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Abstract. The notion of generalized PN manifold is a framework which allows one to get

properties of first integrals of the associated bihamiltonian system: conditions of existence of a

bi-abelian subalgebra obtained from the momentum map and characterization of such an algebra

linked with the problem of separation of variables.

1. Introduction. A geometric characterization of integrable Hamiltonian systems was

given by Magri and Morosi in the famous paper [15] written in 1984.

A Hamiltonian system on an even dimensional (2m) manifold M corresponds to a

Poisson tensor of maximal rank associated with a smooth functionH (called Hamiltonian)

whose gradient does not identically vanish. Such a system is integrable if one can find

another Poisson structure Q compatible with P (i.e. such that P + Q is still a Poisson

tensor) for which the associated recursion operator N = QP−1 has m pairwise distinct

real eigenvalues λ1, . . . , λm of order 2, first integrals in involution (P (dλi, dλj) = 0) and

functionally independent on a dense open set. Moreover, one can find functions µ1, . . . , µm

by quadrature such that the inverse ω of P (which is a symplectic form) may be written

as ω =
∑m

i=1 dλi ∧ dµi and where the matrix of N∗ has a diagonal form.

It is well known (cf. [15], [5] for example) that the m maps Ik = 1
k traceNk (k =

1, . . . ,m) are in involution with respect to both structures P and Q and give rise to a

Lenard recursion chain: N∗ (dIk) = dIk+1.

This bihamiltonian scheme may be generalized to:

• odd dimensional (2m+ 1) manifolds which are an adapted framework for a lot of inte-
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grable Hamiltonian systems which can be written as Gel’fand-Zakharevich systems

(cf. [8]): in this case, the 2m-rank Poisson tensors P and Q give rise to a Poisson

pencil Pλ = Q − λP, ϕ ∈ R ∪ {∞} ; the generic symplectic leaf of the pencil has

dimension 2m and the intersection of all the symplectic leaves are generically La-

grangian submanifolds. Moreover, there exist Casimir functions cλ for the Poisson

pencil, i.e. such that dcλ ∈ kerPλ, which give rise to first integrals ([14]).

• infinite dimensional manifolds: the famous nonlinear PDE Korteweg de Vries can be

written as a bihamiltonian system ([13], [6]). Using the associated recursion opera-

tor, one can produce an infinite sequence of first integrals ([20]). Other PDEs, such

as Camassa-Holm and Hunter-Saxon equations, may be seen as bihamiltonian sys-

tems on the dual of the Virasoro algebra ([10]) (the first Poisson tensor corresponds

to the Lie Poisson structure).

In this paper, we consider the framework of generalized PN manifolds, i.e. finite di-

mensional manifolds endowed with both a Poisson structure P and a Nijenhuis tensor

N ([N,N ] = 0) called recursion operator, defined on the involutive distribution imP

and compatible with P (i.e. the tensor P ′ = NP is still a Poisson tensor). This notion

illustrated with various examples, is introduced in section 2. When P is of maximal rank,

the manifold may be endowed with a ωN structure ([5]).

If one considers a generalized PN manifold (M,P,N), it is obvious that M is not

necessarily even dimensional; moreover, in general, the Poisson tensor P has singularities

of rank. N has also singularities and its eigenvalues can be real or complex; furthermore

the number of such distinct eigenvalues depends on the point of the manifold. We can

completely describe the singularities of (P,N) in terms of rank of P and Jordan normal

form of N described by a numerical invariant called symbol. With this invariant we

can define a stratification in the set of pairs (P,N) (section 3). Transversality to this

stratification gives rise to the notion of genericity (§ 4.2). Moreover, in the analytic

context, each set where the symbol of (P,N) at the point of the manifold is constant may

be stratified. The set on which the symbol is ”maximal” is an open set. On such a set,

Turiel has built an adapted local coordinates system where P has a symplectic expression

and N a diagonal form.

In another way, to a Poisson structure P , we can associate a bracket {., .}P on the

set E of the C∞ functions on M : {f, g}P = 〈df, Pdg〉 (where P : T ∗M → TM). So, E

may be endowed with a Lie algebra structure. On a generalized PN manifold we get a

pair of such Lie algebra structures (E , {., .}P ) and (E , {., .}NP ). If we come back to the

context of the first integrals f1, . . . , fn, these functions generate two structures of abelian

sub-algebra called bi-abelian sub-algebra; a hamiltonian which belongs to this algebra is

completely integrable.

On a 2m-dimensional manifold, if we consider the generic context or the analytic

one with the existence of an open set where N has exactly m distinct real or complex

conjugate eigenvalues (of multiplicity 2) (which is always true in the generic case), we

have information about the existence of the bi-abelian sub-algebra (theorem 5.1) and we

get a characterization (theorem 6.1) of such an algebra generalizing the results given by

Falqui and Pedroni in [5]:
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1. The functions
{
Ik = 1

k traceNk
}

k=1,...,m
are independent on an open set whose

complement is a stratified set of codimension 2. Moreover, these functions generate

a bi-abelian sub-algebra.

2. Let f1, . . . , fm be independent functions on a dense open set. The following propo-

sitions are equivalent:

(a) f1, . . . , fm generate a bi-abelian sub-algebra;

(b) on a dense open set, df1, . . . , dfm generate a bi-lagrangian foliation;

(c) on each open set where the symbol is constant f1, . . . , fm are ”separable” in

the Turiel adapted coordinates (xi, yi) of (P,N); the separability is associated

with the existence of functions Φj , j = 1, . . . ,m such that

Φj (xi, yi, f1, . . . , fm) = 0, j = 1, . . . ,m, det

[
∂Φj

∂fi

]
6= 0,

and we can apply the classic Hamilton-Jacobi method of separation of vari-

ables.

2. Generalized PN manifolds. Let M be a manifold of finite dimension n.

2.1. Tensors and brackets

2.1.1. Poisson tensor and bracket. A twice contravariant and skew-symmetric tensor

field P is a Poisson tensor iff its Schouten bracket [P, P ] vanishes where [P, P ] ∈ Λ3TM

is defined by:

〈α, [P, P ] (β, γ)〉 = σ
α,β,γ

〈LPαγ, Pβ〉

where σ
α,β,γ

stands for the sum of the cyclic permutations of α, β and γ.

