
TOPOLOGICAL ALGEBRAS, THEIR APPLICATIONS,
AND RELATED TOPICS

BANACH CENTER PUBLICATIONS, VOLUME 67
INSTITUTE OF MATHEMATICS

POLISH ACADEMY OF SCIENCES
WARSZAWA 2005

BOUNDED POINT EVALUATIONS
FOR MULTICYCLIC OPERATORS

M. EL GUENDAFI

Université Lille 1
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Abstract. Let T be a multicyclic operator defined on some Banach space. Bounded point

evaluations and analytic bounded point evaluations for T are defined to generalize the cyclic

case. We extend some known results on cyclic operators to the more general setting of multicyclic

operators on Banach spaces. In particular we show that if T satisfies Bishop’s property (β), then

Ba(T ) = B(T ) \ σap(T ).

We introduce the concept of analytic structures and we link it to different spectral quantities.

We apply this concept to retrieve in an easy way a theorem of D. Herrero and L. Rodman: the

set of cyclic n-tuples for a multicyclic operator T is dense if and only if Ba(T ) = ∅.
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1. Introduction. Throughout this paper, X will denote an infinite dimensional Banach

space and L(X ) the algebra of all bounded operators on X . For T ∈ L(X ), letN(T ), R(T ),

σ(T ), σp(T ) and σap(T ) denote the kernel, the range, the spectrum, the point spectrum

(that is, the set of eigenvalues) and the approximate point spectrum respectively. For a

subset E of X , we let span{E} be the closure of the linear space generated by E. If F is

any subset of of the complexe plane, write int(F ) for the interior points of F and cl(F )

for the closure of F .

1.1. Bounded point evaluations for P t(µ). Bounded point evaluations were first defined

in a natural way for some Banach function spaces. To be precise, consider a compactly

supported nonnegative measure µ and let P t(µ) be the closure in Lt(µ) of all complex

polynomials (1 ≤ t <∞).

A complex number λ is a bounded point evaluation for P t(µ) if there exists a constant

M > 0 such that

|P (λ)| ≤M‖P‖Lt(µ),(1)

for any polynomial P . The set of all bounded point evaluations for P t(µ) will be denoted

by B(P t(µ)). It is clear that if λ ∈ B(P t(µ)), then the mapping P 7→ P (λ) extends

to a bounded linear functional on P t(µ). By the Riesz representation theorem and the

Hahn-Banach theorem, there exists kλ ∈ Ls(µ) ( 1
t + 1

s = 1) such that

P (λ) =

∫
P (z)kλ(z)dµ(z) for every polynomial P.(2)

Note in passing that kλ need not be unique. However if, λ ∈ B(P t(µ)) an evaluation map

is defined by

λ→ f̂(λ) =

∫
f(z)kλ(z)dµ(z),(3)

for every f ∈ P t(µ) and does not depend of the choice of kλ. It is known that f = f̂

µ-almost everywhere on B(P t(µ)).

We will say that λ0 ∈ int(B(P t(µ))) is an analytic bounded point evaluation for

P t(µ) if the mapping λ → f̂(λ) is analytic at λ0 for arbitrary f ∈ P t(µ). We denote by

Ba(P t(µ)) the set of all bounded point evaluations for P t(µ).

The sets B(P t(µ)) and Ba(P t(µ)) are widely studied and have a lot of applications. For

brevity, we mention only one example. To show that subnormal operators are reflexive,

J. E. McCarthy [15, Theorem 1] used in a crucial way the existence of bounded point

evaluations for pure subnormal operators.

Remark 1. The following properties of Ba(P t(µ)) are easy to establish.

1) A complex number λ0 is an analytic bounded point evaluation of P t(µ) if and only

if there exist M > 0 and r > 0 such that |P (z)| ≤ M‖P‖Lt(µ) for every P and every z

such that |λ0 − z| < r.

2) Clearly Ba(P t(µ)) is contained in the interior of B(P t(µ)). In fact by using the

Baire category theorem, one can show that

Ba(P t(µ)) ⊂ int(B(P t(µ))) ⊂ cl(B(P t(µ))).(4)

See [28, 33] for example.
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3) By using the maximum modulus principle for analytic functions, we obtain that

connected components of Ba(P t(µ)) are simply connected.

4) It is obvious that Ba(P t(µ)) and B(P t(µ)) vary with µ. In [1], measures such that

these sets vary also with t are given.

We recall below some results from the literature that have motivated our work. We

refer to original papers for complete proofs.

Our starting result is a theorem due to T. Trent in the case t = 2. An adaptation of

Trent’s proof will permit us to obtain the same result for P t(µ) (1 ≤ t < +∞).

Theorem 1 ([28, Theorem 1.1]). Let µ be a nonnegative compactly supported measure

and 1 ≤ t < +∞. Then

Ba(P t(µ)) = σ(M t
z) \ σap(M t

z) = B(P t(µ)) \ σap(M t
z).(5)

Here M t
z is the multiplication operator in P t(µ) by the independent variable z.

It is not hard to see that if Ba(P t(µ)) 6= ∅, then P t(µ) 6= Lt(µ). To obtain the reverse

implication is much more difficult. This has interested various authors. In particular this

will allow a description of the approximation by polynomials property in terms of analytic

bounded point evaluations. A complete description was given in [27]. That is, P t(µ) =

Lt(µ) if and only if Ba(P t(µ)) = ∅. However, the problem remains of the description of

measures such that Ba(P t(µ)) = ∅. Particular cases are given in [16, 28]. Some sufficient

conditions can be found in [27] (see also [30] and [6, Chap. 8, Theorem 4.2]).

The space P t(µ) is said to be pure if it contains no Lt space as a direct summand.

Theorem 2 ([27, Theorem 4.11]). If P t(µ) is pure then the closure of Ba(P t(µ)) con-

tains the support of µ.

Consequently, if the support of µ has nonempty interior, and P t(µ) is pure, then

analytic bounded point evaluations exist.

1.2. Bounded point evaluations for cyclic operators. L. R. Williams extended the concept

of bounded point evaluations and analytic bounded point evaluations to the class of all

cyclic operators. See [33]. We present in this section this extension. Even if it is not

difficult to adapt William’s results to the more general setting of Banach spaces, we

restrict ourselves to the Hilbert space case.

Let T be a bounded operator defined on some Hilbert space H. The operator T is

said to be cyclic if there exists y ∈ H such that span{T ny;n ≥ 0} = H. Such an element

is then called a cyclic vector for T. A point λ0 ∈ σ(T ) is a bounded point evaluation for

T if there exists M > 0 such that

|P (λ0)| ≤M‖P (T )y‖(6)

for every polynomial P . The set of all bounded point evaluations for T is denoted similarly

by B(T ). For λ0 ∈ B(T ), the evaluation map

wλ0
: P (T )y 7→ P (λ0)(7)

can be extended by density on H to some bounded linear functional. By the Riesz rep-

resentation theorem, there exists a unique vector k(λ0) such that for any polynomial P ,
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we have

wλ0
(P (T )y) = 〈P (T )y, k(λ0)〉 = P (λ0).

