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Abstra
t. This note is devoted to the study of the long time behaviour of solutions to the heatand the porous medium equations in the presen
e of an external sour
e term, using entropymethods and self-similar variables. Intermediate asymptoti
s and 
onvergen
e results are shownusing interpolation inequalities, Gagliardo-Nirenberg-Sobolev inequalities and Csiszár-Kullba
ktype estimates.1. Introdu
tion. In this note, we study the large time behavior in L1(RN ) of solutionsto the Cau
hy problem for the porous media equation (m > 1) and the heat equation
(m = 1) in the presen
e of an external sour
e term:

vt = ∆vm + G(x, t) x ∈ R
N , t > 0,(1)

v(x, 0) = v0(x).(2) 2000 Mathemati
s Subje
t Classi�
ation: Primary 35K05, 35K65; Se
ondary 35B40, 35E05,94A17, 76S05, 76R50.Key words and phrases: large time behaviour, nonhomogeneous equations, heat equation,porous media equation, nonlinear di�usions, L
1 estimates, self-similar solutions, Barenblatt so-lutions, intermediate asymptoti
s, self-similar variables, stationary solutions, Fokker-Plan
k typeequations, relative entropy methods, Gagliardo-Nirenberg inequalities, logarithmi
 Sobolev in-equality, Gagliardo-Nirenberg-Sobolev inequality, Csiszár-Kullba
k inequality.The paper is in �nal form and no version of it will be published elsewhere.
[133]



134 J. DOLBEAULT AND G. KARCHHere, we always assume that v0 ∈ L1(RN ) and G ∈ L1(RN × [0, T ]) for every T > 0.For m = 1, the solution of problem (1)�(2) is given by the well-known Duhamel formula.On the other hand, in the nonlinear 
ase m > 1 the unique solution to (1)�(2) 
an beobtained e.g. via the theory of nonlinear semigroups, 
f. [20℄.Con
erning the large time behavior of solutions, it is known that under the additionalassumption G ∈ L1(RN × [0,∞)), we have
lim

t→∞
‖v(·, t) − EM∞

(·, t)‖1 = 0(3)where the L1-norm is denoted by ‖ · ‖1 and EM∞
is the sour
e-type (or fundamental)solution to the homogeneous problem

Et = ∆Em, E(0) = M∞ δ0with mass
M∞ := lim

t→∞

∫

RN

u(x, t) dx =

∫

RN

u0(x) dx +

∫ ∞

0

∫

RN

G(x, t) dx dt.If m > 1, EM∞
is a self-similar solution given by the Barenblatt formula

EM∞
(x, t) = t−NkF (x t−k) F (x) =

(

C − k
m − 1

2m
|x|2

)1/(m−1)

+with k = (N(m − 1) + 2)−1. The parameter C > 0 is linked with mass M∞ in su
ha way that ∫

RN EM∞
(x, t) dx = M∞ for all t > 0 (
f. (8), below). For m = 1, this spe
ialsolution is simply given by the heat kernel

EM∞
(x, t) = M∞

e−|x|2/(4t)

(4πt)N/2
.The proof of (3) for m > 1 as well as several other results and relevant referen
es
on
erning the porous media equation (in
luding smoothing properties of solutions) 
anbe found in the review paper by Vázquez [20℄ and his book [21℄. An analogous resultfor the heat equation (m = 1) 
an be obtained dire
tly from the expli
it formula for thesolutions, see for instan
e [8, Thm. 6.1℄.The so-
alled entropy methods allow us to study the 
onvergen
e of the solutions ofFokker-Plan
k type equations towards the equilibrium (
f. [3, 18, 1, 14, 12, 11℄) in 
aseswhere mass is preserved. It is the purpose of this note to show that su
h methods 
analso be applied to equations where mass M =

∫

RN v(x, t) dx is not 
onserved in time andeventually diverges as t → ∞. More pre
isely, we improve estimate (3) by deriving rates of
onvergen
e in L1(RN ) for the solutions to (1)�(2). Furthermore, these rates are optimalas 
an be 
he
ked on Fokker-Plan
k type equations without external sour
e terms.This note is organized as follows. After re
alling the known results 
on
erning entropymethods for the homogeneous 
ase in Se
tion 2, we set the problem in the nonhomoge-neous 
ase in Se
tion 3 and 
ompute the variation of the relative entropy with respe
t tosome appropriate instantaneous steady state. The last two se
tions are then devoted toappli
ations of the 
al
ulations of Se
tion 3 to the heat and porous medium equations.Our goal is not to 
over the most general 
ase but rather to illustrate the use ofrelative entropy methods. For simpli
ity, we shall therefore assume that m is in the range
[1, 3/2].



