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Abstract. In this paper we introduce a concept of Schauder basis on a self-similar fractal set

and develop differential and integral calculus for them. We give the following results:

(1) We introduce a Schauder/Haar basis on a self-similar fractal set (Theorems I and I’).

(2) We obtain a wavelet expansion for the L2-space with respect to the Hausdorff measure

on a self-similar fractal set (Theorems II and II’).

(3) We introduce a product structure and derivation on a self-similar fractal set (Theo-

rem III).

(4) We give the Taylor expansion theorem on a fractal set (Theorem IV and IV’).

(5) By use of the Taylor expansion for wavelet functions, we introduce basic functions, for

example, exponential and trigonometrical functions, and discuss the relationship between the

usual and introduced corresponding special functions (Theorem V).

(6) Finally we discuss the relationship between the wavelet functions and the generating

functions of the dynamical systems on a fractal set and show that our wavelet expansions can

describe several fluctuations observed in nature.
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1. Introduction. In 1927, Schauder [10, 11] introduced a system of functions which
is called the Schauder basis on the interval and made a uniform approximation of a
continuous function. In this paper we shall introduce a concept of Schauder basis on a
self-similar fractal set and make differential and integral calculus for them. Hence we
may say that Schauder’s observation will supply an important method for new fields of
mathematics still now and furthermore in the future.

Fractal structure can be observed in many places and it is expected that it will supply
an important method for complex systems, especially the description of fluctuations in
music, stock price behaviour, and neural systems of brains. The fundamental material is
already well prepared in the famous book by Falconer [2]: the geometric measure theory
with respect to the Hausdorff measure is well exposed and its applications are given. The
concept of self-similar fractal sets was introduced by Hutchinson in [3] and the geometric
theory of the Hausdorff measure is treated there in detail. Many authors have contributed
to the calculus of the Hausdorff dimensions.

On the other hand, the analysis on a fractal set also has started and became one
of the most interesting topics. One of important and beatiful results is supplied by the
theory of Laplacian on the Sierpiński’s gasket [3]. We may expect further developments
in this direction.

In this paper we introduce differential and integral calculus on a self-similar fractal
set. The basic idea is to introduce a wavelet expansion on a fractal set and to define a
derivation on the Hilbert space of L2-space with respect to the Hausdorff measures on it.
This can be performed by introducing the “∗-product” on the space. Then we can see that
the derivation can be defined by the shift operator on the space and develop differential
calculus on a self-similar fractal set with the Taylor expansion theorem on it. By use
of the Taylor expansion, we can introduce basic functions, for example, exponential,
trigonometrical, and geometric functions on a fractal set. Here we wish to stress that
we can give an embedding theorem of the usual corresponding functions into our basic
functions on the fractal sets which may be regarded as the noncommutative embedding of
derivations. We call such an embedding the fluctuation mapping. By this mapping we can
get functions with complicated fluctuations from smooth functions without fluctuations.
We can find a new approach to the problem of the basic fluctuations in the nature by
such a mapping [6, 8].

This is the first part of our study on a fractal set. In the second part we shall introduce
differential forms and chains on fractal sets and develop the vector anlysis on a fractal
set.

2. Self-similar fractal set. In this section we recall some basic material on fractal sets
[2, 3]. Here we restrict ourselves only to a system of self-similar mappings {σj : j =
1, 2, . . . , N} of a compact set K0. Then we can see that there exist positive numbers λi
(0 < λi < 1) satisfying the conditions:

d(σi(x), σi(y)) = λid(x, y) (i = 1, 2, . . . , N).

Then we give the definition of a self-similar fractal set:
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Definition 1 (self-similar fractal set). For a system of self-similar mappings σj : K0 →
K0 (j = 1, 2, . . . , N), we put

K =
∞⋂
n=1

Kn, where Kn =
N⋃
j=1

σj(Kn−1),(2.1)

and call K a self-similar fractal set.

In this paper we always assume the following separation condition:

Definition 2 (separation condition). A system of mappings σj : K0 → K0 (j =
1, 2, . . . , N) is said to satisfy the separation condition whenever

σi(
◦
K0) ∩ σj(

◦
K0) = ∅ (i 6= j),(2.2)

where
◦
K0 is the open kernel of K0.

Some basic properties of fractal sets. Under the condition (2.1), we observe the following
facts:

(1) We have the invariance condition:

K =
N⋃
j=1

σj(K).(2.3)

(2) In the case of a self-similar fractal set, we can calculate the Hausdorff dimension
D (= dimHK) by the following formula:

N∑
j=1

λDj = 1.(2.4)

The proof will be given later.

Here we give examples of a fractal set.

Example 1 (Cantor set). For a system of self-similar mappings σ1 = 1
3x, σ2 = 1

3x + 2
3 ,

we choose

C =
∞⋂
n=1

Cn,(2.5)

where (see Fig. 1):

C0 = I,

Cn = σ1(Cn−1) ∪ σ2(Cn−1).(2.6)

The Hausdorff dimension D is

D = log 2/log 3.(2.7)

Example 2 (self-similar fractal set of Cantor type). In a similar manner we can define
a fractal set of Cantor type, removing subintervals from the original interval: Let I be
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the interval I = [0, 1] and let σi : I → I (i = 1, . . . , N) be a system of contractions with
contraction ratios λi which satisfy the separation conditions (2.2). Then we put

C(λ1, . . . , λN ) =
∞⋂
n=0

Cn, Cn =
N⋃
j=1

σj(Cn−1)(2.8)

and call C self-similar fractal set of Cantor type.

We denote the original Cantor set by C( 1
3 ,

1
3 ). In the case where λ1 = · · · = λN =

1/M (N ≤M) we have the Hausdorff dimension

D = logN/logM.(2.9)

We give the graph of the fractal set in the case of C( 1
3 ,

1
9 ,

1
9 ); see Fig. 2.