The components of the Poisson tensor satisfy the cyclic condition:

∑

l

(
P il ∂P

jk

∂xl
+ P jl ∂P

ki

∂xl
+ P kl ∂P

ij

∂xl

)
= 0

The associated distribution imP is involutive because we have for closed forms α

and β:

[Pα, Pβ] = P (LPβα− LPαβ + d 〈β, Pα〉)

but, generically, not of constant rank. Nonetheless, at each point, there exists an integral

submanifold of maximal dimension which is tangent to the distribution.

On another way, this Poisson tensor field gives rise to a Lie algebra structure on the

set of the smooth functions on M for the bracket {., .}P defined by:

{f, g}P = 〈df, P (dg)〉

where P is seen as a morphism T ∗M → TM .

If the Poisson tensor is of maximal rank on an even dimensional manifold (n = 2m),

this manifold may be endowed with a symplectic structure given by P−1 (the symplectic

form is seen as a morphism TM → T ∗M).
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2.1.2. Nijenhuis tensor. The torsion T (N) of a (1, 1)-tensor field N is defined by:

T (N) (X,Y ) = [NX,NY ] −N [NX,Y ] −N [X,NY ] +N2 [X,Y ] .

Such a tensor is called a Nijenhuis tensor iff T (N) = 0 and, in this case, the associated

distribution imN is integrable.

2.1.3. Compatible tensors. For a Poisson tensor P and a Nijenhuis tensor N we define

the bracket [P,N ]:

[P,N ] (α,X) = (LPαN)X − P.LX (N∗α) + PLNXα.

If NP is skew-symmetric and if [P,N ] = 0, the tensor NP is a Poisson tensor (cf. [15]).

2.2. Generalized PN manifold. We now define the main structure we are going to use

here.

Definition 2.1. A generalized PN manifold is a manifold M endowed with a Poisson

tensor P , a Nijenhuis tensor N defined on imP, such that NP is skew-symmetric and

[P,N ] vanishes.

Remark 2.2. When the Poisson tensor P is of maximal rank, P−1 corresponds to a

symplectic 2-form (as seen above) and so M may be endowed with an ωN structure

([15], [5]), which is a particular case of a PN manifold ([11], [16]).

Remark 2.3. If (M,P,N) is a generalized PN manifold, the tensor NP is a Poisson

tensor too and [NP,N ] vanishes. So we get, by induction, a hierarchy of such structures

defined by Pj = N jP .

2.3. Examples of generalized PN manifolds.

2.3.1. Cotangent bundle. As is well known, a Poisson structure P of maximal rank is well

defined on the cotangent bundle of a manifold S where a symplectic form dα naturally

exists (α is the canonical Liouville form). If we consider a Nijenhuis tensor L on S, one

can define, as shown in [9], a second Poisson structure Q on T ∗S, compatible with P ,

whose bracket {., .}Q has, in the fibred coordinates, the following expression:

{qi, qj}Q = 0, {qi, pj}Q = −Li
j , {pi, pj}Q =

(
∂Lk

j

∂qi
−
∂Lk

i

∂qj

)
pk.

N , complete lifting of L as defined in [30], is the recursion operator for this bihamiltonian

structure.

(T ∗S, P,N) is a generalized PN manifold and may be endowed with an ωN structure.

2.3.2. A case of integrability of the Hénon-Heiles system. Let us consider the Hénon-

Heiles dynamical system (which is a generalization of the oscillator) on M = R4 defined

by the Hamiltonian

H =
1

2
Aq21 +

1

2
Bq22 +

1

2
p2
1 +

1

2
p2
2 + λq21q2 + µq32 .

The case µ = 2λ is one of the 3 cases of integrability (for λ = 0, we obtain the oscillator:

H = 1
2Aq

2
1 + 1

2Bq
2
2 + 1

2p
2
1 + 1

2p
2
2).
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The second first integral is given by:

F =
1

8

[
(4A−B − 4λq2) p

2
1 + 4λq1p1p2 + q21

(
4A2 − AB + 4Aλq2 + λ2q21 + 4λ2q22

)]
.

So, for λ 6= 0, the system can be written in a bihamiltonian form ([3]) with the following

compatible Poisson tensors:

P :=




0 0 −1 0

0 0 0 −1

1 0 0 0

0 1 0 0


 and Q :=




0 0 0 −
x1

2λ

0 0 −
x1

2λ
−
x2

λ
+

C

4λ2

0
x1

2λ
0

x3

2λ
x1

2λ

x2

λ
−

C

4λ2
−
x3

2λ
0




where C = 4A−B, x1 = q1, x2 = q2, x3 = p1, x4 = p2.

The matrix of the recursion operator N := QP−1 is



0
1

2λ
x1 0 0

1

2λ
x1 −

1

4

C

λ2
+

1

λ
x2 0 0

0 −
1

2λ
x3 0

1

2λ
x1

1

2λ
x3 0

1

2λ
x1 −

1

4

C

λ2
+

1

λ
x2




.

(
R4, P,N

)
is a generalized PN manifold where P is of maximal rank and so may be

endowed with an ωN structure.

2.3.3. Structures linked with ’homogeneous’ Poisson structures. The example we de-

scribe here is constructed with a pair of Poisson structures P0 and Pr, r ∈ N∗, on

R2m where P0 and Pr are two homogeneous structures linked with the vector field X

(LXP0 = αP0 and LXPr = βrPr, α and βr are constants) (cf. [26]).

Let x1, . . . , x2m be the coordinates on R2m, we consider P0 =

(
0m − Idm

Idm 0m

)
and

Pr =

(
0m −Λm,r

Λm,r 0m

)
where Λm,r is the diagonal matrix m × m constructed with

xr
1, . . . , x

r
m. The recursion operator is diagonal and its double eigenvalues are xr

1, . . . , x
r
m.

2.3.4. Lie groups. Structures of generalized PN manifolds on Lie groups can be obtained

by using the results given in [15]. On a Lie group G, we consider two compatible tensors

P and Q where the first one is invertible and left-invariant (such as P−1) and where Q

is right-invariant. In this case, the recursion operator is N = QP−1.

So the research of a pair (P,N) where P is an invertible Poisson tensor and N is

Nijenhuis is linked with the research of Pe and Ωe (where e stands for the identity of G)

only fulfilling algebraic conditions (skew-symmetry and Jacobi identity).