NONHOMOGENEOUS DIFFUSION EQUATIONS 1352. Homogeneous equations. First, let us re
all some known results in the 
ase whenthe external sour
e term G(x, t) is absent in equation (1). The standard strategy ofentropy methods says that, instead of working with (1) dire
tly, the following 
hange ofvariables (whi
h is a spa
e-time, or time dependent, res
aling) de�ned by
u(y, s) = eNs v(y es, k (es/k − 1)) with k = 1

N(m−1)+2 ,(4)transforms the Cau
hy problem (1)�(2) with G ≡ 0 into the Fokker-Plan
k equation
us = ∇ · (∇um + y u)(5)while the initial datum is un
hanged

u(y, 0) = u0(y) = v0(y) = v(y, 0).Equation (5) has the one-parameter family of stationary solutions given by the Baren-blatt-Pattle formula
u∞(y) =

(

C − m − 1

2 m
|y|2

)1/(m−1)

+

if m 6= 1(6)and by the Gaussian
u∞(x) = M

e−|y|2/2

(2π)N/2
if m = 1.(7)The standard theory that we expose below applies for any m > (N − 1)/N if N = 1, 2,and for m ≥ (N − 1)/N if N ≥ 3. From now on, we assume that these 
onditions arealways ful�lled. If m > 1, the 
onstant C in (6) is 
hosen in su
h a way that

∫

RN

u∞(y) dy = M =

∫

RN

u(y, s) dyfor all s ≥ 0, whi
h means
M = C

2+N(m−1)
m−1

(

2 π m

m − 1

)
N
2 Γ

(

m
m−1

)

Γ
(

N
2 + m

m−1

)(8)(see [14℄ for more details). Now, to shorten notations, we de�ne
σ(u) :=







um−u
m−1 if m 6= 1,

u log u if m = 1.

(9)
A

ording to [16, 17℄, it is well-known that the entropy,

Σ[u(·, s)] :=

∫

RN

[

σ(u(y, s)) +
1

2
|y|2 u(y, s)

]

dy,(10)plays the role of a Lyapunov fun
tional in the study of the large time behavior of thesolutions to (5). First of all, it is de
reasing along traje
tories:
d

ds
Σ[u(·, s)] = −

∫

RN

u |y + ∇σ′(u)|2 dy =: −I[u(·, s)].(11)Moreover, the right hand side of (11) 
ontrols the relative entropy
Σ[u|u∞] := Σ[u] − Σ[u∞],



136 J. DOLBEAULT AND G. KARCHi.e. the di�eren
e of the entropy of u and the entropy of the stationary solution u∞, bymeans of the 
onvex Sobolev inequality:
Σ[u|u∞] ≤ 1

2
I[u](12)for any nonnegative u ∈ L1(RN ), provided m ≥ (N − 1)/N , N 6= 1, 2. This inequalityis the 
riti
al Sobolev inequality if m = (N − 1)/N , N ≥ 3, one of Gagliardo-Nirenberg-Sobolev inequalities if m > (N − 1)/N , m 6= 1 and the logarithmi
 Sobolev inequality if

m = 1. This 
an be rewritten as
∫

RN

(

σ(u) +
1

2
|y|2 u

)

dy −K ≤ 1

2

∫

RN

u |y + ∇σ′(u)|2 dy,where K is given in terms of M = ‖u‖1 by K =
∫

RN (σ(u∞)+ 1
2 |y|2 u∞) dy, and (6) or (7).Note here the important identities

σ′(u∞(y)) =







(m C − 1)/(m − 1) − |y|2/2 if m 6= 1,

log M − N
2 log(2π) − |y|2/2 if m = 1.Thus we may rewrite Σ[u|u∞] as

Σ[u|u∞] =

∫

RN

[σ(u) − σ(u∞) − σ′(u∞) (u − u∞)] dy.For m = 1 (so, σ(u) = u log u), inequality (12) is the logarithmi
 Sobolev inequality withoptimal 
onstants, see [10, 18, 19℄. We refer the reader to [1, 14, 12℄ for detailed 
onditionsunder whi
h (12) 
an be proved by dire
t variational methods or by entropy methods for
m > 1, as well as for more general σ (also see [11, 7℄).Hen
e, the Gagliardo-Nirenberg-Sobolev inequality (12) applied to (11) gives an ex-pli
it exponential de
ay of the relative entropy of solutions to (5):

Σ[u(·, s)|u∞] ≤ Σ[u0|u∞] · e−2s.(13)The next step is to measure the exponential 
onvergen
e of u(·, t) towards u∞ in termsof a norm. This 
an be done using the Csiszár-Kullba
k inequality , for m = 1, as follows.Lemma 1 ([13, 15℄). Let φ, φ0 ∈ L1
+(RN, dµ). Assume that σ is a 
onvex fun
tion on R