Fig. 1. The Cantor set C
`

1
3
, 1

3

´
.

Fig. 2. Self-similar fractal set C
`

1
3
, 1

9
, 1

9

´
of Cantor type.

3. The Hausdorff measure and integration on a fractal set. We are going to deal
with the integral calculus on a fractal set. First we prepare the Hausdorff measure. Next
we give the integral calculus with respect to that measure.

A collection of compact sets {U1, U2, . . . , Um} is called a ρ-covering of X if the diam-
eter satisfies d(Ui) ≤ ρ (i = 1, . . . ,m). We make the following definition [3, 5]:

Definition 3 (k-dimensional Hausdorff measure). The k-dimensional Hausdorff measure
is defined by

µk(X) = lim
ρ→0

µkρ(X),(3.10)

where

µkρ(X) ≡ inf
{ n∑
i=1

dki |0 < di ≤ ρ,X ⊆
n⋃
i=1

Ui

}
(di = d(Ui)).

We notice the following
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Proposition 1 (Hausdorff-Besicovitch Theorem) [2, 3]. There exists a unique D

(D ≥ 0) such that {
µk(X) =∞ (k < D),
µk(X) = 0 (k > D).

(3.11)

In the case D = 0, we take only the latter condition.

We call D the Hausdorff dimension of X and µD the Hausdorff measure, respectively.

Some basic properties of the Hausdorff measure.
(1) µD is a σ-additive measure [2]:

µD
( ∞∑
j=1

Aj

)
=
∞∑
j=1

µD(Aj)(3.12)

for measurable sets Aj (j = 1, 2, . . . , n) with Aj ∩Ak = ∅ (j 6= k).
(2) For a measurable set A, we have

µD(A) =
N∑
j=1

µD(σj(A)).(3.13)

Hence we can express the measure in terms of the so-called mass distribution [2]. Here
we notice the following important fact: µD(K) > 0 [3]. After normalization µD(K) = 1,
we have

µD(Kjn···j1) = λDjn · · ·λ
D
j1 ,(3.14)

where
Kjn···j1 = σjn ◦ · · · ◦ σj1(K).

In the case of n = 1, we arrive at the formula (2.4).
(3) The Borel algebra is generated by {Kjn...j1}.
We can develop a theory of integral with respect to this measure.

4. Representations of Cuntz algebras. We introduce representations of the Cuntz
algebras on the Hilbert space L2(K, dµD).

The Cuntz algebra O(N) is a C∗-algebra with generators {Sj} (j = 1, 2, .., N) and the
following commutation relations [1, 7]:

(1) S∗j Sj = 1(j = 1, 2, .., N), (2)
∑

SjS
∗
j = 1.(4.15)

These commutation relations give an algebraic description of the division of the total
space into N parts. Then we can make the representation of the Cuntz algebras on
fractal sets in a well known manner:

Proposition 2 (Hausdorff representations on fractal sets of flower type) [7].
(1) Let C be a self-similar fractal set defined by {σj} (j = 1, 2, ..N). Then we have

the following representation π : O(N)→ B(L2(C):

π(Sj)f(x) =

{
J(σj)

1/2(σ−1
j (x))f(σ−1

j (x)), x ∈ σj(K),
0, x /∈ σj(K)(j = 1, 2, . . . , N),
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π(S∗j )f(x) = J(σj)
−1/2(x)f(σj(x)) (j = 1, 2, . . . , N),

where J(σi) is the Radon-Nikodym derivative of σi.
The representation defined above is called Hausdorff representation.
(2) Let C1 and C2 be two self-similar fractal sets with the same number of genera-

tors N . The Hausdorff representations are equivalent if and only if they have the same
Kakutani-Jørgensen invariant

{λDj (j = 1, 2, . . . , N)}.(4.16)

Here two Hausdorff representations: πi : O(N) → B(L2(Ci)) (i = 1, 2) are unitarily
equivalent if we can find a unitary operator U : L2(C1) → L2(C2) such that π1(S)U =
Uπ2(S) holds for any S ∈ O(N).

5. The Schauder basis on a fractal set. In this section we recall the Schauder basis
on the interval and introduce a basis of Schauder type on a fractal set [4] [10, 11].

We put

G(0)(x) =
{

x, x ∈ [0, 1
2 ],

1− x, x ∈ ( 1
2 , 1],

and consider self-similar mappings σ1(x) = 1
2x, σ2(x) = 1

2x+ 1
2 . For an integer m, putting

G
(0)
jm···j1(x) =

{
1

2
1
2m
G(0)(σ−1

j1
◦ · · · ◦ σ−1

jm
(x)) (x ∈ Ijm···j1),

0 otherwise,
(5.17)

we can see that these functions give a linear basis of L2(I, dµ). Here we notice that

(G(0)
imim−1···i1 , G

(0)
jmjm−1···j1) = δimjmδim−1jm−1 · · · δi1j1 .(5.18)

Yet, we can see that the different m and m′ are not necessarily orthonormal, for example
(Fig. 3):

(G(0), G
(0)
j1

) 6= 0.(5.19)

Proposition 3. A continuous function f with f(0) = f(1) = 0 on I (= [0, 1]) is
expanded in the Schauder basis:

f(x) = a0G
(0)(x) +

∞∑
m=1

2∑
j1=1

· · ·
2∑

jm=1

ajm···j1Gjm···j1(x).

Proof. First we take a continuous function f(x) (f(0) = f(1) = 0). Next we consider

f1(x) = f(x)− a0G
(0)(x)

(
a0 = 2f(

1
2

)
)

on I(= [0, 1]). Then we have f1( 1
2 ) = 0. In a similar manner, we choose aj1 (j1 = 1, 2) in

f2(x) = f(x)− a0G
(0)(x)−

2∑
j1=1

aj1G
(0)
j1

(x),

so that

f2

(
1
22

)
= f2

(
3
22

)
= 0.