2.3.5. Dual of a Lie algebra. Let G be a Lie group where e stands for the identity, G

its Lie algebra and G∗ the dual of this algebra. We shall use the natural identifications

G ≃ T ∗
αG

∗ and G∗ ≃ TαG
∗.
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G∗ is endowed with the usual Lie-Kirillov-Poisson structure K defined by:

KαX = ad∗
Xα.

Modulo these identifications and thanks to the cocycle Pe : G∗ → G, we can construct a

presymplectic constant tensor on G∗

Ωαβ = Peβ.

Let H be the connected Lie subgroup whose Lie algebra is

H = Pe(G
∗).

We can get a Poisson structure Π of maximal rank and a compatible presymplectic

structure ω on H∗ = G∗/ kerPe using a restriction technique (cf. [15]). So
(
H∗,Π, ωΠ−1

)

is a generalized PN manifold.

2.3.6. Use of a Casimir function; example of the rigid body. If c is a Casimir function

for a Poisson structure P , i.e. dc ∈ kerP , and if {., .} is the associated Poisson bracket,

then the bracket {., .}c = c {., .} defines a new Poisson structure and it is possible to

define a recursion operator on imP which is a homothety. We then have a generalized

PN manifold and the Poisson tensor is not of maximal rank.

As an example, we consider the case of the rigid body. Euler’s equations for a body

with a fixed point where the 3 principal moments of inertia are the strictly positive and

distinct reals I1, I2 and I3:




.
x1 =

(
1

I2
−

1

I3

)
x2x3,

.
x2 =

(
1

I3
−

1

I1

)
x3x1,

.
x1 =

(
1

I1
−

1

I2

)
x1x2,

where x1, x2 and x3 are the components of the angular momentum of the body at its

fixed point in the orthogonal frame made by the eigenvectors of the inertia operator (see

e.g. [19]).

This system is hamiltonian and the Poisson tensor, corresponding to the linear Lie-

Poisson structure on so
∗ (3,R) dual of the Lie algebra so (3,R) (isomorphic to R3 endowed

with the cross-product), is

P =




0 −x3 x2

x3 0 −x1

−x2 x1 0




It is easy to see that c : (x1, x2, x3) 7→ x2
1 + x2

2 + x2
3 is a Casimir function for P.

Q = cP is a Poisson structure compatible with P and the matrix of the recursion

operator is, in a basis of imP , equal to

(
x2

1 + x2
2 + x2

3 0

0 x2
1 + x2

2 + x2
3

)
.
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One can find another Poisson structure T compatible with P where

T =




0 −
x3

I3

x2

I2
x3

I3
0 −

x1

I1
−x2

I2

x1

I1
0



.

In this case, it is not possible to find a recursion operator because kerP 6= kerT .

2.3.7. The Toda lattice. The Toda lattice on M = R∗2
+ × R3, obtained from a Hamil-

tonian system on R6 via a Flaschka-Manakov transformation ([7], [4]) with coordinates

(a1, a2, b1, b2, b3), may be written as




.
a1 = a1(b2 − b1),
.
a2 = a3(b3 − b2),
.

b1 = 2a2
1,.

b2 = 2(a2
2 − a2

1),.

b3 = −2a2
2.

This is the following Hamiltonian system
.
x = P̂ dĤ

where the Poisson tensor P̂ , which is of rank 4 (ker P̂ = 〈db1 + db2 + db3〉) on the 5-

dimensional manifold, is given by its matrix:

1

4




0 0 −a1 a1 0

0 0 0 −a2 a2

a1 0 0 0 0

−a1 a2 0 0 0

0 −a2 0 0 0




and where the Hamiltonian Ĥ is:

Ĥ = 4
(
a2
1 + a2

2

)
+ 2(b21 + b22 + b23).

This function is proportional to the trace of the endomorphism L2 where L is given by

its matrix




b1 a1 0

a1 b2 a2

0 a2 b3


. This Hamiltonian system can be written as a Lax pair

.

L = [L,B]

where B =




0 −a1 0

a1 0 −a2

0 a2 0


 . The flow of this Hamiltonian vector field is isospectral,

i.e. that the eigenvalues of L are independent of t.

Remark that

c (a1, a2, b1, b2, b3) = trL = b1 + b2 + b3

is a Casimir function for the Poisson tensor P̂ .
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There exists on M another Poisson tensor Q̂ (see e.g. [18]) whose matrix is:

1

4




0 −a1a2 a1b1 −a1b2 0

a1a2 0 0 a2b2 −a2b3
−a1b1 0 0 a1 0

a1b2 −a2b2 −a1 0 a2

0 a2b3 0 −a2 0



.

Because ker Q̂ + ker P̂ , a recursion operator N̂ does not exist in this case.

Falqui and Pedroni give in [5] conditions to induce an ωN structure on a symplectic

leaf of P̂ . These conditions are linked with the existence of a vector field Z which is

transversal to the symplectic foliation of this Poisson tensor and fulfilling the conditions:

Z (c) = 1, LZ P̂ = 0, LZQ̂ = Y ∧ Z

for a suitable vector field Y .

In our example, Z = ∂
∂b3

and Y = a2

4
∂

∂a2

.

3. Stratification in the space of adapted pairs (bivectors field, endomorphisms

field) and symbol

3.1. Space of pairs (bivector, endomorphism). Let E be a vector space of dimension n.

3.1.1. Space A of adapted pairs (bivector,endomorphism). A bivector of E is a skew-

symmetric bilinear form on the dual E∗ of E.

If w is a bivector of E, we denote by w# : E∗ → E the linear map defined by:

∀α, β ∈ E∗,
〈
β,w# (α)

〉
= w (α, β) .

We shall denote w instead of w#.

The support of the bivector w, suppw, corresponds to the space imw#.

A pair (w, J) where w is a bivector and J an endomorphism of suppw is called adapted

if J ◦ w# is still skew-symmetric.

The space A2k of the pairs (w, J) where w is of rank 2k is a bundle over G2k (E) where

G2k (E) is the Grassmannian of the 2k-linear spaces of E.

The fiber over the 2k-space F corresponds to the set of the adapted pairs (w, J) such

that suppw = F and J = w−1w1 where w1 ∈ Λ2F ∗.