In particular, k(λ0) ∈ N(T − λ0)∗ and 〈y, k(λ0)〉 = 1.

Conversely, take k(λ0) ∈ N(T − λ0)∗. Since y is a cyclic vector for T , it follows that

〈y, k(λ0)〉 6= 0. Without loss of generality, we can suppose that 〈y, k(λ0)〉 = 1; then by

Cauchy’s inequality, for any polynomial P we get

|P (λ0)| = |〈P (T )y, k〉| ≤ ‖k(λ0)‖‖P (T )y‖.
Thus λ0 ∈ B(T ) and consequently

B(T ) = σp(T ∗) = {λ ∈ C; dim(N(T − λ)∗) = 1}.(8)

Observe that equation (8) shows in particular that the set of bounded point evalua-

tions does not depend on the choice of the cyclic vector.

We say that λ0 ∈ int(B(T )) is an analytic bounded point evaluation for T if the

evaluation map λ 7→ x̂(λ) = 〈x, k(λ)〉 is analytic at λ0, for every x ∈ H. We denote by

Ba(T ) the set of all such points.

The proposition below provides a characterization of Ba(T ) generalizing the case of

subnormal operators. The proof is similar and is omitted (see [6]).

Proposition 1. Let T be a cyclic operator and O be an open subset of B(T ). The fol-

lowing properties are equivalent:

1. O ⊂ Ba(T ).

2. The mapping λ 7→ k(λ) ∈ H is continuous on O.
3. The mapping λ 7→ ‖k(λ)‖ is bounded on compact sets of O.

Remark 2. Let Mz be the multiplication operator in P t(µ) by the independent variable

z. Then, clearly

B(Mz) = B(P t(µ)) and Ba(Mz) = Ba(P t(µ)).

From the remark above the following general question arises naturally. Which results

known for bounded point evaluations for Banach function spaces can be carried over to

arbitrary cyclic operators? Some of these results does not require any specific properties

of functions like Equation (4) and hence are trivially true for all cyclic operators. In

general it is not automatic to extend the other results. The following question is stated

in [33]. Does the equality

Ba(T ) = σ(T ) \ σap(T )(9)

hold for all cyclic operators?

In the same paper the inclusion σ(T ) \ σap(T ) ⊆ Ba(T ) is proved for arbitrary cyclic

operators, [33, Proposition 1.3], see also [21, Proposition 2.2]. The other inclusion fails

to be true in general, see [5, 21], where counterexamples are given. It is also known from

[21] that equality (5) is valid for a large class of operators containing cyclic hyponormal

operators.

Theorem 3 ([21, Théorème 3.1]). Let T be a cyclic operator with Bishop’s property (β).

Then

Ba(T ) = σ(T ) \ σap(T ).
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For the definition of operators with (β), see section 5.

The preceding result has been extended to the case of rationally cyclic operators on

Banach spaces with Bishop’s property (β) in [25].

In this paper we define bounded point evaluations for multicyclic operators on infinite

dimensional Banach spaces. We extend many results from [21] to this situation.

The paper is organized as follows.

In section 2 we define bounded point evaluations and analytic bounded point evalua-

tions associated with a multicyclic operator. We provide some results for the cyclic case.

In particular we show that

B(T ) = {λ ∈ σ(T ) : dim(N(T − λ)∗) = n}.
Analytic structures associated with multicyclic operators are introduced in section

3. We also discuss the link between analytic bounded point evaluations, the analytic

structure in the sense of D. A. Herrero in [13] and the analytic structures defined here.

We also characterize analytic structures in terms of the analytic core.

In section 4 we link the analytic structures to the singular spectrum. It is shown in

particular that, if T is an n-multicyclic operator and m ≤ n, then

Bm(T ) \ σs(T ) = Bma (T ) \ σs−F (T ),

where Bm(T ) = {λ ∈ C; dim(N(T − λ)∗) = m}, and where σs(T ), σs−F (T ) and Bma (T )

stand for the singular spectrum, the semi-Fredholm spectrum and the analytic structure

of dimension m respectively. We also show that connected components of Ba(T ) remain

simply connected in the case of multicyclic operators.

The role of Bishop’s property (β) in the description of Ba(T ) is investigated in section

5. The main result of this section is

Ba(T ) = B(T ) \ σap(T ),

where T is a multicyclic operator with property (β).

In section 6, we apply the concept of analytic bounded point evaluations to retrieve

in an easy way the following theorem of D. A. Herrero and L. Rodman: The set of all

cyclic n-tuples for T is dense in X (n) if and only if Ba(T ) = ∅. We then derive some

known results on operators with n-multicyclic powers.

2. Bounded point evaluations for multicyclic operators. In what follows 〈 , 〉 de-

notes the natural duality between X and its topological dual X ∗. For T ∈ L(X ), we

denote by T ∗ ∈ L(X ∗) its adjoint operator T . As usual, we will write (T − λ)∗ = T ∗ − λ
in the Banach space case and (T − λ)∗ = T ∗ − λ in the Hilbert space setting.

Let T be a bounded operator on some Banach space X and n ≥ 1 be an integer. We

say that T is a multicyclic operator of order n (n-multicyclic for short) if there exist n

vectors y1, y2, . . . ., yn ∈ X such that X = span{Tmyi; i = 1, 2, . . . , n, m ≥ 0} and if for

any n − 1 vectors x1, x2, . . . , xn−1 in X , the subspace span{Tmxi,m ≥ 0, 1 ≤ i ≤ n} is

proper. The n-tuple (y1, y2, . . . , yn) is then called a cyclic n-tuple for T.

We shall denote by Cn(X ) the set of all n-multicyclic operators on X , and for T ∈
Cn(X ), the set of all cyclic n-tuples for T is denoted Cn(T ).
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Bounded point evaluations for a multicyclic operator T on a Banach space X are

defined in the following way: Let (y1, . . . , yn) ∈ Cn(T ). A complex number λ0 ∈ σ(T ) is

said to be a bounded point evaluation for T if there exists M > 0 such that
n∑

i=1

|Pi(λ0)| ≤M
∥∥∥

n∑

i=1

Pi(T )yi

∥∥∥(10)

for every family of complex polynomials {P1, P2, . . . , Pn}. The set of all bounded point

evaluations for T will be denoted by B(T ).

For λ0 ∈ B(T ) and for j ∈ {1, . . . , n}, we have

|Pj(λ0)| ≤ M
∥∥∥

n∑

i=1

Pi(T )yi

∥∥∥.