+su
h that 0 = σ(1) = minR+ σ and
K = min

{

inf
t∈[0,1]

σ′′(t), inf
t≥0

θ∈[0,1]

σ′′(1 + θ t)(1 + t)
}

> 0is positive. Then
‖φ − φ0‖2

L1(RN ,dµ) ≤
4M
K

∫

RN

σ

(

φ

φ0

)

φ0 dµ(14)with M = max{‖φ‖L1(RN ,dµ), ‖φ0‖L1(RN ,dµ)}.Inequality (14) was introdu
ed in [13, 15℄. We refer the reader to [2, 14, 9℄ for a proofof Lemma 1 and some extensions.If m = 1, one 
ombines inequalities (14) with (13) to obtain
‖u(·, s) − u∞‖2

1 ≤ 4M Σ[u0|u∞] · e−2s



NONHOMOGENEOUS DIFFUSION EQUATIONS 137for all t ≥ 0. When m > 1, several approa
hes are possible. One 
an, for instan
e, 
ontrola weighted L1-norm, see, e.g., [14, 7℄. With some additional work, one 
an also obtaina 
ontrol of the usual L1-norm like in the 
ase m = 1 as it was done in [12℄. Below, seeProposition (2) in Se
tion 5, we re
all some of these results and give a self-
ontained andslightly simpli�ed proof.Finally, going ba
k to the original problem (1)�(2) with G ≡ 0, via the time-dependentres
aling (4), one shows that for ea
h m ∈ [1, 2]

‖v(·, t) − EM (·, t)‖2
1 ≤ C

(

1 +
t

k

)−2 k with k =
1

N(m − 1) + 2for all t > 0 and a 
onstant C depending only on M , Σ[u0|u∞], and m.3. Nonhomogeneous equations. In the 
ase of the Cau
hy problem (1)�(2) withnonzero external sour
e terms, 
al
ulations are similar. We use the spa
e-time 
hangeof variables analogous to that in Se
tion 2:
u(y, s) = eNs v(y es, k (es/k − 1)), k =

1

N(m − 1) + 2
,

F (y, s) = e(N+2)s G(y es, k (es/k − 1)),

(15)
whi
h transforms the Cau
hy problem (1)�(2) into

us = ∇ · (∇um + y u) + F (y, s),(16)
u(y, 0) = u0(y) = v0(y).(17)The main assumption of this note reads as follows.Assumption 1. Let m ∈ [1, 2]. The nonnegative fun
tions u0 and F satisfy

u0 ∈ L1 ∩ Lm(RN ), |y|2 u0 ∈ L1(RN ),

F ∈ L1(RN × [0, T ]) ∩ L1([0, T ], L1/(2−m)(RN ))for all T > 0 (in the 
ase m = 2, L1/(2−m)(RN ) means L∞(RN ) ). If m = 1, we assumemoreover that
u0 log u0 ∈ L1(RN ) and F log F ∈ L1(RN × [0, T ])for all T > 0.This assumption implies, in parti
ular, that the mass of the solution to (16)�(17)

M(s) =

∫

RN

u(y, s) dy =

∫

RN

u0(y) dy +

∫ s

0

∫

RN

F (y, s) dy ds(18)is positive for all s ≥ 0.Under the 
hange of variables (15), with t = k (es/k − 1), x = y es, mass is preserved:
M(s) =

∫

RN

u(y, s) dy =

∫

RN

v(x, t) dx =: M(t).



138 J. DOLBEAULT AND G. KARCHDe�ne the family of the instantaneous steady states or lo
al Gibbs states for m 6= 1by:
u∞(y, s) =

(

C(s) − m − 1

2 m
|y|2

)1/(m−1)

+

,(19)so that the 
hoi
e of the fun
tion C(s) guarantees
∫

RN

u∞(y, s) dy = M(s) for all s ≥ 0.(20)Hen
e, C(s) is given in terms of M(s) by the formula (8). If m = 1, we simply put
u∞(y, s) = M(s)

e−|y|2/2

(2π)N/2
.(21)Now, in the 
ase of solutions to the nonhomogeneous equation (16), we do not expe
tthe entropy Σ[u(·, s)] de�ned in (10) to de
rease be
ause of the presen
e of the externalsour
e term F (y, s). Let σ be given by (9). Our goal is to show, however, that the relativeentropy

Σ(s) = Σ[u(·, s)|u∞(·, s)] := Σ[u(·, s)] − Σ[u∞(·, s)](22)

