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Though the relation of Fourier series with topological algebras is rather loose, I should

like to contribute to this volume in honour of Wies law Żelazko by reviewing a few facts

on two questions:

1. how do the partial sums of Fourier-Lebesgue series behave?

2. when is a closed subalgebra of L1(T) (convolution algebra) generated by the idem-

potents which it contains?

In both cases the classical frame is L1(T), and I shall say a few words on the slightly

simpler analogue, L1(D), where D = (Z/2Z)N.

1. Partial sums. Convergence and divergence of Fourier series, and more generally the

behaviour of their partial sums Sn(t), can be considered in three ways: at a given point t,

or almost everywhere, or everywhere. Already Lebesgue established that Sn(t) = o(logn)

(n→∞) at each given point t and uniformly when the function is integrable and bounded

(f ∈ L∞(T)) and that it is a best possible result [14, 15]. Hardy proved that Sn(t) =

o(logn) (n → ∞) almost everywhere when f ∈ L1(T) and conjectured that it is also a

best possible result (“I have not proved rigorously that it is so, but it seems to me very

probable” ([4], § 5 and 6). In Hardy’s Collected Papers the comment after Hardy’s article

(volume III, p. 125) says that Hardy’s result had been proved earlier by Lebesgue, and

that it has been shown that the result Sn = o(logn) is best possible; both statements are

wrong, and Hardy’s conjecture is still open.

Convergence almost everywhere holds when f ∈ L2(T): this is Carleson’s theorem

(1966) [3]. It extends to f ∈ Lp(T) when p > 1 (Hunt) and more generally when

∫

T
|f(t)| log+ |f(t)| log+ log+ log+ |f(t)| dt <∞
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(Antonov 1996 [1]). Sjölin and Soria (2003) extended this result to the case of D (series

of Fourier-Walsh) and other orthogonal expansions [19].

On the other hand there exist integrable functions whose Fourier series diverge almost

everywhere [7] and even everywhere [8]: these are Kolmogorov’s examples of 1923 and

1926. About the rapidity of divergence the best result is due to Konyagin (1999 [9, 10]):

as soon as

λn = o(
√

log n/
√

log log n) (n→∞),

there exists f ∈ L1(T) such that

lim
n→∞

Sn(t)

λn
=∞

everywhere.

Can Konyagin’s result be improved in taking λn = o(logn) (that would prove Hardy’s

conjecture) or Hardy’s result be improved in proving that Sn(t) = o
(
(logn)p

)
for some,

or for all p such that 1
2 < p < 1 ? It seems worth trying to improve Hardy’s result. Since

Fourier-Walsh series may be more manageable than ordinary Fourier series, I made an

attempt in that direction, that is, in considering L1(D) instead of L1(T). This attempt

is unsuccessful but supports the idea that
√

log n may play a role in the estimate. Here

is what I know.

Notations:

X = D = (Z/2Z)N

x = (x0, x1, . . .) ∈ X
dx = Haar measure, also m(dx)

rj(x) = (−1)xj−1 , Rademacher functions (j = 1, 2, . . .)

w0 = 1, w1 = r1, w2 = r2, w3 = r1r2, w4 = r3, . . .

wn = rj1 . . . rjn when n = 2j1−1 + . . .+ 2jν−1, j1 > j2 > . . . > jν ≥ 1,

Walsh functions (n = 0, 1, . . .)

f ∈ L1(X)

cn =

∫
fwn =

∫

X

f(x)wn(x) dx

S(f) =

∞∑

n=0

cnwn

SN (f, x) =
N−1∑

n=0

cnwn(x)

These are the partial sums under investigation. The partial sums of order 2k constitute

a dyadic martingale, fk:

fk(x) = S2k(f, x).

When N = 2k + l, 0 ≤ l ≤ 2k the partial sum of order N satisfies

SN (f, x) = fk(x) + rk+1(x)Sl(rk+1f, x). (1)
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Assume first f ≥ 0 and
∫
f = 1, let λ > 1 and

E(λ, f) = {x : sup
k
fk(x) ≤ λ}.