Remark 3.1. If W is the space of the pairs (w1, w2) of bivectors of E such that suppw1 ⊃

suppw2, one can associate to any (w, J) ∈ A =
⋃[n/2]

k=0 A2k an element (w, Jw) ∈ W and

this map is one to one.

3.1.2. Stratification by rank. We define the natural action of the Lie group Gl (E) on

the set of the bivectors of E by: (A,w) 7→ A • w where, for any linear forms α and β :

A • w (α, β) = w (tA α,tA β); this allows us to define an action of Gl (E) on A. In fact,

each manifold A2k is invariant under this action.

We then construct, on A2k, a Gl (E)-invariant stratification {Σc} by the rank of

w1 = Jw.

If (w, J) is an adapted pair where dim supp Jw = r, we denote the corank of Jw by

c = n− r.
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Adapting the results obtained in [17] and [24], we get a finite stratification Σ =

{Σc}0≤c≤n of the space A where

Σc = {(w, J) ∈ A, corank Jw = c}

is a regular submanifold A2k of codimension c (c− 1)/2 and where Σc is an algebraic

submanifold of A such that Σc =
⋃

c′≥c Σc′ .

3.1.3. Expression in an adapted basis. Here we transpose the results obtained by Turiel

([28]) about the classification of the pairs of 2-forms.

Proposition 3.2. Let (w, J) be an adapted pair where the minimum polynomial µJ

may be written as (X − λ)r where λ is a real number. There exists a decomposition of

suppw in a direct sum
⊕l

j=1 Fj of linear subspaces, invariant by J of dimension 2rj ,

r = r1 ≥ · · · ≥ rl and a basis
{
e
qj

j

}
, qj = 1, . . . , 2rj , j = 1, . . . , l of suppw1 where{

e
qj

j

}
, qj = 1, . . . , 2rj is a basis of Fj such that:

w =

l∑

j=1

( rj∑

k=1

e2k−1
j ∧ e2k

j

)
,

Je2k−2 = λe2k−2 + e2k, for k = 2, . . . , rj , Je2rj
= λe2rj

,

Je2k+1 = e2k−1 + λe2k+1, for k = 1, . . . , rj − 1, Je1 = λe1.

Definition 3.3. The associated basis (w, J) constructed in the above proposition is

called the adapted basis to (w, J).

Remark 3.4. w1 = Jw is skew-symmetric and we find the expression given in [22]

w1 =

l∑

j=1

(rj−1∑

k=1

e2k−1
j ∧ e2k+2

j

)
+ λw.

Proposition 3.5. Let (w, J) be an adapted pair for which the minimum polynomial µJ

is (X − µ)r (X − µ̄)r where µ = α + iβ is a non real complex number. So there exists

a decomposition of suppw in a direct sum
⊕l

j=1 Fj of linear subspaces, invariant by J

of dimension 4rj , rj = r1 ≥ · · · ≥ rl and a basis
{
e
qj

j

}
, qj = 1, . . . , 4rj , j = 1, . . . , l of

suppw1 where
{
eq
j

}
, qj = 1, . . . , 4rj is a basis of Fj such that:

w =
l∑

j=1

( 2rj∑

k=1

e2k−1
j ∧ e2k

j

)
,

Je4k+1 =

{
αe4k+1 − βe4k+3 for k = 0,

αe4k+1 + β (e4k+3 − e4k+1) for k = 1, . . . , rj − 1,

Je4k+2 = αe4k+2 + βe4k+4 for k = 0, . . . , rj − 1,

Je4k+3 = αe4k+3 + βe4k+1 for k = 0, . . . , rj − 1,

Je4k+4 =

{
αe4k+4 − β (e4k+2 − e4k+6) for k = 0,

αe4k+4 − βe4k+2 for k = 1, . . . , rj − 1.

Remark 3.6. Once again we find the expression of the bivector w1 = Jw given in [22]

w1 = α.w + β
[ l∑

j=1

(rj−1∑

k=0

e4k+1
j ∧ e4k+4

j + e4k+2
j ∧ e4k+3

j +

rj−2∑

k=0

e4k+3
j ∧ e4k+6

j

)]
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3.1.4. Symbol of an adapted pair. We use some elements of the terminology used in [22],

transposed for the framework of adapted pairs (bivector-endomorphism), and we rewrite

the results.

We consider an adapted pair (w, J) where the minimal polynomial of J has the form:

µJ =

p∏

I=1

(X − λI)
rI

q∏

I′=1

(
X2 − 2αI′X + α2

I′ + β2
I′

)r′

I′

with p pairwise distinct real eigenvalues: λ1, . . . , λp and 2q conjugate complex eigenvalues:

α1 ± iβ1, . . . , αq ± iβq.

If we introduce, for I ∈ {1, . . . , p} (resp. I ′ ∈ {1, . . . , q}), the set FI = ker (J − λIId)
rI

(resp. F ′
I′ = ker

(
J2 − 2αI′J + α2

Ii + β2
I′

)r′

I′ ), we have the following decomposition

suppw =

p⊕

I=1

FI

q⊕

I′=1

F ′
I′

where FI =
⊕sI

j=1 F
j
I with dimF j

I = 2rj
I where rI = r1I ≥ r2I ≥ · · · ≥ rsI

I and F ′
I′ =

⊕s′

I

j′=1 F
′j′

I′ with dimF ′j′

I′ = 4r′jI′ where r′I′ = r′1I′ ≥ r′2I′ ≥ · · · ≥ r
′s′

I′

I′

The multiplicity of the eigenvalue λI (resp. αI′ + iβI′) is (r1I , r
2
I , . . . , r

sI

I ) (resp.

(r′1I′ , r′2I′ , . . . , r
′s′

I′

I′ )).

Definition 3.7. The symbol σ of the adapted pair (w, J) is the element

σ = ([λI ]I=1,...,p; [αI′ ± iβI′ ]I′=1,...,q) = ((mj
I)

1≤j≤sI

1≤I≤p ; (m′j′

I′ )
1≤j′≤s′

I′

1≤I′≤q )

where mj
I = rj

I and m′j′

I′ = 2r′j
′

I′ .