=

∫

RN

[σ(u(y, s)) − σ(u∞(y, s)) − σ′(u∞(y, s))(u(y, s)− u∞(y, s))]dystill 
an be used to show the 
onvergen
e of solutions towards the family of instantaneoussteady states de�ned in (19) and (21). The 
ru
ial estimate is 
ontained in the followingproposition. We state it here at a formal level and will explain in Se
tions 4 and 5 how toextend it to more general solutions 
orresponding to initial data satisfying Assumption 1.Proposition 1. Let u be a su�
iently smooth solution to problem (16)�(17). Then
d

ds
Σ[u|u∞] = −

∫

RN

u |∇σ′(u) −∇σ′(u∞)|2 dy +

∫

RN

[σ′(u) − σ′(u∞)] F dy.(23)Proof. The derivation with respe
t to s of Σ(s) = Σ[u(·, s)|u∞(·, s)] gives
d Σ

ds
=

d

ds

∫

RN

[σ(u) − σ(u∞) − σ′(u∞) (u − u∞)] dy(24)
=

∫

RN

[σ′(u) − σ′(u∞)] us dy −
∫

RN

(σ′(u∞))s (u − u∞) dy.Be
ause of (19), the se
ond term 
an be written as
∫

RN

(σ′(u∞))s (u − u∞) dy =
dC
ds

∫

RN

(u − u∞) dy = 0,where C = C(s) is the fun
tion of M(s) whi
h appears in (19) if m 6= 1 and dC/ds =

−M ′(s)/M(s) if m = 1. Using (16) and integrating by parts, the �rst term on the righthand side of (24) is
∫

RN

[σ′(u) − σ′(u∞)] us dy = −
∫

RN

∇[σ′(u) − σ′(u∞)] (∇um + y u) dy

+

∫

RN

[σ′(u) − σ′(u∞)] F dy,whi
h proves the result using ∇um + y u = u
[

∇σ′(u) −∇σ′(u∞)
].



NONHOMOGENEOUS DIFFUSION EQUATIONS 139Remark 1. If we integrate equation (23) with respe
t to s, all quantities will be wellde�ned and, as a 
onsequen
e, u and |y|2 u will be bounded respe
tively in L∞(R+, L1 ∩
Lm(RN )) and L∞(R+, L1(RN )). Sin
e u 7→ Σ[u|u∞] and, for 1 ≤ m ≤ 3/2, u 7→
∫

RN u|∇σ′(u)|2 dy are 
onvex, we 
an then easily extend (23) to less regular fun
tionsby a density argument. Note that the 
onvexity of Σ[u|u∞] holds under the 
onstraintthat for any s ≥ 0,
∫

RN

u(y, s) dy = M(s) =

∫

RN

u∞(y, s) dy.(25)Here, the restri
tion m ≤ 3/2 in this reasoning 
omes from the fa
t that we use the
onvexity property of u 7→
∫

RN |∇uγ |2 dy, whi
h holds true if and only if m − 1/2 = γ ∈
[1/2, 1] (see [5, 6℄). For m > 3/2, a further analysis of the regularity of the solutionswould be required to pro
eed as in the homogeneous 
ase, 
f. [12, 14℄.Remark 2. It is remarkable that even when mass varies, Σ[u|u∞] is still a good Lyapunovfun
tion. A
tually this holds be
ause the 
onstraint (25) is taken into a

ount in thede�nition of u∞. For several reasons, it makes sense to write that Σ[u|u∞] is the relativeentropy of u with respe
t to u∞. See [4℄ for more 
omments on this type of issues.The next step is to 
ombine equality (23) with the generalized Sobolev inequality (12)and to �nd an estimate of the se
ond term on the right-hand side of (23) by a quantityindependent of u. This pro
edure is realized in the next two se
tions for the heat equation
(m = 1) and for the porous medium equation with 1 < m ≤ 3/2, separately.4. Appli
ation to the heat equation. Consider �rst the nonhomogeneous heat equa-tion

vt = ∆v + G(x, t), x ∈ R
N , t > 0.(26)By the time dependent res
aling (15) with m = 1, we have

u(y, s) = eNs v

(

y es,
1

2
(e2s − 1)

)

,(27)
F (y, s) = e(N+2)s G

(

y es,
1

2
(e2s − 1)

)

.(28)Hen
e, equation (26) is transformed into a Fokker-Plan
k equation with the additionalexternal sour
e term F

us = ∇ · (∇u + y u) + F (y, s).(29)This equation is supplemented with the initial 
ondition
u(y, 0) = u0(y).(30)Let us re
all that the stationary steady state u∞ of the homogeneous problem ∇·(∇u∞+

y u∞) = 0 with mass M(s) is given by the formula (21), where mass M(s) of the solutionis de�ned by (18):
u∞(y, s) = M(s) ū(y), ū(y) =

e−|y|2/2

(2π)N/2
.Our main result on the large time behavior of solutions to (29)�(30) reads as follows.