This implies that the linear mapping

wj(λ0) :
{ n∑

i=1

Pi(T )yi;P1, P2, . . . , Pn ∈ P
}
→ C,

n∑

i=1

Pi(T )yi 7→ Pj(λ0)

is well defined (here P is the set of all complex polynomials). Now by n-multicyclicity

the set {∑n
i=1 Pi(T )yi;P1, P2, . . . , Pn ∈ P}) is a dense subset of X . The mapping wj(λ0)

can be extended to a bounded linear functional defined on X . Denote by kj(λ0) ∈ X ∗
such an extension. Then we have

wj(λ0)
( n∑

i=1

Pi(T )yi

)
=
〈 n∑

i=1

Pi(T )yi, kj(λ0)
〉

= Pj(λ0), ∀{P1, P2, . . . , Pn} ∈ P .

In particular,

kj(λ0) ∈ N(T ∗ − λ0) and 〈yi, kj(λ0)〉 = δij .(11)

Conversely, if k1(λ0), k2(λ0), . . . , kn(λ0) ∈ N(T ∗ − λ0) satisfy Equation (11) then, ap-

plying Cauchy’s inequality, for arbitrary polynomials {P1, P2, . . . , Pn} ∈ P and j ∈
{1, 2, . . . , n}, yields

n∑

j=1

|Pj(λ0)| =
n∑

j=1

∣∣∣B(T )
〈 n∑

i=1

Pi(T )yi, kj

〉∣∣∣ ≤ (n sup
j
‖kj‖)

∥∥∥
n∑

i=1

Pi(T )yi

∥∥∥.

Finally λ0 ∈ B(T ).

The following proposition will be useful in the sequel.

Proposition 2. Let T ∈ Cn(X ) be n-multicyclic and (y1, y2, . . . , yn) ∈ Cn(T ) be an

associated cyclic n-tuple. Then for every λ ∈ C we have

(i) cl(R(T − λ)) + span{y1, y2, . . . , yn} = X ,
(ii) dimN(T − λ)∗ ≤ n.

Proof. (i) Let λ be a complex number. Since (y1, y2, . . . , yn) ∈ Cn(T ), we have

cl(R(T − λ)) + span{y1, y2, . . . , yn} = cl((T − λ)(X )) + span{y1, y2, . . . , yn}
⊇ span{(T − λ)kyi; k ≥ 1, 1 ≤ i ≤ n}

+span{y1, y2, . . . , yn}
⊇ span{T kyi; k ≥ 0, 1 ≤ i ≤ n} = X .



BOUNDED POINT EVALUATIONS 205

The last inclusion follows from the fact that T kyi = (T k − λk)yi + λkyi ∈ span{R(T −
λ), yi}.

(ii) is a direct corollary of (i).

In the case of cyclic operators Equality (8) provides an algebraic characterization of

B(T ). For n-multicyclic operators Equality (8) fails to be true if n ≥ 2, as shown by the

following example:

Example 1. Let H be an infinite dimensional separable Hilbert space and (en)n∈N be

an orthonormal basis of H. Consider the linear bounded operator defined on the basis

by:

Sen =

{
en+1 if n ≥ 1,

e2 if n = 0,

The adjoint S∗ of S is given by

S∗en =





en−1 if n ≥ 3,

e0 + e1 if n = 2,

0 if n = 0, 1.

Then

1. S is 2-multicyclic. Indeed, dimN(S∗) = 2, and H = span{e0, S
ne1;n ≥ 0}. Hence

S ∈ C2(H).

2. D(0, 1) ⊂ σp(S
∗). In fact if, λ ∈ D(0, 1), then it is clear that (S − λ)∗(λe0 +∑

n≥1 λ
n
en) = 0.

3. B(S) ⊂ {0}. To see this, take λ ∈ B(S); then for any polynomials P and Q, we will

have

|P (λ)|+ |Q(λ)| ≤ ‖P (S)e0 +Q(S)e1‖.
In particular, if P = −Q = X, we obtain 2|λ| ≤ ‖Se0 − Se1‖ = 0. Hence B(S) ⊂
{0} 6= σp(S

∗).

The algebraic characterization of B(T ) in the case of multicyclic operators is given by

Theorem 4. Let T be an n-multicyclic operator defined on a Banach space X . Then

B(T ) = {λ ∈ C; dimN(T ∗ − λ) = n}.
We will need the following lemma. The proof is a straightforward computation.

Lemma 1. Let T be an n-multicyclic operator on X , (y1, y2, . . . , yn) ∈ Cn(T ) and

k1, k2, . . . , kn ∈ N(T ∗ − λ). The following properties are equivalent:

1. k1, k2, . . . , kn are linearly independent vectors of X .

2. det(〈yi, kj〉ij) 6= 0.

In particular,

{k1, k2, . . . , kn} is a basis of N(T ∗ − λ)⇔ det(〈yi, kj〉i,j) 6= 0.

Proof of Theorem 4. The inclusion B(T ) ⊂ {λ ∈ C; dimN(T ∗ − λ) = n} follows directly

from Equation (11). Now, let λ ∈ C be such that N(T ∗ − λ) = span{k1, k2, . . . , kn} is

n-dimensional. By Lemma 1, the matrix (〈yi, kj〉ij) is invertible. Let A = (aij)i,j be its
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inverse and let lj(λ) =
∑n
i=1 ai,jki with j = 1, 2, . . . , n. Then we have {l1, l2, . . . , ln} ∈

N(T − λ)∗ and 〈yj , li〉 = δij . Consequently λ ∈ B(T ).

Let T ∈ Cn(X ) be n-multicyclic and let (y1, y2, . . . ., yn) be a cyclic n-tuple for T.

Then there exists a unique family {k1, k2, . . . , kn} of X -valued functions defined on B(T )

such that for every λ ∈ B(T ) we have

span{k1(λ), k2(λ), . . . , kn(λ} = N(T ∗ − λ) and 〈yi, kj(λ)〉 = δij .(12)

We will also say that λ0 ∈ int(B(T )) is an analytic bounded point evaluation for T if the

mapping λ 7→ ŷi(λ) = 〈y, ki(λ)〉 is analytic at λ0 for every y ∈ X , and for i = 1, 2, . . . , n.

The set of all analytic bounded point evaluations for T is denoted by Ba(T ).

Adapting the proofs given for cyclic operators (see [21, 33], for example), Proposition

1 is generalized as follows:

Proposition 3. Let T ∈ Cn(X ) and O be an open subset contained in B(T ). The fol-

lowing are equivalent:

1. O ⊂ Ba(T ).

2. The mapping λ 7→ ki(λ) is continuous on O for every 1 ≤ i ≤ n.

3. The mapping λ 7→ sup1≤i≤n ‖ki(λ)‖ is bounded on compact subsets of O.

3. Analytic structures. For λ ∈ C and δ > 0, denote by D(λ, δ) the open disc

centered at λ and of radius δ and denote by D̄(λ, δ) the corresponding closed disc.