DIFFERENTIAL AND INTEGRAL CALCULUS ON A FRACTAL SET (I) 121

Fig. 3. A basis of Schauder type on a fractal set.

Hence we have

f2

(
i

22

)
= 0 (i = 1, . . . , 3).

In a similar manner, we have

fn(x) = f(x)− a0G
(0)(x)−

n∑
m=1

2∑
j1=1

· · ·
2∑

jm=1

ajm···j1G
(0)
jm···j1(x),

fn

(
i

2n

)
= 0 (i = 1, . . . , 2n − 1).

Therefore we can see the following: For any ε > 0, there exists n0 such that

|fn(x)| < ε (∀n > n0,∀x ∈ I),

which implies that fn converges to the constant zero function uniformly. Hence we have
completed the proof.
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Next we give several kinds of bases of Schauder type.

Example 3 (the Weierstrass basis) [2, 12].

In a similar manner to Example 1, putting

W (0)(x) = 4x(1− x) (0 ≤ x ≤ 1)(5.20)

and choosing σ1, σ2 in Example 1, we have an orthonormal basis in L2(I, dµD).

Example 4 (the Haar-Schauder type).

Putting

H(0)(x) = χK(x),

H
(0)
jn···j1(x) =

{
λ
−D/2
j1

· · · λ−D/2jn
H(0)(σ−1

j1
◦ · · · ◦ σ−1

jn
(x)) on Kjn···j1 ,

0 otherwise,

(5.21)

we have a linear basis in L2(K, dµD) which satisfies (5.18).

Example 5 (Schauder basis on a fractal set of Cantor type).

We can introduce a basis of Schauder type for a self-similar fractal set of Cantor type.
First we consider a set which satisfies the division condition:

I =
N⋃
j=1

σj(I).(5.22)

We can give a Schauder basis in the following manner: First we define the basic functions:

G(ρ) =



1
xρ − xρ−1

(x− xρ), x ∈ Iρ−1,ρ,

1
xρ − xρ+1

(x− xρ), x ∈ Iρ,ρ+1 (ρ = 1, 2, . . . , N − 1),

0 otherwise.

(5.23)

Then we can introduce the Schauder basis defining G(ρ)
jn,jn−1,...,j1

by

G
(ρ)
jm···j1(x) =


G(ρ)(σ−1

j1
◦ · · · ◦ σ−1

jm
(x)) (x ∈ Ijm···j1),

0 otherwise;
(5.24)

we define a basis of Schauder type, where

Ijm,jm−1,...,j1 = σjm ◦ σjm−1 . . . ◦ σj1(I).

We can prove the uniform approximation theorem of continuous functions for this
case:
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Proposition 3. For any continuous function f with f(0) = f(1), we can approximate
f by Gjn,jn−1,...,j1 uniformly:

f =
N−1∑
ρ=1

a
(ρ)
0 G(ρ) +

N−1∑
ρ=1

∑
a

(ρ)
jn,jn−1,...,j1

G
(ρ)
jn,jn−1,...,j1

.(5.25)

In a similar manner we make a basis of Schauder type on a (general) self-similar
fractal set of Cantor type C (Fig. 4).

Fig. 4. A basis of Schauder type on a (general) self-similar fractal set of Cantor type.

Definition 4 (Schauder basis on a self-similar fractal set of Cantor type). Let C

(= C(λ1, λ2, . . . , λN )) be a fractal set of Cantor type which is generated by {σj : j =
1, 2, . . . , N} on the interval I. We set

G
(ρ)
jm···j1(x) =

{
C

(ρ)
jm···j1G

(ρ)(σ−1
j1
◦ · · · ◦ σ−1

jm
(x)) (x ∈ Cjm···j1),

0 otherwise,
(5.26)

where the constants C(ρ)
jm···j1 are determined by the orthonormality conditions:∫

C

G
(ρ)
im···i1G

(ρ′)
jm···j1dµ

D = δρ,ρ′δim,jmδim−1,jm−1 . . . δi1,j1 .(5.27)

We call {G(ρ), G
(ρ)
jm···j1} the Schauder basis on K.
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Then we can prove the following

Theorem I (on Schauder basis on a self-similar fractal set of Cantor type). Let C (=
C(λ1, λ2, . . . , λN ) be a fractal set of Cantor type. Then the system {G(ρ)

0 , G
(ρ)(0)
jm···j1} con-

stitutes orthonormal basis of L2(C, dµD)∗ (cf. (7.41) below).

Proof. We take a fractal set (2.1). Next we consider the interval with the fractal structure
defined by σ̃j : I → I(j = 1, 2, . . . , N) with the contraction ratios {λDj (j = 1, 2, . . . , N)}.
From (2.4), we have a fractal structure on I satisfying the condition (5.22) and it is a
fractal set of Cantor type: I = I(λ1

D, λ2
D, . . . , λN

D). We construct the desired Schauder
basis on the interval I. For an integer m, we put

G̃
(ρ)
jm···j1(x) =


C

(ρ)
jm···j1G

(ρ)(σ̃−1
j1
◦ · · · ◦ σ̃−1

jm
(x)) (x ∈ Ijm···j1),

0 otherwise.
(5.28)

Next we consider a representation of the central extension of the Cuntz algebra [1]. Setting
Sj(G

(ρ)
j1,j2,...,jm

) = (G(ρ)
j,j1,j2,···,jm),

S∗j (G(ρ)
j1,j2,...,jm

) = δj,j1(G(ρ)
j2,...,jm

)
(5.29)

we can construct representations of the Cuntz algebra on both spaces. Comparing the
Kakutani-Jørgensen invariants [4] of both representations, we have an intertwining uni-
tary operator

U : L2(I, dµ̃)→ L2(C, dµD),(5.30)

and this suffices to prove the assertion.