3.1.5. Symbol stratification in A2k. Transposing the results of [22] we get:

Proposition 3.8. Let σ = ((mj
I)

1≤j≤sI

1≤I≤p ; (m′j′

I′ )
1≤j′≤s′

I′

1≤I′≤q ) be a family of decreasing se-

quences. If the subset Σσ = {(w, J) ∈ A2k : symbol (w, J) = σ} is nonempty, it is a

Gl (E)-invariant submanifold of A2k of codimension

Nσ − (2k + 2q + p)

where

Nσ = 3

p∑

I=1

sI∑

j=1

jmj
I + 3

q∑

I′=p+1

sI′∑

j′=1

j′m′j′

I′ , k = 2

p∑

I=1

sI∑

j=1

mj
I + 2

q∑

I′=p+1

sI′∑

j′=1

m′j′

I′ .

The sets Σσ
c = Σc∩Σσ constitute a Gl (E)-invariant stratification of A2k which gives rise

to sub-stratifications {Σc} and {Σσ} called refined stratification.

Remark 3.9. The only open strata of the refined stratification of A2k are of the form

Σσ
0 where we have for the symbol σ: sI = 1 for I = 1, . . . , p and s′I′ = 1 for I ′ = 1, . . . , q.

3.2. Stratifications in the bundle A (M). Let M be a manifold of dimension n.

Let A2k (M) → M be the bundle of fibre A2k on which GL (E) acts. Then A2k en-

dowed with the stratification {Σc}, where each stratum Σc is GL (E) -invariant, generates

a stratification {Σc (M)} on A2k (M).
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The space A2k (M) of smooth sections of this bundle, endowed with the smooth

topology of Whitney, is a topological vector space and a Baire space. We shall denote by

A (M) the union of the spaces of sections of A2k (M) for 0 ≤ 2k ≤ n.

In the same way, we get stratifications {Σσ (M)} (via the symbol) and {Σσ
c (M)} on

A2k (M) ≃ J0(A2k(M)).

4. Generic generalized PN manifolds

4.1. Genericity. Let Ã be the subset of the elements (P,N) of A (M) fulfilling the con-

ditions:

[P, P ] = 0, T (N) = 0 and [P,N ] = 0.

Let us recall that if P is a Poisson tensor onM , the manifold M is a union of immersed

symplectic manifolds (cf. [29]) having the following properties on each symplectic leaf F :

• rankP = 2k = dimF and suppP = TF ,

• N is an endomorphism NF of TF .

So (P,N) gives rise on F to a pair (PF , NF ) which is an element of Ã (F ).

Thom’s transversality theorem (cf. [27]) indicates that the set τ Ã (F ) of elements

of Ã (F ) whose 1-jet is transverse to the stratification {Σσ
c (F )}, if nonempty, is a dense

open set of Ã (F ).

So we can associate by pull-back to any (P,N) of Ã, giving rise to τÃ(F ), a stratifi-

cation {Σσ
c (P,N)} on M .

Definition 4.1. (M,P,N) is called a generic generalized PN manifold if (P,N) generates

an element of τÃ (F ) on each symplectic leaf F .

In the next section, we shall construct examples of such generic pairs (P,N).

Remark 4.2. As P is of constant rank 2k on F , the genericity is only linked with the

endomorphism NF .

4.2. Geometry of a generic generalized PN manifold. We now describe the geometry of

a generic generalized PN manifold.

Theorem 4.3. Let (M,P,N) be a generic generalized PN manifold. Consider

σ = ((m1
1, . . . ,m

l1
1 ), . . . , (m1

p, . . . ,m
lp
p ), [µ]).

Let F be a 2k dimensional symplectic leaf. If the stratum Σσ
c (P,N) is nonempty, then

c = 0 or c = 2 and it is a F -submanifold of codimension c (c− 1)/2+Nσ −(2k + 2q + p).

Above this submanifold, N has p pairwise distinct real eigenvalues and conjugate complex

eigenvalues. One can find a decomposition in a Whitney sum FH ⊕ FP,E such that:

• on FH , the operator only has complex eigenvalues,

• FP,E is a sum of bundles of the type ker (N − λjId)
rj and contains a Whitney sum of

linear subspaces
⊕s

j=1 ker
(
N − λϕ(j)Id

)
associated to the eigenvalues λϕ(j) where

ϕ (j) ∈ {1, . . . , p}.

Remark 4.4. The nonempty submanifolds Σσ
c of a leaf F of dimension 2k are:
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• open (resp. of codimension 1) for σ = (1) , . . . , (1)︸ ︷︷ ︸
p terms

; (2) , . . . , (2)︸ ︷︷ ︸
q terms

where p ∈ Em

with

{
Em = {0, 2, . . . ,m} if m is even

Em = {1, 3, . . . ,m} if m is odd
and c = 0 (resp. c = 2)

• of codimension 1 (resp. 2) for σ = (2) , (1) . . . , (1)︸ ︷︷ ︸
p−1 terms

; (2) , . . . , (2)︸ ︷︷ ︸
q terms

where p ∈ E′
m

with

{
E′

m = {2, 4, . . . ,m} if m is even

E′
m = {3, . . . ,m} if m is odd

and c = 0 (resp. c = 2)

• of codimension greater than 2 in the other cases.

Remark 4.5. In fact, a lot of strata are empty. This is due to the following reason: if

one first considers the stratification by the rank of P ′ = NP, and if one defines a notion

of genericity for such Poisson tensors, one knows that, as in the case of forms ([17], [24]),

Σc (P ′) = {x ∈M : rangP ′
x = n− c}

is a submanifold of codimension c (c− 1)/2. Since the submanifold is a union of symplectic

leaves of dimension n − c, one has codimΣc (P ′) ≤ c. So one generically gets nonempty

strata for c ≥ c (c− 1)/2, i.e. for c ≤ 3. Now as c = 2k − rangP ′, one necessarily has

c = 0 or c = 2.

4.3. Examples of generic pairs. We now give two examples of generic pairs.

Example 4.6. On R2m we consider the adapted pair (P,N) defined by

P =
m−2∑

k=0

∂2k+1 ∧ ∂2k+2 + x2m−1∂2m−1 ∧ ∂2m,





N∂1 = λ1∂1,

N∂2 = λ2∂2,
...