Let T be an n-multicyclic operator and 1 ≤ m ≤ n be an integer. Set

Bm(T ) = {λ ∈ σ(T ) : dimN(T − λ)∗ = m}.
Remark 3. If T is n-multicyclic then

1) B(T ) = Bn(T ) (see Proposition 3);

2)
⋃n
m=1 Bm(T ) = σp(T

∗).

We will say that λ0 ∈ σ(T ) is in the analytic structure of dimension m of T (and we

will write λ0 ∈ Bma (T )) if there exists δ > 0 such that D(λ0, δ) ⊆ Bm(T ) and there exist

analytic functions k1, k2, . . . , km on D(λ0, δ) satisfying

N(T ∗ − z) = span{k1(z), k2(z), . . . , km(z)}, for every z ∈ D(λ0, δ).

It is clear from the definitions that analytic structures do not depend on the choice of

the cyclic n-tuple of T. In the following theorem we show that the n-dimensional analytic

structure is precisely the set of analytic bounded point evaluations.

Theorem 5. Let T be an n-multicyclic operator on a Banach space X . Then

Ba(T ) = Bna (T ).

Proof. The inclusion Ba(T ) ⊆ Bna (T ) is clear. Suppose now that there exists an open

neighbourhood O of 0 contained in B(T ) and n analytic functions ϕ1, ϕ2, . . . , ϕn on O
such that for every z ∈ O we have N(T ∗ − z) = span{ϕ1(z), ϕ2(z), . . . , ϕn(z)}. Let

(y1, y2, . . . , yn) ∈ Cn(T ) be a cyclic n-tuple for T . The mapping

H : O →Mn,n(C), z 7→ H(z) := (〈yi, ϕj(z)〉ij)
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is continuous. Using Lemma 1 we deduce that H(z) is invertible for every z ∈ O. Let

H−1(z) = (aij(z))ij be the inverse matrix of H(z). It is not hard to see that the mapping

K : O → Cn, z 7→
( n∑

i=1

ai1(z)ϕi(z),

n∑

i=1

ai2(z)ϕi(z), . . . ,

n∑

i=1

ain(z)ϕi(z)
)
,

is continuous. If we put ki(z) =
∑n
j=1 aji(z)ϕj(z), then for every z ∈ O, we get

N(T ∗ − z) = span{k1(z), k2(z), . . . , kn(z)} and 〈yi, kj(z)〉 = δij , ∀i, j,
and hence O ⊂ Ba(T ).

Combining Theorem 4 and Theorem 5, we derive

Corollary 1. The sets B(T ) and Ba(T ) do not depend on the choice of the cyclic n-

tuple.

By using Baire’s category theorem and the characterization of Ba(T ) given by Propo-

sition 3, we obtain easily (see [28, 14])

Ba(T ) ⊂ int(B(T )) ⊂ cl(B(T )).(13)

It is not clear whether the following inclusions hold for m < n:

Bma (T ) ⊂ int(Bm(T )) ⊂ cl(Bm(T )).(14)

To obtain (14), one has to provide a version of Proposition 3 for m < n.

We associate with T the following (not necessarily closed) linear subspace of X : The

analytic core K(T ) of T is defined to be K(T ) = {u ∈ H; ∃c > 0 and (vn)n≥0 ∈ H such

that (1) u = v0 and vn = Tvn+1, (2) ‖vn‖ ≤ cn‖u‖}. A systematic investigation of K(T )

was initiated by the second named author in [17]. If E is any closed invariant subspace

for T such that T (E) = E, then E ⊂ K(T ). In particular if T is onto, then K(T ) = X .

We refer to [17, 18] for further properties of the analytic core.

We link the analytic core and the analytic structures as follows:

Theorem 6. Let T be an n-multicyclic operator and 1 ≤ m ≤ n. We have

i) If m 6= n, then

Bma (T ) = {λ ∈ int(Bm(T )); dim(N(T − λ)∗ ∩K(T − λ)∗) = m}
= {λ ∈ int(Bm(T )); N(T − λ)∗ ⊂ K(T − λ)∗}.

ii)

Ba(T ) = {λ ∈ B(T ); dim(N(T − λ)∗ ∩K(T − λ)∗) = n}
= {λ ∈ B(T ); N(T − λ)∗ ⊂ K(T − λ)∗}.

Proof. i) Suppose that 0 ∈ Bma (T ) and let k1, k2, . . . , km be X -valued analytic functions

defined on some neighbourhood V of zero and such thatN(T−λ)∗=span{k1(λ), k2(λ), . . . ,

km(λ)} for every λ ∈ V . By writing ki(λ) =
∑∞

n=0 ai,nλ
n the Taylor expansion of ki at

zero, we deduce that ai,0 = ki(0), (T −λ)∗ai+1,n = ai,n and |ai,n| ≤ cn for some non-zero

constant. Thus k1, k2, . . . , km ∈ K(T − λ)∗ and the first inclusion is obtained.

It remains to show that {λ ∈ int(Bm(T )); dim(N(T−λ)∗∩K(T−λ)∗) = m} ⊂ Bma (T ).

To this end suppose that dim(N(T )∗ ∩K(T )∗) = m. We will show that 0 ∈ Bma (T ). Let

k1, k2, . . . , km be a basis of N(T )∗∩K(T )∗) and let ai,n be a family of vectors in X given
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by the definition of K(T ∗) and such that ki = ai,0. Set now ki(λ) =
∑∞

n=0 ai,nλ
n; then

k1, k2, . . . , km are a linearly independent family of X -valued analytic functions defined

on some neighbourhood of zero and satisfy span{k1(λ), k2(λ), . . . , km(λ)} ⊂ N(T − λ)∗.
Now since 0 ∈ int(Bm(T )), we have dim(N(T −λ)∗) = m in some neighbourhood of zero

and we conclude that span{k1(λ), k2(λ), . . . , km(λ)} = N(T − λ)∗. Finally 0 ∈ Bma (T ).

The second equality in i) is trivial.

ii) The proof goes similarly to i), the only difference is that since dim(N(T −λ)∗) ≤ n
for every λ ∈ C, the inclusion span{k1(λ), k2(λ), . . . , kn(λ)} ⊂ N(T − λ)∗ leads to the

equality span{k1(λ), k2(λ), . . . , kn(λ)} = N(T − λ)∗ and hence to the conclusion 0 ∈
Ba(T ).

We mention here that the interior cannot be removed from the equality given in

Theorem 6 i) as shown by Example 2 below. Note also that Theorem 6 is given in [22]

for cyclic operators.

Remark 4. 1. In [11, 13] D. A. Herrero introduced the concept of the analytic structure

of an n-multicyclic operator. More precisely, an open set O is said to be contained in

the analytic structure of T if there exists a family of analytic functions φi, i = 1, . . . , n

on O such that N(T ∗ − z) = span{φ1(z), φ2(z), . . . , φi(z)} every z ∈ O. As shown by

Theorem 5, if T is an n-cyclic operator, the analytic structure in the sense of [13] and

the set of analytic bounded point evaluations of T coincide.