6. An orthonormal basis of Haar type on a fractal set. We are going to introduce
a basis of Haar type on a fractal set. This gives an orthonormal system of the class
L2(K, dµD). We begin with the Haar basis on the interval [11, 12]. We consider the
following mappings:

σ1(x) =
1
2
x, σ2(x) =

1
2
x+

1
2
.(6.31)

Then we have the interval I (= [0, 1]) as the self-similar fractal set. Choosing

H(0)(x) = 1 on [0, 1], H(1)(x) =


1 x ∈

[
0, 1

2

]
,

−1 x ∈
(

1
2 , 1
]
,

we get an orthonormal system which is called Haar basis. Putting

H(1)
jm···j1(x) =

{
1

2
1
2m
H(1)(σ−1

j1
◦ · · · ◦ σ−1

jm
(x)) (x ∈ Cjm···j1),

0 otherwise,
(6.32)

we have an orthonormal system on L2(I, dµ); see Fig. 5.
Next we proceed to an orthonormal basis of Haar type on a self-similar fractal set of

general type. We can prove the following
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Theorem I’ (on an orthonormal basis of Haar type on a self-similar fractal set). Take
an orthonormal system on a fractal set K of Cantor type. Putting


H(0)(x) = χK (χK = characteristic function of K),

H(ρ)(x) = ερχKρ − ε
′
ρ

N−1∑
k=ρ+1

χ
Kk

(1 ≤ ρ ≤ N − 1),

Fig. 5. An orthonormal basis of Haar type on a fractal set.
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where

ερ =

√
(1− λD1 − · · · − λDρ )

λDρ (1− λD1 − · · · − λDρ−1)
,

(6.33)

ε′ρ =

√
λDρ

(1− λD1 − · · · − λDρ )(1− λD1 − · · · − λDρ−1)
,

we get a complete orthonormal system on L2(K, dµD):

H(0)(x), H(ρ)(x), H(ρ)
jn···j1(x) (ρ = 1, 2, . . . , N − 1),(6.34)

where

H
(ρ)
jn···j1(x) = λ

−D/2
j1

· · · λ−D/2jn
H(ρ)(σ−1

j1
◦ · · · ◦ σ−1

jn
(x)),

(6.35)

(x ∈ Kjn···j1 , ρ = 1, 2, . . . , N − 1).

Proof. We choose a system of functions {H ′j (j = 1, 2, . . . , N)} by

H
′

j = χKj (Kj = σj(K)).(6.36)

We include the constant function on K:

H(0) =
N∑
j=1

H
′

j .(6.37)

Putting
H(1) = ε1H

′

1 + ε′1(H
′

2 +H
′

3 + · · ·+H
′

N )(6.38)

and choosing ε1 and ε′1 in (6.33) we can see that the orthonormality conditions hold:

(H(0), H(1)) = 0 and (H(1), H(1)) = 1.

Next putting
H(2) = ε2H

′

2 + ε′2(H
′

3 +H4
′ + · · ·+HN

′)

and choosing ε2, and ε′2 in (6.33), we have the orthonormality conditions:

(H(0), H(2)) = 0 and (H(2), H(2)) = 1.

Moreover, we can see that the condition

(H(1), H(2)) = 0

holds automatically by the construction. Repeating this process we can get the first N
basic functions:

H(0), H(1), . . . ,H(N−1).(6.39)

Next we are going to prolongate these functions to a complete orthonormal basis: Putting
(6.33), we have the orthonormality condition:∫

K

H
(ρ)
in···i1H

(ρ′)
jm···j1dµ

D = δρρ′δnmδinjn · · · δi1j1 (ρ = 1, 2, . . . , N − 1).
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We can prove the completeness condition as follows. First we notice that every char-
acteristic function of Kj (j = 1, 2, . . . , N) can be expressed as a linear combination of
(6.33). By this we can see that the characteristic function of every generator of the Borel
algebra can be written with the use of

H(ρ) (ρ = 0, . . . , N − 1), H
(ρ)
jn···j1(ρ = 1, 2, . . . , N − 1).

Hence we can see that the completeness condition holds for our basis as desired.

Here we can give two examples (Figs. 6 and 7).

Example 6 (the Haar basis on the Cantor set) (Fig. 6).

Fig. 6. The Haar basis on the Cantor set.
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Example 7 (the Haar basis on a self-similar fractal set) (Fig. 7).

Fig. 7. The Haar basis on a self-similar fractal set.

7. A wavelet expansion of Schauder type (respectively: of Haar type) on a
fractal set. In this section we give the wavelet expansion of Schauder/Haar type on
a self-similar fractal set [12]. The Fourier expansion supplies an important tool in the
analysis on the Euclidean space. This expansion may be regarded as the Fourier expansion
on a fractal set. We can easily prove the following
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Theorem II (Wavelet expansion theorem for the Haar basis on a self-similar fractal set).
Every function of L2(K, dµD) can be expressed as a linear combination of

{H(ρ), H
(ρ)
jn,...,j1

}.

Namely, for any function f ∈ L2(K, dµD), we can find a sequence of complex numbers
{a(ρ), a

(ρ)
jn···j1} so that

f =
N−1∑
ρ=1

a(ρ)H(ρ) +
∞∑
n=1

N−1∑
ρ=1

N∑
j1=1

· · ·
N∑

jn=1

a
(ρ)
jn···j1H

(ρ)
jn···j1 ,

a(ρ) = (f,H(ρ)) and a
(ρ)
jn···j1 = (f,H(ρ)

jn···j1).