If we stop the martingale fk as soon as fk > λ we obtain a bounded positive martingale

f̃k whose limit f̃ satisfies
∫
f̃ = 1 and f̃ > λ on X \E(λ, f), therefore m(X \E(λ, f)) < 1

λ

and

m
(
E(λ, f)

)
> 1− 1

λ
. (2)

Now let us assume only that f is real-valued, f ∈ L1(X) and
∫
|f | = 1. We point out

that

−λ ≤ fk(x) ≤ λ
for all k when x ∈ E(λ, |f |), and the same holds when we replace f by g such that

|g| = |f |. Let us write

Ek = Ek(λ, |f |),
and observe that Ek belongs to the σ-field generated by r1, r2, . . . rk, and Ek ↓ E.

Given N = 2k1 + 2k2 + · · ·+ 2kν , k1 > k2 > · · · > kν ≥ 0, we write

ν = l(N) (≤ log2N).

Using (1) and (2) we have immediately the analogue of Hardy’s result:

Proposition 1. Given λ > 1, the inequality

|SN (f, x)| ≤ λl(N)

holds on the set E = E(λ, |f |), whose Haar measure exceeds 1− 1/λ.

Corollary 1. Sn(f, x) = o(logN) (N →∞) a.e. when f ∈ L1(X).

(As usual, the estimate o( ) is derived from O( ) by subtracting from f a Walsh

polynomial).

Here is the way in which
√

logN appears.

Proposition 2. For every λ > 0, µ > 0 and N integer,

m{x ∈ E(λ, |f |) : |SN (f, x)| > µλ
√
l(N)} < 2 exp

(
−µ

2

2

)
.

Corollary 2. Given any increasing sequence of integers of Nj,

SNj (f, x) = o(
√
l(Nj) log j) (j →∞) a.e.

when f ∈ L1(X).

Remark. Corollary 2 implies Corollary 1 but it gives nothing more when Nj = j, the

important case. Proposition 2 expresses that SN (f, x) has a subgaussian distribution on

E, with standard deviation λ
√
N ; it is better than Proposition 1 when l(N) is large, but

no so good for small values of l(N) (in particular when N = 2k).

Proof of Proposition 2. (1) can be written as SN = A + rk+1B, where A and B are

measurable with respect to the σ-field generated by r1, r2, . . . , rk. Given u > 0, let us
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write

ChuSN = ChuA ChuB + rk+1 ShuA ShuB

and integrate on Ek. We obtain
∫

Ek

ChuSN =

∫

Ek

ChuA ChuB ≤ Chuλ

∫

Ek

ChuB

and, returning to the original notations, this reads
∫

Ek1

Ch
(
uSN (f)

)
≤ Chuλ

∫

Ek1

Ch
(
uSl(rk+1f)

)
≤ Chuλ

∫

Ek2

Ch
(
uSl(rk+1f)

)
,

hence, iterating and using E ⊂ Ek1
, and ν = `(N),

∫

E

ChuSN ≤ (Chuλ)ν ≤ exp
1

2
νu2λ2,

m(E ∩ {|SN | > µλ
√
ν}) Chuµλ

√
ν ≤ exp

1

2
νu2λ2

and, choosing u = µ(λ
√
ν)−1, we obtain the inequality of Proposition 2.

2. Subalgebras and idempotents. Partial sums are only one way to deal with Fourier

series. Summability processes of different kinds can be used in order to obtain convergence

at a point, or almost everywhere, or in functional spaces. As an example, the method

of the first arithmetical mean gives convergence almost everywhere and convergence in

L1(T) for every f ∈ L1(T) (Fejér-Lebesgue; see f.e. [18] chapter III).

For L1(D) we simply consider the fk = S2k .

It may be interesting, in particular from a computational point of view, to rearrange

a series according to the size of the terms. Then a summability process will be defined by

a family of functions Φk : R+ → R+ (usually Φk = 0 in a neighbourhood of 0), tending

to 1 as k →∞. Given a series of complex numbers
∑
un, we are looking for

lim
k→∞

∑
Φk(|un|)un

whenever it has a meaning. Let us denote it by (Φk)
∑
un.

When we deal with series of functions,
∑
anϕn(x), the usual “decreasing rearrange-

ment” consists in rearranging the series so that the magnitude of the coefficients de-

creases. The new partial sums are or the form
∑

Φε(|an|)anϕn(x), where Φε = 1[ε,∞[.

When |ϕn(x)| = 1 for all n and x, the limit is (Φε)
∑
anϕn(x) when it exists.