2. Let T be a bounded operator, and let λ0 be a complex number. Following J. Finch

[9], we say that the operator T has the single valued extension property at λ0 ((SV EP ),

for short) if there exists δ > 0 such that f ≡ 0 is the only solution to the equation

(T −λ)f(λ) = 0 that is analytic in D(λ0, δ). Also, T has the single valued extension prop-

erty if it has this property at every λ0 in the complex plane. Let A(T ) be the set of all

complex numbers where T has the (SV EP ) and S(T ) = C\A(T ). Then clearly λ0 ∈ S(T )

if and only if there exists δ > 0 and a nonzero analytic function f in D(λ0, δ) satisfying

(T−λ)f(λ) = 0. In particular S(T ) is open and T has the (SV EP ) if and only if S(T ) = ∅.
It is not hard to see that in the case of cyclic operators, S(T ∗) = Ba(T ). To get

the same equality for multicyclic operators seems to be reasonable. However, in view of

Example 2 below and Theorem 4 this is not true.

An analogous spectral subset is given by the residual spectrum. The residual spec-

trum ST of T is defined as the complement in C of the largest open set O such that,

if f is any analytic function in an arbitrary open subset V of O satisfying the equation

(T − λ)f(λ) = 0, then f ≡ 0 (see [32, Ch. IV]). Clearly the residual spectrum is closed

and T has the (SV EP ) precisely when ST = ∅. Moreover

ST∗ = cl(S(T ∗)) = cl(Ba(T )).

The inclusion cl(
⋃n
m=1 Bma (T )) ⊆ ST∗ holds for arbitrary multicyclic operators. In the

example below this inclusion turns out to be an equality. Therefore, we pose the question.

Is cl(
⋃n
m=1 Bma (T )) = ST∗ for every multicyclic operator?

Example 2. Let S be the shift operator defined on the Hardy space H2 and set X =

H2 ⊕ H2. For a1, a2, b1 and b2 non-vanishing complex numbers, consider the operator

T = T1 ⊕ T2 with Ti = aiI + biS, for i = 1, 2.
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We claim that if 0 < |a1 − a2| < |b1|+ |b2| then T is 2-multicyclic. Indeed, clearly we

have D(ai, |bi|) ⊂ σp(T ∗i ) and σ(T ) ⊂ D(ai, |bi|). For i = 1, 2, the condition 0 < |a1−a2| <
|b1| + |b2| implies that D(a1, |b1|) ∩ D(a2, |b2|) 6= ∅ and for λ ∈ D(a1, |b1|) ∩ D(a2, |b2|)
we have dimN(T − λ)∗ = 2. Now since T1 and T2 are cyclic operators, the operator T is

2-multicyclic.

The following equalities are straightforward:

1. int(B(Ti)) = Ba(Ti) = D(ai, |bi|), for i = 1, 2.

2. Ba(T ) = B2
a(T ) = D(a1, |b1|) ∩D(a2, |b2|).

3. B1
a(T ) = D(a1, |b1|) \D(ai, |bi|) ∪D(a2, |b2|) \D(ai, |bi|).

4. S(T ∗) = D(a1, |b1|) ∪D(a2, |b2|).
5. B1(T ) = D(a1, |b1|) \D(ai, |bi|) ∪D(a2, |b2|) \D(ai, |bi|).
6. (a) K(T − λ) = H for every λ ∈ Ba(T ).

(b) K(T −λ) = H2⊕{0} for λ ∈ Ba(T1) and K(T −λ) = {0}⊕H2 for λ ∈ Ba(T2).

Thus, we have

i) Ba(T ) 6= S(T ∗).
ii) cl(

⋃n
m=1 Bma (T )) = ST∗

iii) B1
a(T ) 6= {λ ∈ B1(T ); dim(N(T − λ)∗ ∩K(T − λ)∗) = 1}.

4. Analytic structures and the singular spectrum. An operator T ∈ L(X ) is said

to be semi-regular if R(T ) is closed and if for every n ≥ 0, we have N(T n) ⊆ R(T ). The

semi-regular resolvent set s-reg(T ) is

s-reg(T) = {λ ∈ C;T − λ est semi-regular}.
The complement of s-reg(T ) in C is called the singular spectrum and is denoted by σs(T ).

The singular spectrum appears in the literature and takes many other names (Kato

spectrum, Apostol spectrum, . . . , see [14, 23, 24]). We assemble in the following remark

some important properties of the singular spectrum.

Remark 5. 1) σs(T ) is a compact subset of σ(T ).

2) ∂σ(T ) ⊆ σs(T ) ⊆ σap(T ) ⊆ σ(T ).

3) σs(T ) = σs(T
∗).

4) The spectral mapping theorem holds for the singular spectrum in the following sense.

If f is any analytic function in a neighbourhood of σ(T ), then σs(f(T )) = f(σs(T )).

5) The mapping λ 7→ dimN(T − λ) is constant in connected components of s-reg(T ).

In the following theorem from [19], we find a useful characterization of s-reg(T ). We

refer to [19] for the proof.

Theorem 7 ([19, Théorème 2.7]). Let T ∈ L(X ) be a bounded operator and suppose that

R(T ) is closed. Then the following are equivalent:

i) 0 ∈ s-reg(T );

ii) For every x ∈ N(T ) there exist a neighbourhood U of zero and an analytic function

f : U → X such that f(0) = x and f(λ) ∈ N(T − λ) for every λ ∈ U .
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A direct consequence of Theorem 7 is:

Corollary 2. Let T ∈ L(X ). Then

C \ σap(T ) = s-reg(T ) ∩ β(T ) = s-reg(T ) ∩ A(T ).

In particular if T has the (SV EP ) then σs(T ) = σap(T ).

The reader is referred to section 5 for the definition of β(T ).

If A is a matrix, denote by rank(A) its rank. The following lemma generalizes Lemma

1 and is central in the study of analytic structures.

Lemma 2. Let T ∈ Cn(X ), (y1, . . . , yn) ∈ Cn(T ) and let λ be a complex number. If

N(T − λ)∗ = span{k1, k2, . . . , kn} then

rank(〈yi, kj〉ij) = dim(N(T − λ)∗).

Proof. It is obvious that rank(〈yi, kj〉ij) ≤ dimN(T − λ)∗. To see the reverse inequality,

if rank(〈yi, kj〉ij) = m, then there exists an invertible matrix A such that H(λ)A has the

following form:

H(λ)A =




a11 . . . a1m 0 . . . 0

a21 . . . a2m 0 . . . 0
...

...
...

...
...

...

an1 . . . anm 0 . . . 0


 .