140 J. DOLBEAULT AND G. KARCHTheorem 1. Suppose that u0, F (·, s) ∈ L1(RN , (1 + |y|2) dy) for every s ≥ 0 satisfy As-sumption 1. Then for all s ≥ 0, the solution of problem (29)�(30) satis�es the inequality
(31) ‖u(s, ·) − u∞(s, ·)‖2

1

≤ 4 M(s) e−2s

[

Σ[u0|u∞(0, ·)] +

∫ s

0

e2τ

∫

RN

F log

(

F

(
∫

RN F dy) ū

)

dy dτ

]

.Proof. For m = 1, the relative entropy of the solution u with respe
t to u∞ given by (22)takes the form
Σ(s) := Σ[u(·, s)|u∞(·, s)] =

∫

RN

u(y, s) log

(

u(y, s)

u∞(y, s)

)

dy.Hen
e, it follows from Proposition 1 that
dΣ

ds
= −

∫

RN

u

∣

∣

∣

∣

∇u

u
+ y

∣

∣

∣

∣

2

dy +

∫

RN

F log

(

u

M(s) ū

)

dy.Next, we use the logarithmi
 Sobolev inequality (12), whi
h in this 
ase redu
es to
Σ[u|u∞] ≤ 1

2

∫

RN

u

∣

∣

∣

∣

∇u

u
+ y

∣

∣

∣

∣

2

dy,and obtain
dΣ

ds
≤ −2 Σ[u(·, s)|u∞(·, s)] +

∫

RN

F log

(

u

u∞

)

dy.Finally, after multiplying this inequality by e2s and integrating with respe
t to s, wearrive at
Σ(s) ≤ e−2s

[

Σ(0) +

∫ s

0

e2τ

(
∫

RN

F (y, τ ) log

(

u(y, τ )

u∞(y, τ )

)

dy

)

dτ

]

.We are going to estimate the se
ond term of the right hand side of this inequality usingthe lemma formulated below.Lemma 2. Assume that f and w are two nonnegative integrable fun
tions on R
N . Then

∫

RN

f log

(

w

‖w‖1

)

dy ≤
∫

RN

f log

(

f

‖f‖1

)

dy(32)Proof. Apply the Jensen inequality to the 
onvex fun
tion ϕ 7→ ϕ log ϕ and the proba-bility measure dµ = ‖w‖−1
1 w dy with ϕ = f/w:

∫

RN

f log

(

f

w

)

dy = ‖w‖1

∫

RN

ϕ log ϕ dµ

≥ ‖w‖1

(
∫

RN

ϕ dµ

)

log

(
∫

RN

ϕ dµ

)

= ‖f‖1 log

( ‖f‖1

‖w‖1

)

.Note that the two sides of (32) may be in�nite.We 
ome ba
k to the proof of Theorem 1. If we write
∫

RN

F log

(

u

M ū

)

dy =

∫

RN

F log

(

u

M

)

dy −
∫

RN

F log ū dyand apply Lemma 2 with f = F and w = u to the �rst term of the right hand side, thenthe result easily follows using the Csiszár-Kullba
k inequality stated in Lemma 1.



NONHOMOGENEOUS DIFFUSION EQUATIONS 141Remark 3. The result of Lemma 2 is a limit 
ase of Hölder's inequality. Let q0 > 1and assume that both f and w belong to L1 ∩ Lq0(RN ). Then it follows from Hölder'sinequality that
∫

RN

wq−1f dy ≤
(

∫

RN

wq dy

)

q−1
q

(
∫

RN

fq dy

)1/q

for every 1 ≤ q ≤ q0. Note that if q = 1 this inequality redu
es to ∫

RN f =
∫

RN f , whi
himmediately implies that
∫

RN

wq−1f dy −
∫

RN

f dy ≤
(

∫

RN

wq dy

)

q−1
q

(
∫

RN

fq dy

)1/q

−
∫

RN

f dy.Dividing both sides by q−1 and taking the limit as q → 1, we obtain inequality (32). Theassumption that f , w ∈ L1 ∩ Lq0(RN ) is easily removed by a density argument, whi
hprovides an alternative proof of Lemma 2.A

ording to (27)�(28), the results of Theorem 1 written in terms of the original
oordinates give intermediate asymptoti
s results as follows.Corollary 1. Under the same assumptions as in Theorem 1, if u and v are relatedby (27), and F and G by (28), then for any t ≥ 0,
‖v(·, t)−v∞(·, t)‖2