Again, it is possible to look for such a limit at a given point, or almost everywhere,

or in a functional space. For Fourier series we mainly have negative results:

1. There exists f ∈ L2(T) whose Fourier series, when rearranged decreasingly, diverges

unboundedly almost everywhere (Körner 1996 [11]).

2. There exists f ∈ C(T) with the same property, and actually this is generic in C(T),

space of continuous functions on T (it holds on a countable intersection of open dense

subsets of C(T)) (Körner 1999 [12]).
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3. For all spaces Lp(T) except L2(T), and for C(T), there exist functions f in the

space, with Fourier series S(f), such that, whatever the process (Φk), the limit (Φk)S(f)

does not exist in the space.

The last result can be expressed in the following way:

4. In the convolution algebras Lp(T) (p 6= 2) and C(T) there exist closed subalgebras

that are not generated by the idempotents they contain (Kahane 1966 [5], Rider 1969

[17], Kahane and Katznelson 1978[6], Bachelis and Gilbert 1979 [2], Oberlin 1982 [16]).

For p = 1 this answers a question of W. Rudin in his book of 1962 [18], p.231. It

is possible to say a little more for L1(T) and for C(T). To every closed subalgebra A is

associated an equivalence relation R on (Z), such that n ∼ m (R) means f̂n = f̂m for

all f ∈ A. Conversely, given an equivalence relation R on Z, does there exist a unique

closed subalgebra A having R as its associated equivalence relation? In other words, is

the maximal subalgebra AR consisting of the f such that f̂n = f̂m when n ∼ m (R) the

same as the minimal subalgebra, generated by the idempotents
∑
en (n ∈ class of R)?

Of course, the answer is positive if each finite class of R consists of a single point. Here

is what is proved in [6].

5. In the case of L1(T) there is an equivalence relation on Z, R, whose finite classes

consist of one or two points, such that AR 6= AR. In the case of C(T) there is an equiva-

lence relation R whose finite classes consist of two points exactly, such that AR 6= AR.

The proof relies heavily on real and imaginary Riesz products, and cannot be trans-

lated to other Lp(T) (1 < p <∞, p 6= 2). It can be adapted to the case of any compact

abelian group instead of T . For example, the equivalence relation R can be defined in the

following way in the case of C(D). We start from S0 = {21, 22, 23, . . . , 2100} and define by

induction blocks of integers Sj(j ≥ 0) and pairs {n, λ (n)}, n ∈ Sj (j ≥ 0); the {n, λ (n)}
will be the classes of R.

It suffices that for each j ≥ 0 the λ(n) are distinct powers of 2 larger that supSj , and

Sj+1 is defined as the set of all sums
∑
λ(n) (n ∈ Sj) containing at least two terms. In

the case of L1(D) one has to add as individual points all finite sums
∑
λ(n) (n ∈ ⋃∞0 Sj)

not considered previously.

Let me conclude by a remark. The problem on subalgebras and idempotents was

appealing in the sixties, as part of the saga of spectral synthesis (how to reconstruct a

space from building blocks, here the idempotents). It may reappear in the future, but

it stimulated no new work in the last twenty years. In the meantime wavelets appeared,

and, roughly speaking, all good spaces of functions have good spaces of coefficients and

approximation by partial sums of wavelet expansions work as well as in L2.

On the other hand, I indicated a series of references on the behaviour of partial sums,

or rearranged partial sums, almost everywhere. This appears as a living subject, and a

useful additional reference is the expository article of Körner (2001) [13], including the

works on rearranged Fourier series by Olevskĭı, and on rearranged wavelet series by Tao.

For ordinary partial sums, the remaining gap between Antonov and Konyagin is a real

challenge, including for L1(D), where the analogue of Konyagin’s result was established

quite recently [2′, 2′′].
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Final remarks. I am grateful to the referee for a careful reading and for the references

to Bochkarev’s works [2′, 2′′]. The second paper obtains the analogue of Konyagin’s result

with λn = o(
√

log n) only, therefore in a stronger form. The first paper announced the

result almost everywhere, but it is mainly concerned with almost everywhere divergence

when smoothness conditions are required (in the English version, read “diverges” instead

of “converges” in the main theorem).
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dans certaines algèbres de convolution, Israel J. Math. 31 (1978), 217–223.

[7] A. N. Kolmogorov, Une série de Fourier divergente presque partout, Fund. Math. 4 (1923),

324–328.
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