N∂2m−3 = λm−1∂2m−3,

N∂2m−2 = λm−1∂2m−2,

N∂2m−1 = x2m−1∂2m−1,

N∂2m = x2m−1∂2m,

where 0 < λ1 < · · · < λm−1.

On the manifold M =
{(
x1, . . . , x2m

)
:
∣∣x2m−1

∣∣ < λ1

}
the symplectic leaves of the

Poisson tensor are

• the open set Σ0 : x2m−1 6= 0,

• the submanifolds Lα of codimension 2 given by the equations x2m−1 = 0 and x2m = α.

On Σ0 the refined stratification is Σc
0 where c = 0, 2 and σ = (1) , . . . , (1) ; (0) and one

has codimΣσ
2 = 1. On Lα the symbol is still equal to σ = (1) , . . . , (1) ; (0). So one gets a

generic element.

Example 4.7. One uses the example in R4 given in [2]. The open strata Σ
(1),(1);(0)
0 and

Σ
(0);(2)
0 correspond respectively to SE and SH and where the stratum of codimension 1,
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Σ
(2);(0)
0 corresponds to SP . Here the Poisson tensor P is constant

P = ∂1 ∧ ∂2 + ∂3 ∧ ∂4,

and the recursion operator N is given, for a 6= 0, by its matrix in the canonical basis



a+ x1 0 1 0

0 a+ x1 x4 x3

x3 0 a 0

−x4 1 0 a


 .

On the part which is defined by the inequality x2
1 + 4x3 ≥ 0, the eigenfunctions λ1 =

a+ 1
2x1 −

1
2

√
x2

1 + 4x3 and λ2 = a+ 1
2x1 + 1

2

√
x2

1 + 4x3 of the operator N are real. On

the subset corresponding to 4x3 + x2
1 > 0, one has mN = (X − λ1) (X − λ2) and the

symbol is equal to (1) , (1) ; (0) . The submanifold Σ2 is of codimension 1 and its equation

is ax1 − x3 + a2 = 0. The subset of equation 4x3 + x2
1 = 0 corresponds to a minimum

polynomial mN = (X − λ)
2

where λ = a+ 1
2x1 and where σ = (2); (0). The equations of

the stratum Σ
(2);(0)
2 of codimension 2 are x1 = −2a, x3 = −a2.

5. Existence of bi-abelian sub-algebra for a generic generalized PN manifold

5.1. Properties of the momentum map relative to generic pairs. Let (M,P,N) be a gen-

eralized PN manifold of dimension 2m where P is a Poisson tensor of maximal rank.

If we consider the functions Ik = 1
k traceNk (k = 1, . . . ,m), the mapping

x 7→ (I1 (x) , . . . , Im (x))

is called the momentum map (cf. [1]).

If N only has pairwise distinct real eigenvalues, it is well known (cf. [15], [5] for

example) that the functions I1, . . . , Im are pairwise in involution for both Poisson brackets

{., .}P and {., .}NP and define a Lenard recursion chain, i.e.

N∗ (dIk) = dIk+1.

In particular {I1, . . . , Im} spans a bi-abelian sub-algebra.

We are going to prove that these properties are still true in a ”generic” framework or

in an analytic context.

Theorem 5.1. Let (M,P ) be a Poisson manifold of dimension 2m where P is a Poisson

tensor of maximal rank. In the space J1 (A2m (M)) of the 1-jets of elements of A2m (M)

there exists a stratification such that if (P,N) is transverse to it, one has the following

properties (*):

• the functions Ik, k = 1, . . . ,m are independent on an open dense subset O of M

whose complement is a stratifiable set of codimension at least 2.

• In each Lie algebra (C (M) , {., .}P ) and (C (M) , {., .}NP ) , the functions Ik, k =

1, . . . ,m, generate a bi-abelian Lie sub-algebra and constitute a Lenard recursion

chain.
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If (P,N) is analytic and if there exists a point of M where the symbol is:

(1) , . . . , (1)︸ ︷︷ ︸
p terms

; (2) , . . . , (2)︸ ︷︷ ︸
q terms

with p + 2q = m (for some 0 ≤ p ≤ m), then there exists a dense open set U where the

properties (*) hold.

Remark 5.2. In the analytic case, if N has only m (pairwise distinct) double eigenvalues

on an open dense subset O ofM , and according to [12], the complement of O is an analytic

set of codimension at least 2. In this case the eigenfunctions λ1, . . . , λm are defined on

the whole manifold M and are continuous, sub-analytic, nondifferentiable on M\O but

Lipschitz. In particular, such a generalized PN manifold will never be generic.

5.2. Examples

5.2.1. Example of a generic pair. We consider Example 4.7 again. Since the eigenvalues

of the recursion operator are equal to

λ1 = a+
1

2
x1 −

1

2

√
4x3 + x2

1 and λ2 = a+
1

2
x1 +

1

2

√
4x3 + x2

1

we can write {
I1 = traceN = 4a+ 2x1,

I2 =
1

2
traceN2 = 2x3 + a2 + (a+ x1)

2
.

The equation of Σ(2);(0) is 4x3+x
2
1 = 0 and the eigenvalues λ1 and λ2 are not differentiable

on this submanifold.

On the contrary, the ”first integrals” I1 and I2 are differentiable everywhere and

independent because dI1 = 2dx1 and dI2 = 4 (a+ x1) dx1 + 4dx3

5.2.2. An example of nongenericity: the Hénon-Heiles system. We consider the example

of the Hénon-Heiles system and we are interested in the second case of integrability where

λ = 1
2 and B = 4A. Using the coordinates: x1 = q1, x2 = q2, x3 = p1, x4 = p2, we consider

the constant Poisson tensor

P = ∂1 ∧ ∂3 + ∂2 ∧ ∂4

and the recursion operator N given by its matrix



0 x1 0 0

x1 2x2 0 0

0 −x3 0 x1

x3 0 x1 2x2


 .

So the eigenvalues of N are real and we have λ1 = x2+
√
x2

1 + x2
2 and λ2 = x2−

√
x2

1 + x2
2.

They are sub-analytic, continuous and even Lipschitz. as quoted in Remark 5.2. On the

complement of S = {x : x1 = x2 = 0} the symbol of N is equal to (1), (1); (0); on S we

have σ = (2); (0). Since codimS = 2 6= 1, N is not generic.