1 ≤ 4 M(t)

1 + 2t

[

Σ[v0|v∞(·, 0)]+

∫ t

0

(1 + 2τ )

∫

RN

G log

(

M(τ ) G

(
∫

RN G dx) v∞

)

dx dτ

]

.where M(t) =
∫

RN v(x, t) dx and
v∞(x, t) =

M(t)

(1 + 2t)N/2
ū

(

x√
1 + 2t

)

, ū(x) =
e−|x|2/2

(2π)N/2
.Rather than writing abstra
t 
onditions on G in order to guarantee that ‖(v − v∞)(·, t)‖1
onverges to 0, let us simply formulate two examples whi
h illustrate both Theorem 1 andCorollary 1.Example 1. Let us look at inequality (31) in the 
ase of external sour
e terms of theform F (y, s) = g(x) f(s) with suitably 
hosen g and f . For su
h a 
hoi
e of F , we have

∫

RN

F (y, τ ) log

[

F (y, τ )

(
∫

RN F dy)ū(y)

]

dy = f(τ )

∫

RN

g(y) log

[

g(y)

(
∫

RN g dy)ū(y)

]

dy.If the se
ond fa
tor on the right-hand side is �nite, the problem is therefore redu
ed tounderstand the behavior as s → ∞ of the quantity
e−2s

∫ s

0

e2τf(τ ) dτ.Choosing, e.g., f(s) = e−κs for some κ > 0, we immediately obtain
e−2s

∫ s

0

e2τe−κτ dτ =
e−κs − e−2s

2 − κ
.In this 
ase, mass M(s) is bounded uniformly in s a

ording to (18) and Theorem 1applies:

‖u(·, s) − u∞(·, s)‖2
1 ≤ C (e−2s + e−κs) ∀s ≥ 0,(33)



142 J. DOLBEAULT AND G. KARCHfor some positive 
onstant C. Now, we may 
ome ba
k to the solutions of the nonhomo-geneous heat equation (26) via the res
aling (27)�(28) and reformulate (33) as
‖v(·, t) − v∞(·, t)‖2

1 ≤ C[(1 + t)−1 + (1 + t)−2κ].Example 2. As a se
ond example, let us 
onsider F (y, s) = g(y)(1+s)−α for some α > 0.A dire
t 
al
ulation shows that
e−2s

∫ s

0

e2τ (1 + τ )−α dτ ≤ C(1 + s)−α,for a 
onstant C > 0 and all s > 0, and 
onsequently, by Theorem 1,
‖u(·, s) − u∞(·, s)‖2

1 ≤ C M(s) (1 + s)−α.(34)for some 
onstant C > 0. Here, α ∈ (0, 1] is to the most interesting 
ase be
ause
M(s) =

∫

RN

u0(y) dy +

∫

RN

g(y) dy

∫ s

0

(1 + τ )−α dτ

= ‖u0‖1 + ‖g‖1
(1 + s)1−α − 1

1 − α
→ ∞as s → ∞. However, u − u∞ still tends towards 0 in the L1-norm provided α > 1/2.We 
an again reformulate inequality (34) for solutions of the nonhomogeneous heatequation (26)

‖v(·, t) − v∞(·, t)‖2
1 ≤ C M(t) (log t)−α ≤ C (log t)1−2α → 0 as t → ∞for α > 1/2, sin
e mass M(t) is of order O((log t)1−α) as t → ∞. Hen
e, by our method,we 
an extend in some 
ases the result formulated in (3) to sour
e terms G = G(x, t) forwhi
h M∞ = limt→∞

∫

RN v(x, t) dx = ∞.5. Appli
ation to the porous medium equation. In this se
tion, we deal with thenonlinear Cau
hy problem (16)�(17) with m > 1 for whi
h the relative entropy of thesolution u with respe
t to u∞ given by (22) takes the form
Σ(s) := Σ[u(·, s)|u∞(·, s)] = Σ[u(·, s)] − Σ[u∞(·, s)](35)

=
1

m − 1

∫

RN

[

um − um
∞ − m − 1

2
|x|2(u − u∞)

]

dy,where u∞(y, s) is given by (19).The main result on the 
onvergen
e of u(s) toward the family of instantaneous steadystates is 
ontained in the next theorem. As in the 
ase of the linear heat equation, one 
anreformulate this result for the original problem (1)�(2) going ba
k via the res
aling (15).Theorem 2. Let m ∈ (1, 3
2 ]. Assume that u0 and F satisfy Assumption 1. Let u be thesolution to (16)�(17) with M(s) de�ned in (18) and u∞(s, y) given by (19)�(20). Supposemoreover that M∞ ≡ sups>0 M(s) is �nite.Then there exists a 
onstant C > 0 depending on M∞ but independent of s su
h that