(7.40)

Next we proceed to wavelet expansions for Schauder basis on a self-similar fractal set.
First we introduce a concept of degrees for Schauder basis. We call elements G(0)

jm···j1(x)
elements of degree m (or m-forms) which we denote by L2

m(K, dµD). Then we can see
that these elements constitute an orthonormal basis of this space. Here we notice that
elements of different degree are not always orthogonal, for example G0 is not orthogonal
to elements of degree m (m > 0). Here we introduce a new inner product defined by the
orthonormalization conditions concerned with

L2
m(K, dµD) and L2

m′(K, dµ
D),(7.41)

which is called orthonormalized inner product with respect to degrees. The newly intro-
duced inner product is denoted by ( , )∗ and the space endowed with the inner product
is denoted by L2

∗(K, dµ
D), respectively.

In a similar manner to Theorem II’, we have the following

Theorem II’ (wavelet expansion theorem for the Schauder basis on a self-similar fractal
set). Every function of L∗2(K, dµD) can be expressed as a linear combination of

{G(ρ), G
(ρ)
jn,...,j1

}.

Namely, for any function f ∈ L∗2(K, dµD), we can find a sequence of complex numbers
{a(ρ), a

(ρ)
jn···j1} so that

f =
N−1∑
ρ=1

a(ρ)G(ρ) +
N−1∑
ρ=1

∞∑
n=1

N∑
j1=1

· · ·
N∑

jn=1

a
(ρ)
jn···j1G

(ρ)
jn···j1 ,

a(ρ) = (f,G(ρ))∗ and a(ρ)
jn···j1 = (f,G(ρ)

jn···j1)∗.

(7.42)

Examples of expansions will be given in Section 9.

8. The ∗-products and the derivations on a fractal set. We are going to introduce
a product structure on L2(K, dµ) and then to define a derivation on the space. First we
describe our idea on the introduction of the desired derivations. We consider the Taylor
expansion of an analytic function:

f =
∞∑
n=0

an
n!

(z − a)n (an = f (n)(a)).
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Putting f = (a0, a1, . . .), we have f ′ = (a1, a2, . . .). Hence we see that the derivation is
just the shift operator. Based on this fact we can get a derivation on space of sequences
of numbers. We choose

Σ = {s = (s0, s1, . . . , sn, . . .)|sj ∈ C}

and introduce the product structure on the space by

s ∗ t = (u0, u1, . . . , un, . . .) (un =
n∑
j=0

sjtn−j)

for two elements

s = (s0, s1, . . . , sn, . . .) and t = (t0, t1, · · · , tn, . . .).

Then we have the following

Proposition 5. The shift operation σ (σ : Σ(C) → Σ(C)) defines a derivation on Σ.
Namely, we have

σ(s ∗ t) = σ(s) ∗ t+ s ∗ σ(t).

Proof: easy and can be omitted.

Next we proceed to introducing a derivation on L2(K, dµ). First we define the product
structure by the following bilinear mapping:

∗ : L2(K, dµ)× L2(K, dµ)→ L2(K, dµ)

which is determined by
H(ρ) ∗H(ρ′) = H(ρ′) ∗H(ρ) = H(ρ) ·H(ρ′),

H(ρ) ∗H(ρ′)
jn···j1 = δρρ′H

(ρ) ·H(ρ)
jn···j1 ,

H
(ρ)
jn···j1 ∗H

(ρ′) = δρρ′H
(ρ)
jn···j1 ·H

(ρ),

H
(ρ)
in···i1 ∗H

(ρ
′
)

jn···j1 = δρ,ρ′H
(ρ)
in···i1jn···j1 .

Then, for f , g ∈ L2(K, dµD):

f =
N∑
ρ=0

a(ρ)H(ρ) +
∞∑
n=1

N−1∑
ρ=1

N∑
i1=1

· · ·
N∑

in=1

a
(ρ)
in···i1H

(ρ)
in···i1 ,

and

g =
N∑
ρ=0

b(ρ)H(ρ′) +
∞∑
n=1

N−1∑
ρ=1

N∑
j1=1

· · ·
N∑

jn=1

b
(ρ
′
)

jn···j1H
(ρ
′
)

jn···j1 ,

and hence we have

f ∗ g =
N∑
ρ=0

a(ρ)b(ρ
′)H(ρ) ·H(ρ′) +

∞∑
n=1

N−1∑
ρ=1

N∑
i1,j1=1

· · ·
N∑

in,jn=1

a
(ρ)
in···i1b

(ρ′)
jn···j1H

(ρ)
in···i1 ∗H

(ρ′)
jn···j1

=
N∑
ρ=0

a(ρ)b(ρ)H(ρ) ·H(ρ′) +
∞∑
m=1

N−1∑
ρ=1

N∑
i1=1

· · ·
N∑

im=1

c
(ρ)
im···i1H

(ρ)
im···i1

(c(ρ)im···i1 = δρρ′
∑
a

(ρ)
in−k···i1b

(ρ
′
)

im···in−k+1
),
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which we call the ∗-product on L2(K, dµ) with respect to the basis {H}. We notice the
following

Proposition 6. We have{
(1) (f1 + f2) ∗ g = f1 ∗ g + f2 ∗ g and f ∗ (g1 + g2) = f ∗ g1 + f ∗ g2,

(2) (f ∗ g) ∗ h = f ∗ (g ∗ h).

Proof: easy and can be omitted.

Then we can prove the following

Theorem III (derivation on a self-similar fractal set). Putting

(1) δiH
(ρ) = 0,

(2) δi(H(ρ) ∗H(ρ)
jn···j1) = H(ρ) ∗ δiH(ρ)

jn···j1 (i = 1, . . . , N),

(3) δi(H
(ρ)
in,...,i1

) =
n∑
k=1

δi,ikH
(ρ)

in,···,̌ik,...,i1
,

(8.43)

where the notation ǐk means omitting the index ik, we have the derivations on L2(K, dµ):

δi(f ∗ g) = δi(f) ∗ g + f ∗ δi(g) (i = 1, . . . , N).

Proof. First we prove the assertion for functions of the form

F =
∞∑
k=1

∑
a

(ρ)
ik···i1H

(ρ)
ik···i1 , G =

∞∑
l=1

∑
b
(ρ)
jl···j1H

(ρ)
jl···j1 .