There does not exist any open subset where σ = (0) ; (2), corresponding to a pair of

conjugate complex eigenvalues.

Since the map x = (x1, x2) 7→
√
x2

1 + x2
2 = ‖x‖ is not differentiable at 0, neither λ1

nor λ2 are differentiable on S.
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According to the relations
{

I1 = traceN = 4x2,

I2 =
1

2
traceN2 = 2x2

1 + 4x2
2,

it is obvious that I1 is differentiable on S and dI1|S = 0. Similarly, I2 is differentiable on

S and dI2|S = 0.

5.3. Construction of a suitable stratification. Let M be a manifold of dimension 2m. We

consider the case of the pairs (P,N) ∈ A2m (M) , i.e. for P of maximal rank 2m. We are

to construct a stratification in the space of the 1-jets of elements of A2m (M).

Let π1 be the canonical projection of the space J1 (A2m (M)) of 1-jets of elements

A2m (M) on A2m (M) . For c = 0, 2, Σ̂p
c (M) is the pull back π−1

1 (Στ
c (M)) where

τ = (1) , . . . , (1)︸ ︷︷ ︸
p

; (2) , . . . , (2)︸ ︷︷ ︸
q

for p ∈ Em

We then define the set Σ̂p,1
c (M) of 1-jets of elements (P,N) of A2m (M) belonging to

Σ̂p
c (M) such that

dλ1 ∧ · · · ∧ dλp ∧ dα1 ∧ dβ1 ∧ · · · ∧ dαq ∧ dβq = 0

where {λj}j=1,...,p (resp. {αk ± iβk}k=1,...,q) are the real eigenvalues (resp. complex eigen-

values) of N above Στ
c (P,N).

Let Σ̂p,0
c (M) be the complement of Σ̂p,1

c (M) in Σ̂p
c (M). Moreover, let Ŝp (M) be the

pull back π−1
1 (Στ ′

0 (M)) where

τ ′ = (2) , (1) , . . . , (1)︸ ︷︷ ︸
p−1

; (2) , . . . , (2)︸ ︷︷ ︸
q

for p ∈ E′
m

We first consider the set Ŝp,2 (M) of 1-jets of elements of Ŝp (M) which are not

transverse to Στ ′

0 (M) .We introduce the set Ŝp,1 (M) of the elements of Ŝp (M) \Ŝp,2 (M)

such that

dψ ∧ dλ2 ∧ · · · ∧ dλp ∧ dα1 ∧ dβ1 ∧ · · · ∧ dαq ∧ dβq = 0

where {λj}j=2,...,p (resp. {αk ± iβk}k=1,...,q) are the real eigenvalues (resp. conjugate

complex eigenvalues) of N above Στ ′

0 (P,N) whose local equation is ψ = 0. We then

consider the complement Ŝp,0 (M) of Ŝp,1 (M) in Ŝp (M) \Ŝp,2 (M) .

Finally, we use Σ̂σ
c (M) = π−1

1 (Σσ
c (M)) for any σ 6= τ if c = 0, 2 and σ 6= τ ′ if c = 0.

Proposition 5.3. The following properties hold:

1. The sets Σ̂p,1
c (M) for c = 0, 2 and p ∈ Em (resp. Ŝp,2 (M) and Ŝp,1 (M) for p ∈ E′

m)

are stratifiable and the codimension of the stratum of highest dimension is equal to

at least 2 in Σ̂p
c (M) (resp. Ŝp (M)).

2. For p ∈ Em, Σ̂p,0
0 (M) are open subsets of J1 (A2m (M)).

3. The sets Σ̂p,0
2 (M) for p ∈ Em and Ŝp,0 (M) for p ∈ E′

m are submanifolds of codi-

mension 1 in J1 (A2m (M)).
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4. If one chooses a stratification for each set Σ̂p,1
c (M) for c = 0, 2 and p ∈ Em,

the union of these strata and the manifolds Σ̂p,0
0 (M) for p ∈ Em, Σ̂p,0

2 (M) and

Ŝp,0 (M) for p ∈ E′
m, Σ̂σ

c (M) = π−1
1 (Σσ

c (M)) for σ 6= τ if c = 0, 2 and σ 6= τ ′ if

c = 0 is a stratification of J1 (A2m (M)).

5. If one considers a pair (P,N) of A2m (M) transverse to the previous stratification,

then the set O of the pull backs of the strata Σ̂p,0
0 (M) for p ∈ Em, Σ̂p,0

2 (M) for

p ∈ Em and Ŝp,0 (M) for p ∈ E′
m is an open set of M whose boundary ∂O is a

stratified set of codimension at least 2.

Sketch of the proof of Proposition 5.3. The different properties result from the construc-

tion of a stratification on a vector bundle obtained from a stratification on the fiber

invariant under the action of a Lie group. More precisely, let Â2m be the vector space of

1-jets at 0 of the pairs (P,N) belonging to A2m

(
R2m

)
and let Ĝ be the group of 2-jets at

0 of diffeomorphism of R2m fixing 0. The set J1 (A2m (M)) is a bundle on M whose fiber

over x is isomorphic to A2m and has Ĝ as structural group. The proof of the proposition

is completed by the construction of Ĝ-invariant subsets of Â2m.

Sketch of the proof of Theorem 5.1. Let (P,N) be transverse to the stratification con-

structed in Proposition 5.3 or an analytic pair fulfilling the assumptions of the theorem.

Let us fix this pair and consider Σp
0, Σp

2 and Sp the respective pull backs of the strata

Σ̂p,0
0 for p ∈ Em, Σ̂p,0

2 , and Ŝp,0 (M) for p ∈ E′
m.

In the transversal case, according to Proposition 5.3, property 5, the union V of

the sets {Σp
c}c=0,2,p∈Em

and {Sp}p∈E′

m
is an open dense set of M whose boundary ∂V

is a stratifiable set of codimension at least 2. In the analytic case, these sets will be

sub-analytic, and so stratifiable, and each Σp
0 is an open set.

It is easy to prove that the functions I1, . . . , Im are independent on Σp
0 where N has p

double pairwise distinct real eigenvalues and q different pairs of double conjugate complex

eigenvalues.

The proof of the independence of I1, . . . , Im on Sp and Σp
2 is left to the reader.