‖u(s, ·) − u∞(s, ·)‖2
1 ≤ C e−2s

[

Σ[u0|u∞(0, ·)] 1
m +

1

m

∫ s

0

e
2
m

τ‖F (·, τ )‖m dτ

]m

for all s ≥ 0.
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ause of the 
onvexity argument mentioned inRemark 1. This assumption plays also the 
ru
ial role in the proof of Lemma 3, below.Before proving Theorem 2, we need some preliminary estimates.Lemma 3. Assume that p ≥ 3 and let µ be a positive bounded measure. Then for anynonnegative w ∈ Lp(dµ),
∫

|w − 1|p dµ ≤ (p − 1)

∫
[

wp − 1 − p

p − 1
(wp−1 − 1)

]

dµ.(36)Proof. Let f(w) := wp−1− p
p−1 (wp−1−1)− 1

p−1 |w−1|p. A straightforward 
omputationgives
f ′(w) = p wp−2(w − 1) − p

p−1 |w − 1|p−2(w − 1),

f ′′(w) = p wp−3[(p − 1)(w − 1) + 1] − p |w − 1|p−2.First of all, f(1) = f ′(1) = 0 and
1

p
f ′′(w) ≥ (w − 1)p−3[(p − 1)(w − 1) + 1] − (w − 1)p−2 ≥ (p − 2) (w − 1)p−2for any w ≥ 1. Thus f is 
onvex and therefore nonnegative on (1, +∞).On (0, 1), f ′′ is in
reasing. Sin
e limw→0+ f ′′(w) < 0, there exists w∗ su
h that f is
on
ave on (0, w∗) and 
onvex on (w∗, 1). Thus the minimum of f on (0, 1) is a
hievedeither at w = 0 or at w = 1. Sin
e f(0) = f(1) = 0, this proves that f is also nonnegativeon (0, 1).Corollary 2. Let F and u be two nonnegative fun
tions respe
tively in Lm(RN) and

L1 ∩ Lm(RN ) and 
onsider u∞ given by (6) su
h that ‖u‖1 = ‖u∞‖1. If m ∈ (1, 3/2],then
∫

RN

|um−1 − um−1
∞ |F dy ≤ Σ[u|u∞]

m−1
m ‖F‖m.Proof. Let w := vm−1, p := m/(m − 1) and dµ := um

∞ dy in Lemma 3. Hen
e, inequal-ity (36) 
an be rewritten as
∫

RN

|vm−1 − 1| m
m−1 um

∞ dy ≤ 1

m − 1

∫

RN

[vm − 1 − m(v − 1)] um
∞ dy.If we let v = u/u∞, this means

∫

supp(u∞)

|um−1 − um−1
∞ | m

m−1 dy

≤ 1

m − 1

∫

supp(u∞)

[um − um
∞ − m um−1

∞ (u − u∞)] dy

=
1

m − 1

∫

supp(u∞)

[

um − um
∞ − m

(

C − m − 1

2m
|y|2

)

(u − u∞)

]

dy.On the other hand, sin
e (m − 1)−1 > 1 and, on the set supp(u∞)c, we have
C − m − 1

2m
|y|2 ≤ 0



144 J. DOLBEAULT AND G. KARCHas well as u∞ = 0, we may pro
eed in the most dire
t way as follows:
∫

supp(u∞)c

|um−1 − um−1
∞ | m

m−1 dy

≤ 1

m − 1

∫

supp(u∞)c

um dy

≤ 1

m − 1

∫

supp(u∞)c

[

um − um
∞ − m

(

C − m − 1

2m
|y|2

)

(u − u∞)

]

dy.Summing up both estimates we obtain
∫

RN

|um−1 − um−1
∞ | m

m−1 dy ≤ Σ[u|u∞].Hen
e the proof is 
ompleted by using Hölder's inequality as follows:
∫

RN

|um−1 − um−1
∞ |F dy ≤

[
∫

RN

|um−1 − um−1
∞ | m

m−1 dy

]

m−1
m

‖F‖m.Remark 4. In Corollary 2, the exponent p = m/(m − 1) is the Hölder 
onjugate of m.Thus the assumption m ≤ 3/2 is equivalent to p ≥ 3, whi
h is used in the proof ofLemma 3.In the next lemma, we state and prove an inequality of Csiszár-Kullba
k type whi
hdi�ers from the one re
alled in Lemma 1. The results formulated below are 
ontained in[12℄. Here, however, we give dire
t and elementary proofs. Re
all that, in this se
tion, therelative entropy Σ[u|u∞] is given by formula (35).Proposition 2. Assume that 1 < m ≤ 2. Let u be a nonnegative fun
tion in L1(RN )su
h that Σ[u|u∞] ≤ Σ0 is �nite. Then there exists a positive 
onstant C, whi
h onlydepends on Σ0 and M =
∫