Hence, there exist h1, h2, . . . , hm such that N(T − λ)∗ = span{h1, h2, . . . , hm} and

H(λ)A =




〈y1, h1〉 . . . 〈y1, hm〉 0 . . . 0

〈y2, h1〉 . . . 〈y2, hm〉 0 . . . 0
...

...
...

...
...

...

〈yn, h1〉 . . . 〈yn, hm〉 0 . . . 0


 .

Consequently dim(N(T − λ)∗) ≤ m. The proof is complete.

Proposition 4. Let T be an n-multicyclic operator defined on a Banach space X and

1 ≤ m ≤ n. Let G be a connected component of s-reg(T ) such that G∩Bm(T ) 6= ∅. Then

G ⊆ Bma (T ). In particular if G ∩ B(T ) 6= ∅, then G ⊆ Ba(T ).

Proof. Since G∩Bm(T ) 6= ∅ and since dimN(T−z)∗ is constant in connected components

of s-reg(T ), we get G ⊆ Bm(T ).

Suppose now that 0 ∈ G ∩ Bm(T ) and let {k1, k2, . . . , km} be a family of vectors

in X such that N(T )∗ = span{k1, k2, . . . , km} (G ⊆ s-reg(T ) = s-reg(T ∗)). Then by

Theorem 7, there exists an open neighbourhood Ω ⊆ G of 0 and there are analytic

functions ϕi : O → X such that ki = ϕi(0) and (T − z)∗ϕi(z) = 0, for every z ∈ Ω and

for every i ∈ {1, 2, . . . ,m}.
For z ∈ Ω, consider the matrix

H(z) =




〈y1, ϕ1(z)〉 . . . 〈y1, ϕm(z)〉 0 . . . 0

〈y2, ϕ1(z)〉 . . . 〈y2, ϕm(z)〉 0 . . . 0
...

...
...

...
...

...

〈yn, ϕ1(z)〉 . . . 〈yn, ϕm(z)〉 0 . . . 0


 .
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Since the functions ϕi are analytic, the mapping z ∈ Ω 7→ rg(H(z)) is lower semi-

continuous. On the other hand by Lemma 2 we get rank(H(0)) = dimN(T ∗) = m, which

implies that for some neighbourhood V of 0 contained in G, we have rank(H(z)) = m,

for every z ∈ V . Consequently, V ⊆ Bma (T ). This completes the proof of Proposition 4.

The following corollary is a direct application of the preceding proposition and the

inclusion σs(T ) ⊆ σap(T ).

Corollary 3. Let T be an n-multicyclic operator and m ∈ {1, 2, . . . , n}. Then

Bm(T ) \ σap(T ) ⊆ Bm(T ) \ σs(T ) ⊆ Bma (T ).

In particular,

B(T ) \ σap(T ) ⊆ B(T ) \ σs(T ) ⊆ Ba(T ).

It is observed in [21] that none of the preceding inclusions can be reversed in general.

An operator T ∈ L(X ) is a Fredholm operator if R(T ) is closed and max(dim(N(T )),

codim(R(T ))) is finite. The operator T is semi-Fredholm if R(T ) is closed and

min(dim(N(T )), codim(R(T ))) is finite. The semi-Fredholm spectrum of T is σs−F (T ) =

{λ ∈ C;T − λ is not semi-Fredholm}. The index of a semi-Fredholm operator T is de-

fined to be ind(T ) = dim(N(T )) − codim(R(T )). Since n-multicyclic operators satisfy

codim(R(T − λ)) ≤ n for every λ ∈ C, we get that T − λ is semi-Fredholm if and

only if R(T − λ) is closed, moreover ind(T − λ) ≥ −n for every λ ∈ C. If we denote

σf (T ) = {λ ∈ C;R(T − λ) is not closed}, then it follows from the discussion above that

σs−F (T ) = σf (T ).

Corollary 4. Let T be an n-multicyclic operator and m ∈ {1, 2, . . . , n}. Then

Bm(T ) \ σs(T ) = Bma (T ) \ σs−F (T ).

In particular,

B(T ) \ σs(T ) = Ba(T ) \ σs−F (T ).

Moreover, if T has the (SV EP ) then

B(T ) \ σap(T ) = Ba(T ) \ σs−F (T ).

Proof. Because of Corollary 3, we only have to prove the reverse inclusion. Suppose that

0 ∈ Bam(T ) and that R(T ) is closed. Then R(T ∗) is closed. Now apply Theorem 7 with

T ∗ to end the proof.

For k ∈ Z, set ρks−F (T ) = {λ ∈ ρs−F (T ); ind(T − λ) = k}. In [11] D. A. Herrero has

proved that, if T is an n-multicyclic operator on some Banach space, then ρ−ns−F (T ) =

{λ ∈ ρs−F (T ); dimN(T − λ) = 0 and dimN(T − λ)∗ = n}. In particular ρ−ns−F (T ) ⊂
B(T )∩ s− reg(T ). Hence ρ−ns−F (T ) ⊂ Ba(T ). It is also shown that connected components

of ρ−ns−F (T ) are actually simply connected (see [11, Theorem 1]). The following proposition

provides the same conclusion for connected components of Ba(T ).

Proposition 5. Connected components of Ba(T ) are simply connected.

Proof. Let γ be a simple Jordan curve and denote by ins(γ) the bounded component

of C\γ. To see that connected components of Ba(T ) are actually simply connected, it

suffices to show that for every simple Jordan curve γ in Ba(T ), we have ins(γ) ⊂ Ba(T ).
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Let now γ be such a Jordan curve in Ba(T ). Since γ is a compact subset of Ba(T ), there

exists M > 0 such that

sup
1≤i≤n

{‖ki(λ)‖, λ ∈ γ} ≤M.

Then for any polynomials P1, P2, . . . , Pn in P and every λ ∈ γ, we have

|Pj(λ)| ≤
n∑

i=1

|Pi(λ)| ≤M
∥∥∥

n∑

i=1

Pi(T )yi

∥∥∥, for every j = 1, 2, . . . , n.

The maximum modulus principle gives
n∑

i=1

|Pi(λ)| ≤ nM
∥∥∥

n∑

i=1

Pi(T )yi

∥∥∥, for every λ ∈ ins(γ).

Thus ins(γ) ⊂ B(T ) and sup1≤i≤n{‖ki(λ)‖, λ ∈ ins(γ)} ≤M . Now, we conclude by using

Proposition 3.

Remark 6. Connected components of Bma (T ), for 1 ≤ m ≤ n − 1, need not be simply

connected. To see this, let S be the usual shift operator defined on H2 and T = S ⊕ 2S

defined on H2 ⊕ H2. Then T is 2-multicyclic and B1
a = {z ∈ C; 1 < |z| < 2}, which is

clearly not simply connected.