Then we have

F ∗G =
∞∑
m=1

∑
c
(ρ)
pm···p1H

(ρ)
pm···p1

(c(ρ)pm···p1 = a1bpm···p1 + ap1bpm···p2 + · · ·+ apm···p1b1).

Next we introduce the derivations

δxF =
∞∑
k=1

k∑
α=1

∑
a

(ρ)
ik···i1δx,iαH

(ρ)

ik···ǐα···i1
,

δxG =
∞∑
l=1

l∑
β=1

∑
b
(ρ)
jl···j1δx,jβH

(ρ)

jl···ǰβ ···j1
.

Then we have

δx(F ∗G) =
∞∑
m=1

m∑
α=1

∑
a

(ρ)
pm···pkb

(ρ)
pk+1···p1δx,pαH

(ρ)
pm···p̌α···pk+1pk···p1

+
∞∑
m=1

m∑
α=1

∑
a

(ρ)
pm···pkb

(ρ)
pk+1···p1δx,pαH

(ρ)
pm···pk+1pk···p̌α···p1 .
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On the other hand, we get

(δxF ) ∗G =
( ∞∑
k=1

k∑
α=1

∑
a

(ρ)
ik···i1δx,iαH

(ρ)

ik···ǐα···i1

)
∗
( ∞∑
l=1

∑
b
(ρ
′
)

jl···j1H
(ρ
′
)

jl···j1

)
=
∞∑
k=1

k∑
α=1

∞∑
l=1

∑∑
a

(ρ)
ik···i1b

(ρ)
jl···j1δx,iαH

(ρ)

ik···ǐα···i1jl···j1
,

F ∗ (δxG) =
(∑ ∞∑

k=1

∑
a

(ρ)
ik···i1H

(ρ)
ik···i1

)
∗
( ∞∑
l=1

l∑
β=1

∑
b
(ρ
′
)

jl···j1δx,jβH
(ρ′)

jl···ǰβ ···j1

)

=
∞∑
k=1

l∑
β=1

∞∑
l=1

∑∑
a

(ρ)
ik···i1b

(ρ′)
jl···j1δx,jβH

(ρ)

ik···i1jl···ǰβ ···j1
.

which proves the assertion.

Next we prove the assertion of Theorem II in the general case. Choosing

f = f0 + F, g = g0 +G
(
f0 =

N−1∑
ρ=0

a(ρ)H(ρ), g0 =
N−1∑
ρ′=0

b(ρ
′
)H(ρ

′
)
)
,

and using δx(f0) = 0, we easily prove the assertion, as desired.

Remark 1. We can define a derivation for a linear basis which is not necessarily or-
thonormal, for example, for a Schauder basis.

9. The Taylor expansion theorem on a fractal set. In this section we give the
Taylor expansion theorem on a self-similar fractal set including several examples of Taylor
expansions. First we take an orthonormal basis {H(ρ), H

(ρ)
jn···j1} of Haar type and state

the Taylor expansion. We introduce a special class of functions:

Definition 5 (symmetric functions).

(1) A function f of L2(K, dµ) is called symmetric if

f =
∑

a
(ρ)
im···i1H

(ρ)
im···i1 , a

(ρ)
im···i1 = a

(ρ)
τ(im)τ(im−1)···τ(i1),

where τ is a permutation of N symbols.
(2) A function f of L2(K, dµ) is called of one variable type, if

a
(ρ)
im···i1 = a

(ρ)
jm···j1(9.44)

for any pair of (im · · · i1) and (jm · · · j1). In that case we have

f =
∑

a(ρ)
n R(ρ)

n , R(ρ)
n =

∑
R

(ρ)
im···i1 .(9.45)

Then we can prove the following
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Theorem IV (Taylor expansion theorem). A symmetric function f of L2(K, dµ) has the
following Taylor expansion:

f =
∑
a

(ρ)
in···i1H

(ρ)
in···i1 ,

ain···i1 =
1

n1!n2! . . . nN !
δ1
m1 · · · δNnN f(H(ρ)) (n1 + n2 + . . .+ nN = n),

where f(H(ρ)) = (f,H(ρ)).

Proof. We take an element f of L2(K, dµD) with symmetric coefficients. Then we can
see that

(δif,H(ρ)) = ai,

(δiδjf,H(ρ)) = aij + aji,

. . . . . .

(δim · · · δi1f,H(ρ)) =
∑
τ∈Gm aτ(im)···τ(i1),

. . . . . .

where Gm is the m-th symmetric group.

Hence, for a symmetric function, we have

aim···i1 =
1

n1!n2! . . . nN !
δm1
1 · · · δnNN f(H(ρ)).

We give several examples.

Example 8 (Haar functions) [12]. The Haar basis constitutes a complete orthonormal
basis of L2(I, dµ) and every function can be expanded into the Taylor expansion in our
sense.

Next we give the Taylor expansion for a non-orthonormal basis. We take the Schauder
basis (5.26). To state the Taylor expansion theorem, we prepare the following notation:
For

f =
∑

ajn···j1Gjn···j1 ,(9.46)

we define
〈f,Gjn···j1〉 := ajn···j1 .(9.47)

Following the discussion in the case of an orthonormal basis, we can prove the Taylor
expansion theorem:

Theorem IV’ (Taylor expansion for Schauder basis). A symmetric function f of
L2(K, dµ) has the following Taylor expansion:

f =
∑

a
(ρ)
jn···j1G

(ρ)
jn···j1 ,

ajn···j1 =
1

n1!n2! . . . nN !
δm1
1 · · · δnNN f(H(ρ)),

where f(G(ρ)) = 〈f,G(ρ)〉.
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Example 9 (Takagi function) [2, 10, 11]. We consider a fractal structure on I which is
defined by the mappings (6.31) and we choose the function G0. The Takagi function is
given by:

T (x) =
∞∑
n=0

(
1
2

)n
Gn(x),(9.48)

where
Gn(x) =

∑
G0

(
σ−1
j1
◦ · · · ◦ σ−1

jn
(x)
)
.(9.49)

Hence we can see that the function is of one variable type and we have

δnT (G0) = n!
(

1
2

)n
.(9.50)

Example 10 (Schauder expansion) [7]. We notice that we can regard the Schauder
expansion as the Taylor expansion. We can expand any continuous function f on I (=
[0, 1]) with f(0) = f(1) = 0 as the Schauder expansion:

f(x) =
∞∑
n=1

ajn···j1Gjn···j1(x),(9.51)

where
Gjn···j1(x) = G0(σ−1

j1
◦ · · · ◦ σ−1

jn
(x)).(9.52)

Then, in the case where f is symmetric, we can see that

ajn···j1 =
1
n!
δjn · · · δj1f(G0).(9.53)

Example 11 (Weierstrass function) [2, 12]. We consider the fractal set I defined by

σ1(x) =
1
2

(1 +
√
x+ 1), σ2(x) =

1
2

(1−
√
x+ 1).(9.54)

We put
W0(x) = 4x(1− x),(9.55)

and
Wjn···j1(x) = W0

(
σ−1
j1
◦ · · · ◦ σ−1

jn
(x)
)
.(9.56)

The Weierstrass function is given by

W (x) =
∞∑
n=0

(
1
2

)n
Wn(x),(9.57)

where Wn are symmetrizations of Wjn···j1 . Hence we can see that

δnW (W0) = n!
(

1
2

)n
.(9.58)

10. Basic functions on a self-similar fractal set. We are going to introduce basic
functions, i.e., exponential, trigonometrical, and geometric functions on a self-similar
fractal set and derive differential equations of them. Then we give a close relationship
between these functions and the corresponding functions on the Euclidean space. We
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can show that the usual exponential, trigonometrical, and geometric functions can be
embedded into the fractal basic functions.

We take a self-similar fractal set K and choose a basis of Schauder type

{G(ρ)
0 , G

(ρ)
jm,jm−1,...,j1

}.(10.59)

We make the symmetrization of these functions with respect to a fixed degree m and
obtain functions of one variable: {R0, Rm}. Then we can introduce basic functions in
terms of the Taylor expansion theorem:

(1)
1

1−R
= R0 +R1 +R2 + . . .+Rn + . . . ,

(2) sinR = R1 − 1
3!
R3 +

1
5!
R5 − . . .+ (−1)n

1
2n− 1!

R2n−1 + . . . ,

(3) cosR = R0 − 1
2!
R2 +

1
4!
R4 − . . .+ (−1)n

1
2n− 1!

R2n + . . . ,

(4) eR = R0 +
1
1!
R1 +

1
2!
R2 + . . .+

1
n!
Rn + . . . .

Here we understand the series as formal series and the convergences are not considered.
Then we can see that they satisfy the differential equations as in the case of the corre-
sponding basic functions: Putting

δ =
1
N

N−1∑
ρ=1

δ(ρ)

we have 
(1) δ

1
1−R

= 1/(1−R)2,

(2) δ sinR = cosR,
(3) δ cosR = − sinR,
(4) δeR = eR.

In the final section we shall show that these basic functions can describe fluctuations
which can be observed in the nature.

In turn we give an intimate relationship between the usual basic functions and fractal
basic functions mentioned above. Namely, we can prove the following embedding theorem:

Theorem V (on the fluctuation mapping). Let K be a self-similar fractal set and let
(10.59) be a Schauder basis on it. Let {R0, Rm} (= C[R]) be the one-dimensional reduc-
tion. Then we can get the following embedding which preserves the derivation structure:
Putting ι(x) = R, we have a ring isomorphism satisfying the commutative diagram

ι : C[x]→ C[R]
d

dx
↓ ↓ δ(10.60)

ι : C[x]→ C[R]
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Definition 6 (fluctuation mapping). We call the embedding in Theorem V the fluctua-
tion mapping.

Remark 2. Here we have to notice the following fact: Our embedding ι(x) = R should
be understood as a noncommutative isomorphism between the function spaces C[x] and
C[R]. In the case where the fractal set K is a boundary of some domain D in the complex
plane C, we can see that the derivation on K cannot be obtained as the restriction of the
usual derivation:

d

dz
|K 6= δ.(10.61)

This will be discussed in the next section.

We conclude this section with a comment on the relationship between the Schauder
expansion and the discrete Laplace operator. First we give

Definition 7 (discrete Laplace operator on a self-similar fractal set). Let K be a self-
similar fractal set which is defined by a system of contractions {σj : j = 1, 2, . . . , N}.
Then we define the Laplace operator

∆ : L2(K, dµD)→ L2(K, dµD)

of the fractal set by

∆f(p) =
N∑
j=1

f(σj(p))− f(p).(10.62)

We notice that it can be expressed in terms of the derivations:

∆f(p) =
N∑
j=1

δjf(p)− f(p).(10.63)

Then we may expect to prove the following formula: For a function f which is the re-
striction of a continuous function on the ambient space, we have

f =
N−1∑
ρ=1

a(ρ)R(ρ) +
N−1∑
ρ=1

∞∑
n=1

N∑
j1=1

· · ·
N∑

jn=1

a
(ρ)
jn···j1R

(ρ)
jn···j1 .(10.64)

In consequence,
a

(ρ)
jn···j1 =< ∆f,R(ρ)

jn···j1 > .(10.65)

Remark 3. In the case where K = I, I being the interval with the fractal structure
defined by (5.26), we can see that the above mentioned formula holds [12].