RN u dy, su
h that
‖u − u∞‖2

L1(RN ) ≤ C Σ[u|u∞].Proof. Let B = B(0, R) be the support of u∞. On B, let v := u/u∞, so that
(m − 1) Σ[u|u∞] =

∫

B

[vm − 1 − m (v − 1)]um
∞ dy +

∫

Bc

[

um +
m − 1

2
|y|2 u

]

dy.1) On Bc, using the last term of the right hand side of the above equation, for C1 :=
2

m−1
1

R2 we get
∫

Bc

[

um +
m − 1

2
|y|2 u

]

dy ≥ C1

∫

|y|>R

u dy = C1 ‖u − u∞‖L1(Bc).2) Using a Taylor expansion at order 2, we get
vm − 1 − m (v − 1) =

1

2
m (m − 1) (τ + (1 − τ ) v)m−2for some fun
tion τ with values in (0, 1). If v > 1, then

(τ + (1 − τ ) v)m−2 ≥ vm−2.



NONHOMOGENEOUS DIFFUSION EQUATIONS 145By Hölder's inequality, on ω := {y ∈ B : v(y) > 1},
∫

ω

|u − u∞| dy=

∫

ω

|v − 1|u∞ dy

=

∫

ω

(|v − 1|2 vm−2 um
∞)

1
m ·

( |v − 1|
v

)1− 2
m

dy

≤
(

∫

ω

|v − 1|2 vm−2 um
∞ dy

)1/m
1

N
|SN−1|RN .This proves that

∫

ω

[vm − 1 − m (v − 1)] um
∞ dy ≥ m

2
(m − 1)

∫

ω

|v − 1|2 vm−2 um
∞ dy

≥ C2 ‖u − u∞‖m
L1(ω)for some positive 
onstant C2.3) Similarly on B \ ω, that is for 0 < v < 1,

(τ + (1 − τ ) v)m−2 ≥ 1.By the Cau
hy-S
hwarz inequality,
‖u − u∞‖2

L1(B\ω) =

(
∫

B\ω

|v − 1|u∞ dy

)2

≤
∫

B\ω

|v − 1|2 um
∞ dy ·

∫

B\ω

u2−m
∞ dy,so that

∫

B\ω

[vm − 1 − m (v − 1)] um
∞ dy ≥ m

2
(m − 1)

∫

B\ω

|v − 1|2 um
∞ dy

≥ C3 ‖u − u∞‖2
L1(B\ω)for some positive 
onstant C3.Let t1 :=

∫

|y|>R
u dy, t2 := ‖u − u∞‖L1(ω) and t3 := ‖u − u∞‖L1(B\ω). Sin
e

max
i=1, 2, 3

ti ≤ ‖u − u∞‖L1(RN )is bounded from above by 2 M , the quantity C1 t1 + C2 tm2 + C3 t2 is bounded frombelow by 2 (m − 1) C (t21 + t22 + t23) ≥ (m − 1) C (t1 + t2 + t3)
2 on (0, 2 M) with C :=

min{C1/(2M), C2/(2M)2−m, C3}/(2(m − 1)).
Proof of Theorem 2. It follows from Proposition 1 that

d

ds
Σ[u|u∞] = −

∫

RN

u |∇σ′(u) −∇σ′(u∞)|2 dy +
m

m − 1

∫

RN

[um−1 − um−1
∞ ] F dy.A

ording to [12, 14℄,

Σ[u|u∞] ≤ 1

2

∫

RN

u |∇σ′(u) −∇σ′(u∞)|2 dyby the generalized Sobolev inequality, thus giving
dΣ

ds
≤ −2 Σ[u(·, s)|u∞(·, s)] + m

m − 1

∫

RN

[um−1 − um−1
∞ ] F dy.
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ontrol the se
ond term of the right hand side of the above inequality, we use Corol-lary 2, and we obtain
dΣ

ds
≤ −2 Σ + Σ

m−1
m ‖F (·, s)‖m.This 
an be rewritten as

d

ds
[g

1
m (s)] ≤ 1

m
e

2
m

s ‖F (·, s)‖m,for g(s) := e2s Σ(s), whi
h by integration gives
Σ(s) ≤ e−2s

[

Σ
1
m (0) +

1

m

∫ s

0

e
2
m

τ‖F (·, τ )‖m dτ

]m

.Then the result follows using the Csiszár-Kullba
k type inequality stated in Proposi-tion 2.A
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