5. Bishop’s property (β) and bounded point evaluations. Recall that an operator

T ∈ L(X ) is said to possess Bishop’s property (β) at λ ∈ C (we will also say for simplicity

T has (β) at λ) if there exists δ > 0 such that for every open set Ω contained in D(λ, δ),

and any sequence (fn)n≥1 in H(Ω, H), the convergence of the sequence (T − z)fn(z) to

zero in H(Ω, H) entails the convergence of fn(z) to zero in H(Ω, H). We shall denote by

β(T ) the open set of all complex numbers where T possesses property (β), and σβ(T ) its

complement in C. We say that T has (β) when β(T ) = C. It is clear from the definition

that if T has (β) then T satisfies the (SV EP ).

A nice characterization of operators with (β) is given by E. Albrecht and J. Eschmeier

in [2]. Namely, an operator T has (β) precisely when it has a decomposable extension. In

particular all subnormal operators have (β). We refer to the monograph [14] for further

details and definitions.

Theorem 8. Let T be an n-multicyclic operator defined on a Banach space X . Suppose

that T has (β). Then

Ba(T ) = B(T ) \ σap(T ).

Theorem 8 follows from the fact that under the assumption that T has (β) we have

σap(T ) = σs(T ) and from the following more general theorem.

Theorem 9. Let T ∈ L(X ) be an n-multicyclic operator. Then

B(T ) \ σap(T ) = Ba(T ) \ σβ(T ).

Proof. The inclusion B(T ) \ σap(T ) ⊂ Ba(T ) \ σβ(T ) is obtained from Corollary 2 and

Proposition 2. Suppose now that 0 ∈ Ba(T ) \ σβ(T ). Then R(T ) is closed. Indeed, let

y ∈ H and let (xm)m≥1 be a sequence of elements in X such that xm =
∑n

i=1 Pi,m(T )yi
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and limn→∞ ‖x − xm‖ = 0. For 1 ≤ i ≤ n and m ≥ 1, consider the analytic function

defined in a neighbourhood V of 0 by

ym(z) :=

n∑

i=1

Pi,m(T )yi −
n∑

i=1

〈Pi,m(T )yi, ki(z)〉yi.(15)

Then limm→∞ ym(z) = y −∑n
i=1〈y, ki(z)〉yi. On the other hand,

ym(z) =
n∑

i=1

Pi,m(T )yi −
n∑

i=1

Pi,m(z)yi =
n∑

i=1

[Pi,m(T )− Pi,m(z)]yi

= (T − z)
n∑

i=1

Qi,m(T, z)yi

where Qi,m(., z) is the complex polynomial given by Qi,m(t, z) =
Pi,m(z)−Pi,m(t)

z−t . The

mapping z 7→ Qi,m(T, z) is analytic at 0 ∈ β(T ), and we get

lim
m→∞

(T − z)
n∑

i=1

Qi,m(T, z) ∈ R(T − z),

for every z ∈ V .

In particular for z = 0, there exists x ∈ X such that

y =

n∑

i=1

〈y, ki(0)〉yi + Tx.

Thus, codimR(T ) ≤ n and hence R(T ) is closed. Thus 0 ∈ Ba(T ) ∩ s − reg(T ), and

consequently 0 ∈ β(T ) ∩ s− reg(T ) = C \ σap(T ).

We end this section by posing the following question. Does Equality (16) below hold

for arbitrary n-multicyclic operators and 0 ≤ m ≤ n?

Bm(T ) \ σap(T ) = Bma (T ) \ σβ(T ).(16)

6. On the density of Cn(T ). Let T ∈ Cn(X ) be n-multicyclic. We retrieve in this section

a theorem of D. A. Herrero and L. Rodman [13]. We present here a proof depending on

analytic bounded point evaluations that is much simpler.

Theorem 10. Let T be an n-multicyclic operator defined on a Banach space X . The

following assertions are equivalent:

(i) Ba(T ) 6= ∅.
(ii) Cn(T ) is not dense in X (n).

To prove Theorem 10, we start with some results of independent interest. We describe

the bounded point evaluations set and the analytic bounded point evaluations set in terms

of cyclic n-tuples.

Proposition 6. Let T be an n-multicyclic operator and (y1, y2, . . . , yn) ∈ Cn(T ). Then

(i) B(T ) = {λ ∈ C; ((T − λ)y1, y2, . . . , yn) /∈ Cn(T )}.
(ii) Ba(T ) ⊂ {λ ∈ C; ((T − λ)y1, y2, . . . , yn) /∈ cl(Cn(T ))} ⊂ int(B(T )).
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Proof. (i) If λ ∈ C is such that ((T − λ)y1, y2, . . . , yn) ∈ Cn(T ), then

X = span{Tm(T − λ)y1, T
my2, . . . , T

myn,m ≥ 0}
= span{Tm(T − λ)y1, (T

m − λm)y2, . . . , (T
m − λm)yn, y2, . . . , yn;m ≥ 1}

⊂ cl(R(T − λ)) + span{y2, . . . , yn}.
Then dimN(T − λ)∗ < n and hence λ /∈ B(T ).

Conversely suppose that dimN(T − λ)∗ < n. By Proposition 2, we get cl(R(T − λ))

∩ span{y1, y2, . . . , yn} 6= {0}. Replacing if necessary {y1, y2, . . . , yn} by another basis of

span{y1, y2, . . . , yn}, we may suppose without loss of generality that y1 ∈ cl(R(T − λ)).

Thus
X = cl(R(T − λ)) + span{y2, . . . , yn}
⊂ span{T k(T − λ)y1, T

ky2, . . . , T
kyn; k ≥ 0}.

And hence ((T − λ)y1, y2, . . . , yn) ∈ Cn(T ).

(ii) The inclusion {λ ∈ C; ((T − λ)y1, y2, . . . , yn) /∈ cl(Cn(T ))} ⊂ int(B(T )) follows

from (i) by using standard arguments of continuity. It remains to show that Ba(T ) ⊂
{λ ∈ C; ((T − λ)y1, y2, . . . , yn) /∈ cl(Cn(T ))}. Let λ ∈ Ba(T ) and r > 0 be such that

D(λ, r) ⊂ Ba(T ). Set

Ω(λ) = {(x1, x2, . . . , xn) ∈ Xn; sup
|z|=r

|z − λ− det(〈xi, kj(z)〉)i,j | < r}.

Then Ω(λ) is a nonempty open subset of X (n) and clearly (T − λ)y1, y2, . . . , yn) ∈ Ω(λ).

We claim that Ω(λ) ∩ Cn(T ) = ∅. Indeed, suppose that there exists (x1, x2, . . . , xn) ∈
Ω(λ) ∩ Cn(T ). Since (x1, x2, . . . , xn) ∈ Cn(T ) we have det(〈xi, kj(z)〉i,j) 6= 0, for every

z ∈ B(T ). Consider now the following continuous function:

f : D(λ, r)→ D(λ, r), z 7→ z − det(〈xi, kj(z)〉i,j).
By the fixed point theorem of Brouwer, there exists z0 ∈ D(λ, r) such that f(z0) = z0.