Example 12 (Takagi function). The Takagi function can be obtained by solving the
equation

T (G(0)(x)) = 2T (x) +G(0)(x)(10.66)

Putting T (x) =
∑
anR

n, we can obtain the solution by solving the equations

an = 〈∆f,Rn〉
(

=
1

2n−1

)
.(10.67)

Example 13 (Weierstrass function). The Weierstrass functions can be treated in a com-
pletely similar manner. In the next section we shall consider the dynamical system for a
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self-similar fractal set and the corresponding generating functions. These functions can
be treated analogously; see [12].

11. Dynamical systems of a fractal set and differential equations for their
generating functions. In this section we introduce the dynamical system for a self-
similar fractal set and show that the corresponding generating functions can be expressed
in terms of the generators of the one-dimensional part. We take a self-similar fractal set
K which is defined by contractions {σj : j = 1, 2, . . . , N}. Then with Φ : K → K given
by

Φ = σ−1
j on Kj(11.68)

we can define the dynamical system {xn} with an initial value x0 ∈ K by

xn = Φ(xn−1) (n = 1, 2, ..).(11.69)

Then we can see that the dynamical system becomes a chaotic dynamical system. More-
over,

(1) We have a dense subset of periodic orbits
and

(2) There exists a dense orbit
and

(3) The behaviour of the dynamical system is sensitive to the choice of initial values.
Next we consider the generating function of the dyamical system with respect to the

base function g ∈ L2(K, dµD):
G(g : x, t) =

∞∑
n=0

tng(Φn(x)),

Ĝ(g : x, t) =
∞∑
n=0

tn

n!
g(Φn(x)).

(11.70)

In the case where g(x) = G0(x), we call g the generating function of the Schauder basis.
In this case we can see that

G(G0 : x, t) =
∞∑
n=0

tnΦn(x),

Ĝ(G0 : x, t) =
∞∑
n=0

tn

n!
Φn(x).

(11.71)

We arrive at

Proposition 7. We have
(1) Φn(x) = Rn(x).
(2) The shift operation σ given by σg(Φn(x)) = g(Φn+1(x)) satisfies the relation

σ∗G(z, t) =
1
t
(G(z : x, t)− Φ(z)).(11.72)
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(3) In the case of a generating function of the Schauder basis,

δ(Ĝ(z, t)) = tĜ(z, t).(11.73)

Proof.
(1) Choosing the base function Φ(z), we get

Φ(1)(z) = Φ(σ−1(z)) on Kj ,

Φ(2)(z) = Φ(σj1σj2) on Kj2,j1 ,

. . . . . . . . . . . .(11.74)

Φ(n)(z) = Φ(σj1σj2 . . . σjn) on Kjn,...,j2,j1 .

Hence the assertion follows.
(2) We calculate:

G(Φ : x, t) =
∞∑
n=0

tnΦ(Φn(x)) =
∞∑
n=0

tnΦn+1(x))

=
1
t

∞∑
n=0

tn+1Φn+1(x)) =
1
t

∞∑
n=1

tnΦn(x))(11.75)

=
1
t
(G(z : x, t)− Φ(z)).

(3) This is a well known property of generating functions.

12. Realization of fluctuations by fluctuation mappings. In the final section we
are going to show that fluctuations observed in the nature can be realized as the image of
fluctuation mappings of smooth functions without fluctuations.

Several physists have discussed the appearance of background fluctuations in the
nature. Recently Nottale [8] has introduced the concept of the scale symmetry and tried
to understand the hierarchy structure of the universe and the fluctuations. One of the
authors of this paper has discussed the “background fluctuations of the nature” in terms
of Hurwitz pairs. He has introduced additional dimensions for fluctuations and made a
trial of including fluctuations in mathematics.

First we notice that important functions, for example, Takagi and Weierstrass func-
tions are nothing but the generating functions of the Schauder basis (see (9.48) and
(9.57)). Hence we may expect getting functions with big fluctuations as images of holo-
morphic functions without fluctuations by the fluctuation mappings. Here we shall show
that we can realize in such a way fluctuations observed in nature.

We consider a real analytic function

f(z) =
∞∑
n=0

cnz
n (|z| ≤ 1).(12.76)

Choosing a fractal set K with a Schauder basis, making its one-dimensional part {Rn}
and using the mapping ι : C[z]→ C[R], we have
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ι(f) =
∞∑
n=0

cnR
n,(12.77)

and then we can realize fluctuations by a suitable choice of {cn}.
Here we are concerned with the following two kinds of wavelets:

(1) Wavelet expansions of Weierstrass functions type
We consider the dynamical system on the unit circle S = ∂D defined by

Φ(θ) = bθ,(12.78)

where b is an integer, b > 1. This dynamical system can be realized as the boundary
values of the holomorphic dynamical system defined by Φ̃(z) = zb:

z, zb, zb
2
, . . . , zb

n

, . . .(12.79)

In that case the generating function can be written as

G̃(z, t : z) =
∞∑
i=1

tnzb
n

.(12.80)

Taking the boundary value of the function and restricting its real part we get the Weier-
strass function. We notice that the derivation is not the restriction to the boundary.
Namely, we have the formula

δ(zb
n

) = nzb
n−1

.(12.81)

Choosing coefficients {a(ρ), a
(ρ)
jn···j1}, we can realize several fluctuations, for instance in

music and geography.

(2) Wavelet expansions of exponential logistic type
Finally we are concerned with fluctuations which can be obtained by the dynamical

system of the logistic type on the unit circle S = ∂D:

Φ(θ) = aθ(2π − θ),(12.82)

where D is the unit disc and a is a constant. We can realize it as the boundary values of
the following non-holomorphic dynamical system on D:

Φ̃n(z) = rneiΦ
n(θ).(12.83)

We notice that this is not realized as the boundary values of a holomorphic dynamical
system on D. Choosing coefficients {a(ρ), a

(ρ)
jn···j1}, we can realize several fluctuations in

the behaviours of the stock prices, neuron systems and music. For examples, we refer to
our paper [9].
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