If Σ0 is the (dense) open set, union of the open sets Σp
0, p = 0, . . . ,m, we have

established that the functions I1, . . . , Im are independent on the union U of the sets Σ0,

{S′p}p∈E′

m
and {Σc}p∈Em

.

By construction, U is the regular part of the pull-back of the set O defined in Propo-

sition 5.3, property 5 and which is equal to V in the transversal case. So the boundary

of U is the union of stratifiable sets of codimension at least 2.

Now, as LNXN = N we can deduce (cf. [5]) that N∗dIk = dIk+1 and so N∗dfl = fldfl,

l = 1, . . . ,m. The proof of Theorem 5.1 is completed.

6. A characterization of the bi-abelian subalgebras. Let us consider a generalized

PN manifold (M,P,N) of dimension n = 2m where P is a Poisson tensor of maximal

rank and x a point of M where the symbol of (P,N) is equal to:

(1) , . . . , (1)︸ ︷︷ ︸
p terms

; (2) , . . . , (2)︸ ︷︷ ︸
q terms



GENERALIZED PN MANIFOLDS AND SEPARATION OF VARIABLES 179

with p + 2q = m. According to [28] and [23], one can find local coordinates on a neigh-

borhood U of x such that

P =

p∑

l=1

∂

∂xl
∧

∂

∂yl
+

1

4

q∑

l′=1

∂

∂u2l′−1
∧
∂

∂u2l′
−

∂

∂v2l′−1
∧
∂

∂v2l′

and where N is characterized by:

N

(
∂

∂xl

)
= −λl

∂

∂xl
and N

(
∂

∂xl

)
= −λl

∂

∂xl
, l = 1, . . . , p

N

(
∂

∂u2l′−1

)
= αl′

∂

∂u2l′−1
+ βl′

∂

∂v2l′−1
, N

(
∂

∂v2l′−1

)
= −βl′

∂

∂u2l′−1
+ αl′

∂

∂v2l′−1

N

(
∂

∂u2l′

)
= αl′

∂

∂u2l′
+ βl′

∂

∂v2l′
, N

(
∂

∂v2l′

)
= −βl′

∂

∂u2l′
+ αl′

∂

∂v2l′
, l′=1, . . . , q

where λ1, . . . , λp, α1 ± iβ1, . . . , αq ± iβq are the real and conjugate complex eigenvalues

of N on U (it is possible to choose these coordinates such that dyl = dλl, l = 1, . . . , p

and du2l′ = dαl′ dv2l′ = dβl′ , l
′ = 1, . . . , q).

Such a coordinate system is called an adapted coordinate system.

Consider the hamiltonians H1, . . . , Hm, functionally independent on the open set U .

(H1, . . . , Hm) will be said to be separable in this set of coordinates if there exist m

relations, called separation relations, of the form (Φ1, . . . ,Φp,Φp+1, . . . ,Φm) :

Φ1 (x1, y1, H1, . . . , Hm) = 0,

.......... ... ...

Φp (xp, yp, H1, . . . , Hm) = 0,

Φp+1 (u1, u2, H1, . . . , Hm) = 0,

Φp+2 (v1, v2, H1, . . . , Hm)

.......... ... ...

Φm−1 (u2q−1, u2q, H1, . . . , Hm) = 0,

Φm (v2q−1, v2q, H1, . . . , Hm) = 0,

(1)

with det[∂Φl/∂Hj ] 6= 0 and the relations:

∂Φp+2l′−1

∂u2l′−1
=
∂Φp+2l′

∂v2l′−1
,

∂Φp+2l′−1

∂u2l′
=
∂Φp+2l′

∂v2l′
, l′ = 1, . . . , q. (2)

In this case, we get a generalization of a theorem given in [5] under the following

assumptions:

There exists a point x in M where the symbol is

(1) , . . . , (1)︸ ︷︷ ︸
p terms

; (2) , . . . , (2)︸ ︷︷ ︸
q terms

for some p ∈ {0, 1, . . . ,m}.

In this context, the set Σ0 where the symbol is ”maximal”, i.e. (1), . . . , (1); (2), . . . , (2)

for all 0 ≤ p ≤ m, is an open dense set and, moreover, P must have maximal rank on

this set.

Theorem 6.1. Under the previous assumptions, if {H1, . . . , Hm} are functionally inde-

pendent hamiltonian on an open set V (which may be dense), the following properties are
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equivalent:

(1) on Σ0 ∩ V the m-uple (H1, . . . , Hm) is separable in an adapted local coordinates

system;

(2) the foliation defined by (H1, . . . , Hm) on V is lagrangian with respect to P and

invariant with respect to N ;

(3) the functions (H1, . . . , Hm) are in bi-involution on V .

In fact, these properties are local; so it is sufficient to prove the following result in an

adapted local system on a neighborhood U of x ∈ V where the symbol of (P,N) is:

(1) , . . . , (1)︸ ︷︷ ︸
p terms

; (2) , . . . , (2)︸ ︷︷ ︸
q terms

with p+ 2q = m.

The proof of this theorem is an adaptation of the one given in [5] and is a consequence

of the following observations.

Observation 1. The property (1) holds iff there exists a square matrix F = (Fij) of

order m on U with the same real and conjugate complex eigenvalues as N fulfilling the

property:

N∗ (dHi) =
m∑

j=1

FijdHj , i = 1, . . . ,m.

Observation 2. Let (H1, . . . , Hm) hamiltonians which define a Lagrangian foliation with

respect to P on U . Furthermore if this foliation is invariant with respect to N , there exists

a square matrix F = (Fij)) of order m on U with the same real and conjugate complex

eigenvalues as N with the property:

N∗(dHi) =

m∑

j=1

FijdHj , i = 1, . . . ,m.

Observation 3. The properties (1) and (3) are equivalent.
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(Grenoble) 20 (1970), no. 1, 95–178.
[18] C. Morosi and L. Pizzocchero, R-matrix theory, formal casimirs and the periodic Toda

lattice, J. Math. Phys. 37 (1996), 4484–4513.
[19] J. M. Nunes da Costa and C.-M. Marle, Reduction of bihamiltonian manifolds and recur-

sion operators, in: Differential Geometry and Applications (Brno, 1995), J. Janyška et al.
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