This implies det(〈xi, kj(z0)〉i,j) = 0 and a contradiction is obtained. Thus Ω(λ)∩Cn(T ) =

∅ and it follows that ((T − λ)y1, y2, . . . , yn) /∈ cl(Cn(T )). The proof of (ii) is complete.

Arguing inductively, we deduce the following corollary:

Corollary 5. Let T be an n-multicyclic operator, (x1, x2, . . . , xn) ∈ Cn(T ) and

P1, P2, . . . , Pn be polynomials. Then

1. (P1(T )x1, P2(T )x2, . . . , Pn(T )xn) /∈ Cn(T )⇔ [
⋃n
i=1 Z(Pi)] ∩ B(T ) 6= ∅.

2. (P1(T )x1, P2(T )x2, . . . , Pn(T )xn) /∈ cl(Cn(T ))⇒ [
⋃n
i=1 Z(Pi)] ∩ int(B(T )) 6= ∅.

3. [
⋃n
i=1 Z(Pi)] ∩ Ba(T ) 6= ∅ ⇒ (P1(T )x1, P2(T )x2, . . . , Pn(T )xn) /∈ cl(Cn(T )).

Here Z(P ) stands for the set of all zeros of the polynomial P .

Proof of Theorem 10. The implication (i) ⇒ (ii) is direct from Proposition 6.

(ii) ⇒ (i). Let X = (x1, x2, . . . , xn) be in the interior of X (n) \ Cn(T ) and let

(y1, y2, . . . , yn) be a cyclic n-tuple of T. For 1 ≤ i ≤ n, there exist polynomials {Pi,1,
Pi,2, . . . , Pi,n} such that

∥∥∥
∑

j

Pi,j(T )yi − xi)
∥∥∥ < dist(X, Cn(T ))

n
.
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Then, it follows that

∥∥∥
n∑

i=1

(∑

j

Pi,j(T )yi − xi
)∥∥∥ < dist(X, Cn(T )).

Using Smith’s form of the polynomial matrix (Pi,j(T ))i,j (see [10], page 311), there exists

a family of non-vanishing polynomials (P1, P2, . . . , Pn) and (y′1, y
′
2, . . . , y

′
n) ∈ Cn(T ) such

that (P1(T )y′1, P2(T )y′2, . . . , Pn(T )y′n) is an interior point of X (n) \ Cn(T ). In particular,

(P1(T )y′1, P2(T )y′2, . . . , Pn(T )y′n) /∈ cl(Cn(T )). By Corollary 5, we have [
⋃n
i=1 Z(Pi)] ∩

int(B(T )) 6= ∅ and hence int(B(T )) 6= ∅. Now Ba(T ) ⊂ int(B(T )) ⊂ cl(Ba(T )) implies

that Ba(T ) 6= ∅.
Let ω = (ωn)n≥0 be nonnegative numbers. The Beurling space associated with ω is

given by

H2
ω =

{
f ; f(z) =

∑

n≥0

anz
n and

∑

n≥0

|an|2ω2
n < +∞

}
.

The shift operator Mz,ω is the multiplication operator in H2
ω by the independent variable

z. The operator Mz,ω is bounded if and only if supn ωn+1/ωn < +∞. Moreover Mz,ω is

cyclic with 1 as a cyclic vector. Set r2(ω) = lim infn ω
1/n
n . Then Ba(T ) = D(0, r2(ω)),

(see [26], for example).

We have the following corollary:

Corollary 6. Under the notations above C(Mz,ω) is dense if and only if r2(β) = 0.

The preceding corollary includes the example given by D. A. Herrero for the shift

operator on the usual Hardy space (see [12, Example 12]).

In [27] E. Thomson has proved that analytic bounded point evaluations exist for pure

cyclic subnormal operators. Hence we have

Corollary 7. Let T be a pure cyclic subnormal operator. Then cl(C(T )) 6= X .
In [3] S. Ansari and P. Bourdon have shown that if T n is cyclic for every n, then

the set of cyclic vectors of T is dense in X . T. Trent gave the same result for subnormal

operators (see [29]).

Applying Theorem 10, the above result is extended to the class of all multicyclic

operators.

Theorem 11. Let T ∈ L(X ) be an n-multicyclic operator defined on a Banach space X .

If Tm ∈ Cn(X ), for every nonnegative number m, then Cn(T ) is dense in X (n).

Proof. It suffices to show that Ba(T ) = ∅. Seeking a contradiction, suppose Ba(T ) 6=
∅. For m ≥ 2, let (x1, x2, . . . , xn) be a cyclic n-tuple of Tm. Since Tx1 ∈ X there

are polynomials {(P1,s)s≥0, (P2,s)s≥0, . . . , (Pn,s)s≥0} such that
∑n
j=1 Pj,s(T

m)xj → Tx1.

Now since C(Tm) ⊂ C(T ) there exists an analytic function k : λ ∈ Ba(T ) 7→ k(λ) ∈
N(T − λ)∗ such that 〈xj , k(λ)〉 = δ1,j . Then for every λ ∈ Ba(T ) we have

|P1,s(λ
m)− λ| =

∣∣∣
〈 n∑

j=1

Pj,s(T
m)xj , k(λ)

〉
− λ

∣∣∣
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=
∣∣∣
〈 n∑

j=1

Pj,s(T
m)xj , k(λ)

〉
− λ〈x1, k(λ)〉

∣∣∣

=
∣∣∣
〈 n∑

j=1

Pj,s(T
m)xj − Tx1, k(λ)

〉∣∣∣

≤
∥∥∥

n∑

j=1

Pj,s(T
m)xj − Tx1

∥∥∥‖k(λ)‖.

Since the mapping λ 7→ ‖k(λ)‖ is bounded on compact subsets of Ba(T ) we deduce that

P1,s(z
m) is pointwise convergent in Ba(T ) to the identity map z 7→ z. Uniqueness of

limits insures that e
2iπ
m z /∈ Ba(T ). Hence, if Tm ∈ Cn(X ) for every m ≥ 2, then for every

nonzero z ∈ Ba(T ), it will be that e
2iπ
m z /∈ Ba(T ). This provides a contradiction since

Ba(T ) is an open set.

Remark 7. One may try to relax in Theorem 11 the assumption Tm ∈ Cn(X ), for every

nonnegative number m to the weaker one, Tm is multicyclic for every nonnegative number

m. The shift operator S on the usual Hardy space H2 is illuminating in this sense. Indeed,

Sn is n-multicyclic with (1, z, . . . , zn−1) as cyclic n-tuple. On the other hand, clearly the

set of analytic bounded evaluations has nonempty interior and thus C(T ) is not dense.

Acknowledgements. The authors are indebted to the referee for many helpful sug-

gestions.
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spectraux, Glasgow J. Math. 29 (1987), 159–175.
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