of arbitrary high order for
all a, b ∈ A(S2

q∞).
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